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Abstract: In the bustling streets of Pakistan, small-scale fruits and vegetables shops stand as vital
hubs of daily life. These humble establishments are where people flock to satisfy their everyday
needs. However, the traditional methods employed by shopkeepers using manual weighing scales
have proven to be time-consuming and limit the shopkeepers’ ability to serve multiple customers
simultaneously. But in a world rapidly embracing automation and propelled by the wonders of
artificial intelligence, a revolution is underway. In this visionary paper, we introduce the concept of an
intelligent scale that will revolutionize the retail process. This remarkable scale possesses the power
to automate numerous tasks, making the shopping experience seamless and efficient. Imagine a scale
that not only determines the weight of the produce but also possesses the ability to detect and identify
each fruit and vegetable placed upon it. By harnessing the potential of cutting-edge technology, we
fine-tuned pre-trained models, such as YOLOv5n and YOLOv7, on our extensive dataset, consisting
of 12 classes and 2622 images. The dataset was collected manually and it closely aligns with real-
time scenarios, ensuring that the distribution in our training and validation sets were similar and
that it reflected what our models will encounter during testing. As a result, our YOLOv5n and
YOLOv7 models have achieved astonishing mean Average Precision (mAP) scores of 0.98 and 0.987,
respectively. YOLOv5n demonstrates an impressive processing speed of 20 frames per second (fps)
on a CPU, while it reaches an impressive 125 fps on a GPU. Similarly, YOLOv7 achieves a processing
speed of 2 fps on a CPU, which escalates to 66.6 fps on a GPU. These extraordinary results testify to
the remarkable accuracy and efficacy of our system when subjected to real-world testing scenarios.
To ensure accurate weighing, we incorporated a load cell with an hx711 amplifier, providing precise
measurements that customers can trust. However, our intelligent scale does not stop there. We
understand that determining weight alone is insufficient when it comes to transactions. Hence, a
meticulously crafted Python script was developed to map each specific item to its corresponding
price based on its weight. With all these incredible features in place, the experience of purchasing
from a fruits and vegetables shop is taken to new heights. The intelligent scale is accompanied by a
user-friendly graphical user interface (GUI), where customers can conveniently view their order and
prices. Once the order is complete, a simple click on the print button generates a neatly printed bill,
ensuring a seamless transaction. The implications of this intelligent scale are profound. Shopkeepers
can now serve customers faster and more efficiently, effortlessly managing multiple transactions
simultaneously. The introduction of automation enhances the overall shopping experience, leaving
customers delighted and eager to return. This amalgamation of technology and traditional commerce
heralds a new era, where small-scale shops can thrive and adapt to the ever-evolving needs of the
modern world.
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1. Introduction

In recent years, the rapid transformation driven by digitization and automation has
brought about profound changes in various facets of our lives. Significantly, advancements
in technology, particularly in the realm of artificial intelligence (AI), have served as the
catalyst for this paradigm shift. Digitization involves the conversion of analog informa-
tion into digital formats, while automation leverages technology to execute tasks with
minimal human intervention. The integration of AI applications has played a pivotal role
in harnessing the full potential of digitization and automation. By utilizing AI, digiti-
zation enables the analysis of unstructured data, encompassing images, audio, and text,
thereby extracting valuable insights from these sources. For instance, AI-powered image
recognition algorithms have facilitated the automatic tagging and categorization of images.
Simultaneously, AI’s impact on automation is equally momentous, empowering machines
to perform tasks that were traditionally dependent on human intelligence. These intelligent
machines execute complex tasks with precision and swiftness, bolstering work efficiency
and diminishing labor costs. By leveraging digitization and AI-powered automation, we
can bring about a transformative change in the small-scale retail sector of Pakistan.

In Pakistan, where a significant proportion of the population belongs to a low socio-
economic status [1], small-scale retail outlets play a pivotal role in fulfilling their daily
consumption needs. These outlets offer goods in quantities that are affordable and ac-
cessible to this segment of the population, given their limited purchasing power, unlike
large-scale supermarkets that primarily cater to bulk purchases. However, the pricing of
goods in these small-scale retail outlets relies on conventional weight scales, which involve
a manual and time-consuming process. To address the inherent inefficiencies and high
labor demands associated with this traditional method, it becomes imperative to embrace
digitization and automation. Drawing inspiration from the advancements in artificial
intelligence (AI), we propose the adoption of an intelligent weighing scale in small-scale
retail outlets across Pakistan. This innovative scale would incorporate a deep learning
algorithm capable of real-time detection and recognition of various fruits and vegetables,
accurately weigh the items, and display their corresponding prices on a user-friendly graph-
ical interface. Such implementation would significantly enhance operational efficiency and
reduce labor requirements, consequently benefiting both the retailers and the customers in
these outlets.

Deep learning has seen a significant rise in recent years, which can be primarily at-
tributed to the progress in digital technologies and availability of large data sets [2]. Digital
technologies such as high-performance computing and powerful GPUs have facilitated
the training of deep neural networks on large data sets [2]. This combination of powerful
computing resources and large data sets has enabled deep learning to achieve state-of-the-
art performance in a wide range of applications of computer vision [3]. Deep learning
models have played a crucial role in the development of real-time object detection systems.
Object detection is a computer vision task focused on recognizing and localizing objects
present in images or videos. It involves identifying the presence of specific objects and
determining their spatial coordinates within the given visual data [4]. The objective of
object detection is to enable machines to perceive and understand the content of images or
video frames [5]. Traditional object detection algorithms, such as Harris Corner Detector [6],
Scale-Invariant Feature Transform (SIFT) [7], and Speeded Up Robust Features (SURF) [8,9],
rely on hand-crafted features and heuristics to detect objects. These object detection algo-
rithms are relatively simple and computationally efficient, but they are not as accurate and
robust as deep-learning-based object detection algorithms. In contrast to traditional ap-
proaches, deep-learning-based models employ convolutional neural networks (CNNs) [10]
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to automatically extract features from raw image data. CNNs are designed to capture
hierarchical representations of visual information, enabling them to learn complex patterns
and structures present in images [11]. By leveraging these learned features, deep learning
models exhibit increased robustness to variations in object appearance, such as changes in
lighting conditions, viewpoints, and occlusions [12]. The capability of deep-learning-based
object detection models to generalize well to new images and improve detection perfor-
mance compared to hand-crafted feature-based methods has been harnessed effectively
for fruits and vegetables detection and recognition. In this context, we have specifically
fine-tuned the parameters of two versions of the YOLO algorithm, namely YOLOv5n [13]
and YOLOv7 [14], capitalizing on their inherent capacity to adapt and excel in detecting
fruits and vegetables across various types of images. YOLO, or You Only Look Once, is a
single-stage object detector, as opposed to the commonly used two-stage object detectors
such as R-CNN [15], Fast R-CNN [16], and Faster R-CNN [17]. YOLO algorithm, adopts a
unique methodology of processing images by making predictions in a single pass [18]. It
analyzes the entire input image as a whole and directly predicts the presence and spatial
coordinates of objects within it. This approach distinguishes YOLO from traditional two-
stage object detection methods, resulting in computational efficiency by eliminating the
need for region proposal and subsequent refinement steps [18]. By processing the image
only once, YOLO achieves real-time object detection capabilities, making it well-suited for
resource-constrained environments [19].

In this paper, we propose a computer vision-based weighing scale system for the
real-time detection and measurement of fruits and vegetables. The system comprises
a camera, a loadcell, an hx711 module, an Arduino microcontroller, and a laptop. The
camera captures real-time video, which is then processed by a deep learning model, such
as YOLOv5n or YOLOv7, running on the laptop to make real-time predictions of the object.
The Arduino microcontroller interfaces the hx711 module with the loadcell, which is used
to measure the weight of the objects. Serial communication is used to transfer the weight
measurements to the laptop. A python script has been written in order to create a graphical
user interface (GUI). The GUI has everything on it, such as particular item real time video,
its name, weight, and price with respect to their weight. Using graphical user interface
(GUI) you can add different items to your bill once you weigh them by just clicking the
“add” button. At the end, you can receive your bill in printed form when you complete
your order by just clicking the “print” button that has been shown on the graphical user
interface (GUI). The system is designed to be efficient, reducing labor costs when multiple
weighing scales are utilized, as the shopkeeper needs to enter the price of the object only
once. This intelligent weighing scale would empower shopkeepers to serve customers more
efficiently, enabling multiple customers to be attended to simultaneously. The reduction in
labor requirements would also alleviate the burden on the shopkeepers, allowing them to
focus on other aspects of their business.

Our proposed system has the potential to improve the efficiency and accuracy of
small-scale retail operations. This study is a step towards modernizing small-scale retail
operations and future research could be focused on the implementation of this system in
real-world scenarios and its impact on the industry.

The contribution of this article can be summarized into following points:

• This article highlights the challenges faced by small-scale retail shops in Pakistan.
It discusses issues such as the manual processes, limited resources, and inefficient
management systems that hinder the growth and profitability of these businesses.

• A solution to the aforementioned problems is proposed in the article by suggesting the
adoption of global trends such as digitalization and automation. The need for small-
scale retail shops in Pakistan to leverage technology to streamline their operations,
enhance efficiency, and improve customer experience is emphasized.

• A concise overview of the existing literature related to the detection and classification
of fruits and vegetables is provided in the article. The techniques and algorithms
utilized for achieving accurate identification and classification of different fruits and
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vegetables are discussed. Furthermore, the literature related to weighing systems is
also explored.

• The process of collecting the necessary dataset for training the model is described
in the article. How the dataset should be aligned with the scenario expected during
testing or real-time implementation of the model is explained. The collection methods
may include the passive capturing of images of fruits and vegetables from different
angles, under varying lighting conditions, and with different orientations.

• Step-by-step instructions for training the model using the collected dataset are pro-
vided in the article. Preprocessing steps, including data annotation and splitting, are
covered. Furthermore, the model validation process is explained.

• Finally, an overview of a user-friendly graphical user interface (GUI) for the proposed
prototype was provided. The GUI is designed to simplify the interaction between the
users and the automated system. An intuitive interface is provided for tasks such
as order initiation, prize editing, item addition, and order completion bill, aiming to
enhance user experience and streamline the process.

2. Literature Review
2.1. Fruits and Vegetables Classifications

In the proposed prototype, the main objective is to classify and recognize different
types of fruits and vegetables, which can be achieved using image classification or object
detection models. Prior research has been conducted by various researchers who have
utilized different deep learning models to perform classification, recognition, and detection
tasks for different types of fruits and vegetables. Let us begin by examining the earlier
works in which researchers conducted the classification or identification of diverse types
of fruits and vegetables. There are numerous studies that have employed a range of
techniques such as Convolutional Neural Networks (CNNs) and Deep Neural Networks
(DNNs. In reference [20], the author conducted a study on classification and recognition
of fruits. He utilized a convolutional neural network for the classification of fruits. In
his study he used two datasets composed of 3 and 20 classes, respectively. He trained
CNN using three different optimization algorithms such as Adam, SGD, and RMSprop.
In another paper [21], the author employed a DNN based on CNN for vegetable category
recognition. He utilized a dataset composed of 8 classes and 160 images. He performed
3 million iterations for training CNN which seem computationally expensive. In the
research in reference [22], caffe and chainer DNN frameworks were utilized for vegetable
recognition. The dataset used in this study consisted of 15 classes and 150 images. It
transpires that the limited size of the dataset used in studies [21,22] may lead to concerns
about the ability of the model to generalize well to new datasets. In this work [23], the
author presented the idea of transfer learning. He utilized various convolutional neural
network (CNN) architectures on a dataset composed of 15 classes and 21,000 images for
image classification. The typical CNN and four state-of-the-art architectures, including
VGG16, MobileNet, InceptionV3, and ResNet, were trained and their performances were
compared. Results showed that training a CNN from scratch on a small dataset resulted
in lower performance compared to training a pre-trained model. The findings of this
study suggest that, when working with small datasets, transfer learning is a technique
that can be applied to enhance the performance of the algorithm. In this study [24],
the author addresses the challenge of fruit classification in the horticulture industry by
leveraging advancements in AI and deep learning. The author employs a dataset consisting
of 26,149 images encompassing 40 different types of fruits for experimentation. To enhance
the classification performance, the author introduces a customized head comprising five
different layers into the MobileNetV2 architecture. By replacing the classification layer of
MobileNetV2, a modified version called TL-MobileNetV2 is obtained. Transfer learning is
employed to leverage the knowledge gained from pre-trained models. By retaining the pre-
trained weights, TL-MobileNetV2 achieves an impressive accuracy of 99%, surpassing the
performance of MobileNetV2 by 3%. Moreover, TL-MobileNetV2 exhibits a remarkably low
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equal error rate of just 1%. Precision, recall, and F1-score measures demonstrate excellent
performance, with TL-MobileNetV2 achieving 99% for each metric. In this study [25], the
authors propose an autonomous system using a CNN-based approach to classify date fruit,
addressing the absence of such a system and the limitations of manual expertise. They create
a dataset with eight distinct classes of date fruit for training and employ preprocessing
techniques like image augmentation, decayed learning rate, model checkpointing, and
hybrid weight adjustment to enhance the model’s performance. The proposed model, based
on MobileNetV2 architecture, achieves an impressive 99% accuracy rate. Comparing it to
other models like AlexNet, VGG16, InceptionV3, ResNet, and MobileNetV2, the proposed
model consistently outperforms them in terms of accuracy, validating its effectiveness in
date fruit classification.

Overall, the literature demonstrates the application of deep learning models, such as
CNNs and DNNs, for fruit and vegetable classification. The use of transfer learning and
pre-trained models shows promise in enhancing model performance, particularly when
working with small datasets. However, it is important to note that the literature does not
directly address the real-time detection and recognition of fruits and vegetables. The studies
primarily focus on the classification task, where the goal is to assign a specific category
or label to an input image. Real-time detection and recognition involve identifying and
localizing fruits and vegetables in a video or live camera feed, which requires additional
techniques such as object detection or instance segmentation.

2.2. Fruits and Vegetables Detections

The preceding literature focuses on classification and recognition tasks in non-real-time
settings. However, our proposed work requires the real-time recognition and classification
of fruits and vegetables. Due to this, we had to employed an object detection model for
carrying out the recognition and classification tasks in real time. In previous research,
several researchers have explored object detection algorithms for fruits and vegetables
recognition and classification in real time. In this section, we will provide a summary of
these techniques. In one work, the idea of a billing mart was presented [26]. YOLOv2, an
object detection algorithm, was utilized by the author for the detection and recognition of
vegetables. The model was trained on three classes and an accuracy of 70% was achieved,
which is not considered sufficient for real-time object detection. However, no graphical
user interface (GUI) was developed for shopping purposes. In another study [27], YOLO al-
gorithm was used for the classification and detection of vegetables. A dataset of 100 images
of three different classes of vegetables was collected by the author. Out of these, 60 images
were used for training purposes, while 40 images were utilized for testing. However, due
to the limited size of the dataset, there was a lack of diversity in the orientation of the
vegetables, resulting in poor performance in detecting unknown orientations. This poor per-
formance was attributed to the absence of data augmentation. Consequently, an accuracy of
only 61.6% was achieved by the model, which is deemed insufficient for real-time vegetable
detection. These results highlight the necessity for larger and more diverse datasets in
order to train robust and accurate models for vegetable classification and detection tasks.
In another paper [28], the utilization of the deep learning model YOLOv4-tiny for the task
of fruits and vegetables detection was described. A dataset was collected from various
sources such as Google and Kaggle, and it was labeled using the Roboflow framework. The
results obtained from the YOLOv4-tiny model showed a mean average precision (mAP) of
51% with an inference time of 18 milliseconds. However, upon further analysis, several
reasons for the suboptimal performance of the model were identified. Firstly, the dataset
used in this study was collected from multiple sources, which led to a lack of uniformity
in the distribution of the dataset. Additionally, the number of examples per class varied,
with some classes having a higher number of examples than others. In the research of
reference [29], the author proposes an accurate and real-time image-based multi-class fruit
detection system for smart farms. The framework utilizes an improved Faster R-CNN
deep learning model, comprising a fruit image library, data augmentation techniques, an
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enhanced model, and performance evaluation. The work’s notable contributions include a
comprehensive outdoor orchard image library with 4000 real-world images and optimized
convolutional and pooling layers for higher accuracy and faster detection. The test results
demonstrate superior accuracy and processing time compared to traditional detectors. The
proposed algorithm achieves over 91% mean average precision (mAP) for detecting apples,
mangoes, and oranges, with improved image processing speed, making it suitable for
autonomous harvesting and yield mapping systems. In another paper [30], a novel fruit
detection algorithm is presented for a plum harvesting robot. The algorithm addresses the
challenges of accurately recognizing plums, considering their small size, dense growth,
and occlusions in the environment. The proposed approach is a lightweight plum detection
procedure based on an improved version of the YOLOv7 algorithm. The methodology
involves collecting plum images, establishing train/validation/test sets, and training the
detection model with data augmentation. The authors introduce modifications to YOLOv7,
including updated anchor box sizes based on observed plum sizes and an SE module for
capturing channel interdependencies. The Improved-YOLOv7 model achieves promising
results, with Precision, Recall, and mAP scores of 70.2%, 72.1%, and 76.8%, respectively.
Comparative analysis demonstrates that the model outperforms other YOLO models in
terms of accuracy and generalization in complex environments. Furthermore, in our work,
we also included the class of plum, and our YOLOv7 model demonstrates greater precision
and recall for this class compared to the research mentioned. In another paper [31], the
author presents a fruit detection model called YOLO-Oleifera, specifically designed for
oil-seed camellia fruit in orchards. It modifies the YOLOv4-tiny architecture to address
challenges such as lighting changes, occlusion, and fruit overlap. The model uses the k-
means++ clustering algorithm to improve bounding box priors for accurate fruit detection.
Additional convolutional kernels are added to reduce computational complexity while
effectively learning fruit features. The model utilizes bounding boxes for region of interest
extraction and adaptive stereo matching, enabling precise fruit positioning. Ablation exper-
iments demonstrate the effectiveness of the modifications. Testing shows robust detection
performance under varying illumination conditions, with reduced precision and recall for
occluded fruit. Compared to other models, YOLO-Oleifera achieves the highest Average
Precision with a small data weight of 29 MB. It demonstrates real-time capability and stabil-
ity in complex orchard environments, serving as a reference for mobile picking robots. In
another paper [32], three models for fruit detection and classification were utilized. These
models included CNN, YOLOv4, and YOLOv5. The CNN was trained on the fruit360
dataset, which consisted of 131 classes of fruits and vegetables. After fine-tuning, the CNN
achieved an accuracy of 98%. However, it was observed that, despite its high accuracy,
the CNN did not perform well in real-time scenarios. To address this issue, the author
collected two additional datasets with 19 and 12 classes, respectively. Two YOLO models,
namely YOLOv4 and YOLOv5, were trained using these datasets. The YOLOv4 model
achieved an accuracy of 70%, while the YOLOv5 model achieved an accuracy of 78%. These
later models demonstrated improved performance in real-time scenarios compared to the
CNN, but their performance did not reach the baseline level. Furthermore, the author
developed a Python script for billing purposes. However, no specific device was mentioned
for weighing purposes in the research. The detection and classification focused solely on
fruits and vegetables, with fixed weights and prices. As a result, these methods may not be
suitable for small-scale outlets with low purchasing power, particularly in the context of
the majority of the population in Pakistan. In another study [33], the author developed an
Internet of Things (IoT)-based system for the sale of fruits and vegetables. The system incor-
porates a scale that automatically weighs and identifies the fruits and vegetables, providing
a corresponding bill to the customer. To enhance the detection capability of the system,
the author utilized the fruit360 dataset and supplemented it with additional collected data.
The combined dataset consisted of 2100 training images. To train the detection model, the
author employed a Single Shot Multi Frame Detector (SSD) implemented in Python. The
SSD model takes an image as input and automatically detects and localizes objects within
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the image. It achieves this by framing the position of the objects and employing correction
techniques to refine the object’s location. The model also returns labels indicating the type
of object detected. The author reported an impressive accuracy of 94.50% for the trained
SSD model, accompanied by a precision of 95% and a recall of 95.09%. Furthermore, the
algorithm demonstrates an inference speed of 3.06 Frames Per Second (FPS). It is worth
noting that the dataset used in this study was a combination of the fruit360 dataset and a
manually collected dataset. Although the achieved accuracy is excellent, it was tested on
a set of only 210 images. In comparison, our models achieved a mean Average Precision
(mAP) of 0.98 and were validated on 525 images with 1818 instances. Moreover, our work
exhibits slightly higher precision and recall. Additionally, the graphical user interface (GUI)
we developed does not require a database, unlike the system described in this study.

Overall, a comprehensive analysis of the existing literature indicates that the majority
of models focusing on the detection and classification of fruits and vegetables heavily
rely on the fruit360 dataset or datasets sourced from online resources. However, these
studies often suffer from the limitation of utilizing small datasets, resulting in inadequate
performance when it comes to detecting unknown orientations and variations. The reported
accuracy levels in most of these studies range from 51% to 78%, which falls short of the
requirements for real-time applications that demand high precision and recall [34]. This
gap often overlooks the crucial aspect of achieving accurate measurements on validation
datasets, as the datasets utilized in the aforementioned literature review tend to differ from
what the models would encounter during testing. Additionally, there is a notable gap in
the literature regarding the development of weighing systems and graphical user interfaces
(GUIs) for practical implementation. To facilitate the accurate measurement of variable
weights of different fruits and vegetables, it is imperative to have a weighing scale with a
precise weighing system. Moreover, in order to enhance usability, an interface that allows
customers to utilize the weighing scale for self-service purposes is essential.

2.3. Weighing Scale

Our proposed prototype involves the secondary task of weighing specific fruits and
vegetables. Previous research has shown that the hx711, in combination with a load cell,
can be utilized for this purpose [24,28]. The load cell generates very small voltages within
the range of millivolts and detecting small changes in voltages can be difficult [28]. To
address this issue, the hx711 microcontroller has an inbuilt Analog-to-Digital Converter
(ADC), which directly converts analogue voltages into digital values. The authors also
used Arduino for the interfacing of the hx711 amplifier.

3. Methodology

The methodology of this research paper can be divided into three main sections:
hardware, deep learning models, and graphical user interface.

3.1. Hardware Section

The hardware component of our prototype, as shown in Figure 1, comprises a load
cell, an HX711 amplifier, a laptop, and an Arduino board. The primary function of this
section is to weigh various fruits and vegetables and transmit their corresponding weight
values to the graphical user interface through serial communication between the laptop
and Arduino. The load cell we have used is a type of transducer that converts mechanical
deformation into electrical signals, such as voltages. Specifically, we have used strain
gauges as our load cell type. Strain gauges are made up of a metal bar with attached strain
gauges, and they work based on the Wheatstone bridge principle. When an external force
is applied to the load cell, such as by placing fruits or vegetables on it, the resistance of
the strain gauges varies. This variation in resistance is directly proportional to the applied
force, and is reflected in the form of voltages. The voltages generated are typically in the
millivolt range and require amplification for further processing. To amplify the analog
voltage readings of the load cell, we have integrated an HX711 amplifier. The amplifier
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comprises a microcontroller with an analog-to-digital converter that transforms the analog
readings into digital values. We have employed the “HX711.h” library to facilitate this
conversion process and make the necessary calibrations for accurate results. The laptop is
used to program the Arduino board and interface it with the load cell through the HX711
amplifier. It is also responsible for receiving the weight values transmitted by the Arduino
through serial communication. The Arduino board obtains the digital weight values from
the HX711 amplifier and communicates them to the laptop via serial communication.
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Overall, our prototype provides precise measurement of the weight of individual
fruits and vegetables, enabling accurate prediction of their market prices. Figure 2 provides
a comprehensive depiction of the complete weighing process.
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3.2. Deep Learning Model

To accurately predict the prices of all fruits and vegetables, it is crucial to begin by
identifying and recognizing each individual fruit and vegetable. This process typically
entails a series of steps, starting with the collection and annotation of a suitable dataset.
Subsequently, a model is trained on this custom dataset. For the task of fruit and vegetable
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identification or classification, we have utilized two versions of the YOLO algorithm:
YOLOv5 and YOLOv7.

YOLOv5 is the fifth iteration of the YOLO (You Only Look Once) series, renowned
for its effectiveness in object detection tasks trained on the COCO dataset. The YOLO5
architecture consists of a backbone, neck, and head, as shown in Figure 3. Yolov5 employs
CSPDarknet53 as its backbone, which is a convolutional neural network based on DarkNet-
53. By utilizing the CSPNet [35] strategy, the feature map of the base layer is partitioned into
two parts and subsequently merged through a cross-stage hierarchy. This split and merge
approach offers notable advantages to YOLOv5, including a reduction in parameters and
computational requirements (FLOPS), thereby improving the inference speed crucial for
real-time object detection models. Additionally, Yolov5 incorporates the Path Aggregation
Network (PANet) [36] as its neck, enhancing information flow and enabling efficient feature
pyramid creation. Feature pyramids aid in the successful generalization across object
scales, facilitating the identification of objects in various sizes. PANet further improves
the utilization of accurate localization signals in lower layers, resulting in enhanced object
location accuracy. The model head consists of a YOLO layer and is primarily responsible
for the final detection step. It utilizes anchor boxes to construct output vectors containing
class probabilities, abjectness scores, and bounding boxes. Yolov5 is available in various
sizes, namely YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. Each size has its
own characteristics in terms of depth and width multiples, resulting in different numbers
of parameters and inference speeds. YOLOv5n maintains the same depth multiple of
0.33 as YOLO5s. However, it reduces the width multiple from 0.5 to 0.25 [37]. As a
consequence, YOLOv5n utilizes approximately 75% fewer parameters compared to other
YOLOv5 sizes [37]. One notable advantage of YOLOv5n is its significantly higher inference
speed, as shown in Figure 4. This means that the algorithm can process object detection
tasks more quickly compared to other sizes of YOLOv5.
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YOLOv7 represents a new iteration of the YOLO (You Only Look Once) model, fea-
turing the distinct architecture showcased in Figure 5. YOLOv7 introduces architectural
improvements to enhance detection speed and accuracy. The YOLO architectures typi-
cally consist of a backbone, head, and neck. The backbone performs crucial tasks such
as extracting important features and passing them to the head through the neck. Unlike
its predecessors, YOLOv7 replaces the darknet backbone with an extended efficient layer
aggregation network (E-ELAN). E-ELAN is an enhanced version of ELAN that improves
the network’s learning capabilities while maintaining the stable state achieved by ELAN. It
achieves this by introducing expand, shuffle, and merge cardinality operations within the
computational blocks, while keeping the transition layer architecture unchanged. Group
convolution is employed to expand channels and cardinality. Each computational layer
applies the same group parameter and channel multiplier to all its computational blocks.
The resulting feature maps are then shuffled into groups based on the set group parameter
and concatenated together, preserving the original number of channels in each group.
Finally, merge cardinality combines the feature maps from different groups by adding them
together. E-ELAN not only retains the original ELAN architecture but also encourages
diverse feature learning across different groups of computational blocks [40].

Model scaling is a technique used to modify different characteristics of a model to
meet specific requirements for inference speed. When it comes to concatenation-based
architectures like YOLOv7, scaling the depth factor can impact the translation layer’s
in-degree after a computational block. This situation necessitates considering multiple
scaling factors simultaneously. For example, increasing the depth can alter the input–output
channel ratio of a transition layer, potentially reducing hardware utilization. Therefore, a
compound scaling method is necessary for concatenation-based models. This approach
entails determining the change in the output channel of a computational block when scaling
its depth factor and applying the same change as a width factor scaling to the transition
layers. By employing this compound scaling method, the model’s original characteristics
and optimal structure are preserved [40].
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YOLOv7 incorporates a technique called re-parameterization planning (RP), which
focuses on combining multiple models to create a final model that exhibits strong and
consistent performance. In RP, specific parts of the model undergo individualized re-
parameterization strategies, leading to more effective overall model adaptation. YOLOv7
utilizes gradient flow propagation paths to identify the specific segments or modules within
the model that benefit from re-parameterization. This approach helps enhance the model’s
robustness and performance by leveraging the strengths of different modules within the
architecture [42].

In YOLOv7, the lead head serves as the main component responsible for detecting
and localizing objects, generating the final output of the network. An auxiliary head is
introduced as an additional component in the middle layers, providing extra supervision
signals to improve overall model performance. Deep supervision is employed, training
both the auxiliary head and lead head using soft labels derived from the lead head’s
predictions. This approach allows the model to focus on both the representation of data
distribution and residual information that still needs to be learned. Two label assignment
strategies are introduced: the lead head guided label assigner generates soft labels for both
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heads based on ground truth and lead head predictions, while the coarse-to-fine lead head
guided label assigner generates coarse and fine labels, optimizing the recall of the auxiliary
head in object detection [40].

3.3. Collection and Annotation of Dataset

The first step is to collect a comprehensive dataset of fruit and vegetable images,
which will serve as the basis for our model training. To achieve this, we have collected
2622 images of 12 different classes of vegetables and fruits. The summary of our dataset
including images and instances is shown in Table 1. The images were captured using the
camera of a Samsung phone, with varying angles, orientations, and lighting conditions,
to ensure the model could generalize well to different scenarios. Furthermore, the images
were taken against backgrounds that are similar to our intended usage scenario, which
involves the use of a scale to determine the weight of each fruit or vegetable. The preview
of our dataset is shown in Figure 6.

Table 1. List of datasets with number and name.

Serial Number Class Name Number of Images Number of instances

1 Potato 368 882
2 Tomato 338 1027
3 Onion 250 868
4 Turnip 246 635
5 Chili 314 885
6 Garlic 148 710
7 Carrot 181 301
8 Cucumber 310 467
9 Apricot 155 823
10 Yam 126 731
11 Lemon 68 826
12 Plum 118 947
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After collecting the dataset of fruit and vegetable images, the next step is to manually
annotate each image with appropriate labels for each fruit and vegetable. To accomplish
this, we used the labelImg framework [29], which provides a user-friendly interface for
manual annotation. Using this framework, we manually drew precise bounding boxes
around each fruit and vegetable image and assigned the corresponding labels to each
bounding box as shown in Figure 7. The dataset was then split into a training set and a
validation set in a ratio of 80:20, respectively, resulting in 2225 training set images along with
128 negative images, and a validation set consisting of 525 images. This process ensured
that our dataset was accurately annotated and ready for use in training our supervised
deep learning model.
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3.4. Training

Once our dataset had been annotated and split, the next step was to train a deep
learning model to recognize and predict the prices of different fruits and vegetables. There
are two primary approaches to training a deep learning model, namely training the model
from scratch or fine-tuning an already-trained model using transfer learning. In our case,
since our dataset contained 2225 training images, which was not considered large enough
for training a model from scratch, we decided to employ transfer learning [12] to fine-tune
pre-trained deep learning models such as YOLOv5n and YOLOv7. To fine-tune these
pre-trained models, we made necessary changes in the Yaml files of each model to adapt
them to our specific dataset and task. These changes included adjusting the number of
classes to match the number of fruits and vegetables in our dataset and modifying the
names of classes according to our custom. Through this process, we were able to leverage
the pre-trained weights, such as YOLOv5n.pt and YOLOv7.pt from YOLOv5 and YOLOv7
models, respectively, and learn new features from our dataset to achieve high accuracy
in recognizing different fruits and vegetables. The training process of both YOLOv5n
and YOLOv7 models is shown in Figure 8. The training process of both the algorithms
was the same except the batch size. The batch size for YOLOv5n was chosen as 16 while
for YOLOv7 it was selected as 8. At the end of every epoch, the validation of both the
models was performed on the validation dataset which was same for both the models. The
validation process is shown in Figure 9.
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As the training proceeds, the various type of losses such as class loss, object loss,
and bounding box loss, for both training dataset as well as validation dataset of both the
models, were decreased. The training and validation losses of both the models was plotted
vs number of epochs in Figures 10 and 11, respectively. An analysis of Figures 10 and 11
reveals that neither model exhibits a high bias problem, as indicated by the small train-
ing loss, nor a high variance problem, as evidenced by the small validation loss. These
remarkable results can be attributed to the meticulous collection of clean and precise data,
where uncertainties such as blur images, incorrect labeling, and inaccurate bounding boxes
during annotation were effectively minimized.

The decreasing trend in these losses indicates that the model is progressively improv-
ing its performance over time. These losses have been computed for both the training
dataset and the validation dataset. The formal formulas used to calculate these losses are
as follows:
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Both the models were trained for 100 epochs. At the end of training, the best weights
of both the models were obtained which were then utilized for inference or real-time fruits
and vegetables detections.
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3.5. Graphical User Interface

To enhance the user-friendliness of our weighing scale, we developed a Python script
that incorporates a graphical user interface (GUI). This GUI runs both the inference code for
real-time fruit and vegetables detection and the serial communication code that retrieves
weight values. The best weights or parameters of both fine-tuned models, such as YOLOv5n
and YOLOv7, can be used for real-time object detection, and the weights of various fruits
and vegetables are obtained from the load cell via an Arduino. The GUI displays the real-
time object detection video, along with item prices, item weights, and various buttons that
allow users to initiate and complete their orders. Additionally, there are buttons available
to the shopkeeper, which allow them to enter updated prices for items. Our system was
designed to provide a seamless and intuitive user experience, with features that allow for
easy ordering and updating of pricing information. The GUI is shown in Figure 12.
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The complete architecture of our prototype is depicted in Figure 13. Overall, prototype
introduces a novel and innovative approach to selling fruits and vegetables. We have
developed a comprehensive architecture that combines a weighing system, a graphical user
interface (GUI), and deep learning models for real-time inference. By placing the fruit or
vegetable on a load cell, our weighing system accurately measures its weight, which is then
transmitted to the GUI via Arduino and laptop communication. Simultaneously, a camera
fixed above the load cell captures real-time videos, which are processed by our advanced
deep learning model, YOLOv5n or YOLOv7, for precise fruit or vegetable classification
and recognition. What sets our system apart is its outstanding performance compared
to existing research papers. We have achieved higher mean Average Precision (mAP),
precision, recall, F1 score, and inference speed than previous research [26,32,33]. Moreover,
our prototype incorporates an attractive GUI that offers user-friendly interactions. It
includes features like price editing options, real-time inference display, and a list of items
added by the buyer. Notably, our system does not require a database, distinguishing it from
other retail systems mentioned in the literature. Overall, our work represents a significant
advancement in the field, combining cutting-edge technology, superior performance, and
an appealing user interface.
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4. Results and Discussions

In this section, we present an analysis of the outcomes achieved by our trained
models, namely YOLOv5n and YOLOv7, as assessed on a validation dataset compris-
ing 525 images containing a total of 1818 instances. Our evaluation process encompasses
various performance metrics, including Precision, Recall, F1 score, mean Average Precision
at IoU threshold 0.5 (mAP50), and mean Average Precision within the IoU range of 0.5 to
0.95 (mAP50-95). By employing these metrics, we thoroughly assess the effectiveness and
accuracy of our models in object detection tasks, providing a comprehensive evaluation of
their performance.

The precision metrics of two models, YOLOv5n and YOLOv7, were evaluated and
demonstrated in Figures 14 and 15. These metrics provide important insights into the
models’ performance in accurately predicting object classes and minimizing false positives.
The optimal weights for both models resulted in a remarkable precision score of 0.972 across
all classes. Precision is a measure of how accurately the model predicts the positive classes,
and a score of 0.972 indicates that the models accurately predicted over 97% of the true
positive classes. In addition to high precision, the models also exhibited an extremely
low number of false positives. Furthermore, the models’ performance was compared to
previous research [26,32,33]. The models outperformed previous work by achieving higher
precision. This indicates that the models have improved upon existing methods and are
more effective in accurately detecting and classifying objects in the weighing scales context.
To provide a more detailed breakdown of the precision values for individual classes in
YOLOv5n and YOLOv7, Tables 2 and 3 were presented, respectively. These tables provide
a comprehensive view of how well each class is predicted by the models. By examining the
precision values for individual classes, it is possible to identify any specific classes that may
pose challenges for the models or classes that the models excel at detecting. We calculated
precision metrics by employing standard equations given below:

P =
TP

TP + FP
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The recall metrics for two models, YOLOv5n and YOLOv7, were evaluated and
compared. The results are depicted in Figures 16 and 17, respectively. Both models achieved
high recall values, with YOLOv5n achieving a recall of 0.988 and YOLOv7 achieving a
recall of 0.986 across all classes. Recall is a metric used to evaluate the performance of
object detection models. It measures the ability of a model to correctly identify positive
instances out of all the actual positive instances. Based on the provided recall values, it can
be inferred that both versions of YOLO (YOLOv5n and YOLOv7) were able to identify over
98% of the true positive instances, indicating a high level of performance. Additionally,
the results indicate that there were very few false negatives, meaning that the models
successfully minimized the instances where positive objects were missed. Comparing the
results with previous research [26,32,33], it is stated that the models achieved higher recall
values. Furthermore, a detailed breakdown of the recall values for individual classes is
provided in Table 2 for YOLOv5n and Table 3 for YOLOv7. These tables likely contain a list
of different classes and their corresponding recall values, allowing for a more fine-grained
analysis of the model’s performance across specific object categories. The recall metrics
were calculated using the given equations:

R =
TP

TP + FN
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Table 2. The metrics values of YOLOv5n.

Class Images Instances Precision Recall F1 Score mAP50 mAP50-95

All 525 1818 0.972 0.988 0.979 0.988 0.932
Potato 525 130 0.973 1 0.986 0.992 0.983
Tomato 525 254 0.964 0.984 0.973 0.992 0.988
Onion 525 151 0.977 1 0.988 0.995 0.973
Turnip 525 126 0.947 0.986 0.966 0.988 0.942
Chili 525 192 0.897 0.891 0.893 0.945 0.691

Garlic 525 155 0.975 1 0.987 0.991 0.921
Carrot 525 66 0.967 1 0.983 0.98 0.821

Cucumber 525 106 0.984 1 0.991 0.993 0.935
Apricot 525 171 0.998 1 0.998 0.995 0.995

Yam 525 136 0.997 1 0.998 0.995 0.946
Lemon 525 203 0.997 1 0.998 0.995 0.995
Plum 525 128 0.989 1 0.994 0.995 0.991

Table 3. The metrics values of YOLOv7.

Class Images Instances Precision Recall F1 Score mAP50 mAP50-95

All 525 1818 0.972 0.986 0.978 0.987 0.951
Potato 525 130 0.974 1 0.986 0.991 0.989
Tomato 525 254 0.951 1 0.974 0.993 0.988
Onion 525 151 0.998 1 0.998 0.995 0.984
Turnip 525 126 0.952 0.984 0.967 0.988 0.919
Chili 525 192 0.921 0.854 0.886 0.929 0.741

Garlic 525 155 0.975 0.998 0.986 0.994 0.923
Carrot 525 66 0.949 1 0.97 0.984 0.948

Cucumber 525 106 0.966 1 0.982 0.992 0.977
Apricot 525 171 0.996 1 0.997 0.995 0.995

Yam 525 136 0.999 1 0.999 0.995 0.962
Lemon 525 203 0.994 1 0.996 0.996 0.994
Plum 525 128 0.99 1 0.994 0.995 0.995
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Both models attained F1 scores of 0.979 and 0.978, respectively, across all classes.
This indicates that both versions of YOLO achieved a balanced combination of precision
and recall, capturing a high proportion of true positive instances while minimizing false
positives and false negatives. Furthermore, we present the F1 scores for individual classes
in Tables 2 and 3 for YOLOv5n and YOLOv7, respectively. The F1 scores were calculated
using the provided equations:

F1 Score =
2× (P× R)

P + R

The evaluation of object detection models commonly employs two metrics: mean
Average Precision at an IoU threshold of 0.5 (mAP50) and mean Average Precision within
the IoU range of 0.5 to 0.95 (mAP50:95). These metrics provide an indication of the model’s
ability to accurately localize and classify objects with varying levels of IoU thresholds.
Figures 18 and 19 depict the performance of two models, YOLOv5n and YOLOv7, in terms
of mAP50 and mAP50:95. For YOLOv5n, the model achieved an mAP50 of 0.988 and
an mAP50:95 of 0.932. On the other hand, YOLOv7 attained an mAP50 of 0.987 and
an mAP50:95 of 0.951. These metrics were calculated using a validation dataset, which
is separate from the training dataset. Typically, models tend to perform well on the
training dataset due to the optimization of their parameters based on that specific data.
However, in this case, both YOLOv5n and YOLOv7 demonstrate mAP values exceeding
0.98 on the validation dataset. This indicates that the models were able to generalize
effectively to unseen data, which is a positive sign. When a model overfits the training
data, it tends to perform exceptionally well on the training set but struggles to generalize
to new, unseen data. However, since both models achieved high mAP values on the
validation dataset, it suggests that they did not overfit the training data. Additionally, it
is worth noting that the achieved mAP values of these models are higher compared to
previous works [26,32,33], indicating an improvement in performance. Furthermore, the
performance of the models for individual classes can be seen in Table 2 for YOLOv5n and
Table 3 for YOLOv7. These tables provide the mAP50 and mAP50:95 values specifically for
each class, allowing a more detailed analysis of the model’s performance across different
object categories. The calculations of mAP for different I0U threshold were conducted
using the provided equations:

mAP =
1
n

k=n

∑
k=1

APk
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The performance metrics for the YOLOv5n and YOLOv7 models reveals their high
accuracy and effectiveness in object detection tasks. Both models consistently achieved a
precision of 0.972 for all classes, indicating their ability to accurately predict over 97% of
true positive instances. The recall values were also impressive, with YOLOv5n achieving a
recall of 0.988 and YOLOv7 achieving a recall of 0.986 for all classes, demonstrating their
capability to identify a high proportion of true positive instances. Furthermore, the F1 scores
for both models were equally impressive, with YOLOv5n and YOLOv7 achieving scores of
0.979 and 0.978, respectively, highlighting the model’s balanced performance in combining
precision and recall. Additionally, the mean Average Precision at IoU threshold 0.5 (mAP50)
was 0.988 for YOLOv5n and 0.987 for YOLOv7, indicating their ability to accurately localize
and classify objects as shown in Figures 20 and 21. The mean Average Precision within the
IoU range of 0.5 to 0.95 (mAP50:95) was also remarkable, with YOLOv5n achieving a value
of 0.932 and YOLOv7 achieving 0.951, further validating the model’s robust performance
across different IoU thresholds.
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The prototype presented in Figure 22 comprises a laptop, a camera, a glass frame
designed for secure placement of the camera at its highest position, a load cell, an hx711
module for data acquisition from the load cell, and an Arduino Uno for controlling and pro-
cessing the acquired data. This setup was constructed with the purpose of securely accom-
modating the camera within the glass frame, allowing for stable and reliable positioning.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 24 of 27 
 

 

Figure 22. Our Prototype. 

Although the process of selling fruits and vegetables is automated by our intelligent 

IoT-based weighing scale, there are a few challenges associated with the utilization of our 

intelligent IoT-based weighing scale, particularly in small-scale retail shops. Firstly, the 

current model of the smart scale is trained on a predefined dataset comprising only 12 

classes, thus unrecognized fruits and vegetables will not be recognized by the scale. Gath-

ering additional data and fine-tuning the model to encompass new classes is necessary to 

address this issue. Secondly, the scale requires specific hardware components, such as a 

Raspberry Pi or Jetson Nano, and an LCD screen for proper functioning, which may incur 

additional costs for small-scale retail shops. Lastly, the dynamic nature of product pricing 

requires manual input of updated prices into the GUI of each scale, which can be time-

consuming for shopkeepers managing multiple scales. Addressing these challenges 

would enhance the scale’s effectiveness and reliability. 

Figure 22. Our Prototype.

Although the process of selling fruits and vegetables is automated by our intelligent
IoT-based weighing scale, there are a few challenges associated with the utilization of
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our intelligent IoT-based weighing scale, particularly in small-scale retail shops. Firstly,
the current model of the smart scale is trained on a predefined dataset comprising only
12 classes, thus unrecognized fruits and vegetables will not be recognized by the scale.
Gathering additional data and fine-tuning the model to encompass new classes is necessary
to address this issue. Secondly, the scale requires specific hardware components, such as
a Raspberry Pi or Jetson Nano, and an LCD screen for proper functioning, which may
incur additional costs for small-scale retail shops. Lastly, the dynamic nature of product
pricing requires manual input of updated prices into the GUI of each scale, which can be
time-consuming for shopkeepers managing multiple scales. Addressing these challenges
would enhance the scale’s effectiveness and reliability.

5. Conclusions

In conclusion, the proposed intelligent weighing scale system for small-scale fruits
and vegetables shops in Pakistan holds great potential to revolutionize the retail process
and improve efficiency in this sector. By incorporating deep learning algorithms, and
weighing sensors, the system automates the detection, recognition, weighing, and pricing
of various fruits and vegetables. The use of deep learning algorithms, such as YOLOv5n
and YOLOv7, enables real-time and accurate object detection and recognition, eliminating
the need for manual entry of prices for each item. This not only saves time but also reduces
labor requirements, allowing shopkeepers to serve multiple customers simultaneously. The
graphical user interface (GUI) provides a user-friendly platform for adding items to the
bill and displaying their prices based on their weights. By modernizing small-scale retail
operations, especially in low-income segments of the population, this system addresses
the challenges of labor-intensive and time-consuming pricing methods. It empowers shop-
keepers to serve customers faster, improves accuracy in weighing and pricing, and reduces
human error. However, further research and real-world implementation are necessary to
evaluate the system’s performance, scalability, and impact on the industry. Additionally,
continuous refinement and updates to the deep learning models and algorithms can en-
hance the system’s accuracy and adaptability to different fruits and vegetables. Overall,
the intelligent weighing scale system has the potential to transform the small-scale retail
sector in Pakistan, providing a more efficient, automated, and customer-friendly shopping
experience while benefiting both shopkeepers and customers alike.
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