
Citation: Li, G.; Liu, F.; Wu, C.; Yao,

Y.; Wu, G.; Wang, Z.; Zhang, Y.

C-MWCAR: Classification Based on

Multiple Weighted Class Association

Rules. Appl. Sci. 2023, 13, 8082.

https://doi.org/10.3390/

app13148082

Academic Editor: Jose Machado

Received: 7 May 2023

Revised: 11 June 2023

Accepted: 5 July 2023

Published: 11 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

C-MWCAR: Classification Based on Multiple Weighted Class
Association Rules
Gui Li 1, Fan Liu 1,2,*, Cheng Wu 1,3, Yuan Yao 1, Guangxin Wu 1, Zhu Wang 2 and Yanchun Zhang 4,5

1 Nanjing Research Institute of Electronics Technology, Nanjing 210039, China
2 School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China
3 School of Electronic Engineering, Xidian Univeristy, Xi’an 710126, China
4 Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou 510006, China
5 New Cyber Research Department, Pengcheng Laboratory, Shenzhen 518055, China
* Correspondence: liufant800@mail.nwpu.edu.cn

Abstract: Classification is a very important task in data mining and pattern analysis, which have been
widely used to solve various real-world problems. To obtain better classification performance, in this
paper, we propose a novel classification framework based on multiple weighted class association
rules (C-MWCAR), whose key idea is to transform the association among features into a set of class
association rules (CARs), then classify unknown instances based on the CARs obtained. Concretely,
C-MWCAR consists of a dictionary order-based CAR mining algorithm (DOCMA), a branch-based
CAR selection algorithm (BCSA), and a multiple weighted CARs-based classifier (MWCC). Specifi-
cally, DOCMA mines the complete set of CARs, from which BCSA further selects a representative
and concise set of CARs based on the distribution, coverage, and redundancy of the mined CARs.
When classifying an unknown instance, MWCC picks out a set of CARs that are most similar to the
given instance and computes the weighted importance of those CARs. Finally, the class label of the
given instance will be determined by the similarities between the instance and the CARs and the
weighted importance of the CARs. Furthermore, we apply the proposed C-MWCAR to a real-world
classification task, i.e., hypertension diagnosis, based on a real dataset of 128 subjects. Experimental
results indicate that C-MWCAR outperforms four baseline methods and achieves 93.3%, 93.8%, and
92.7% in terms of accuracy, sensitivity, and specificity, respectively.

Keywords: classification; class association rule; interpretable classifier; hypertension diagnosis

1. Introduction

As an important technique in data mining and pattern analysis, classification has been
widely applied to varieties of practical scenarios such as disease prediction [1], anomaly
detection [2], object recognition [3], etc. In past years, many kinds of classifiers were
designed to solve different application problems. For example, Wu et al. [4] utilized Naïve
Bayes to model the channel state information (CSI) of a Wi-Fi signal, so as to classify
different indoor locations. Paul et al. [5] designed a decision tree-based method to classify
different cognitive tasks based on a wireless electrocardiogram (ECG) signal. Liu et al. [6]
proposed a hybrid neural network classification framework to differentiate different kinds
of arrhythmias. However, despite these methods obtaining good performance, there still are
some shortcomings. Concretely, these classifiers usually use heuristic or greedy strategies
to build classification rules, which makes them vulnerable to data noise and hence results in
limited performance. In addition, some of the classifiers (such as Decision Tree) assume that
the extracted features are independent of each other, which obviously ignores the inherent
association relationship among features. Therefore, they are not capable of discovering all
the interesting and useful rules from a dataset. As for neural network-based classifiers,
they can obtain very high accuracy, but their classification results are hard to understand.
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To cope with the above problems, a new type of classifiers, called associative classifiers,
have been recently proposed, and they include CBA [7], CMAR [8], and so on. Their core
idea is to exploit the association relationship among features for classification. In particular,
the main steps of the simplest associative classifier are as follows. It first transforms the
association relationship among features into a set of class association rules (CARs). A CAR
is made up of two parts, i.e., antecedent and consequent. Specifically, the antecedent is
comprised of discretized features, while the consequent is a class attribute. Afterwards, it
selects a subset of CARs and a default class to build the final classifier. When classifying
an instance, it compares the instance with the selected CARs, one by one, and the instance
will be classified as the consequent of the CAR that first matches the instance, or the
default class if no matching CARs exists. In particular, it has been demonstrated that
CARs-based classifiers are usually more accurate than traditional classifiers such as C4.5,
Hidden Markov Model (HMM), Inductive Learning Algorithm (ILA), and Naïve Bayes,
both theoretically [9,10] and experimentally [7,11]. Moreover, benefiting from the obtained
informative CARs, the classification results can be interpreted to some extent.

However, it is not a trivial task when applying associative classifiers to real-world
classification tasks for the following reasons. First, extracting a complete set of CARs is
very time-consuming [8,12,13], especially when the number of features is high. Second,
as the number of extracted CARs is high [7–9,11,14–17], how to select the best subset of
CARs to build the most robust and accurate classifier is a real challenge. Third, it is difficult
to utilize just one CAR to accurately classify future instances [8]. Moreover, due to the
complexity of real-world problems, it is likely that future instances may be unable to match
any CARs. In other words, the future instances cannot be assigned a proper class label.

To tackle the problems facing CARs-based classifiers, this study proposes a novel
classification framework based on multiple weighted class association rules (C-MWCAR).
Its core idea is to classify an instance by selecting a set of CARs that are most similar to the
instance and then utilizes their weighted classification abilities to obtain the final classifica-
tion results. C-MWCAR mainly contains three innovative components, respectively named
as dictionary order-based CAR mining algorithm (DOCMA), branch-based CAR selection
algorithm (BCSA), and multiple weighted CARs-based classifier (MWCC). Concretely,
DOCMA aims to extract the complete set of CARs as fast as possible; BCSA is used to select
a representative and concise set of CARs from the extracted CARs based on their distribu-
tion, coverage, and redundancy; then, MWCC carefully picks out a few CARs from the
obtained concise set of CARs for each unknown instance, and finally uses them to classify
each unknown instance as hypertension or normotension. To evaluate the effectiveness of
the proposed C-MWCAR, it is applied to a real-world and important classification task,
i.e., hypertension diagnosis. The reason why this task is chosen for experiments is because
hypertension is a typical cardiovascular disease and affects more than 40% of adults in the
world, according to a report from the World Health Organization [18].

The rest of this paper is organized as follows. The background and related literature
are reviewed in Section 2. The materials and methods are then described in Section 3.
The process of applying the C-MWCAR to the hypertension diagnosis task is described
in Section 4, followed by the evaluation of the experimental results in Section 5. Next, the
advantages and limitations of the proposed method are discussed in Section 6. Finally, the
contribution of this study is concluded in Section 7.

2. Background

This section will briefly introduce the background and the literature relevant to hyper-
tension diagnosis and classifier construction.

Hypertension diagnosis is an important task in the real world. Many studies diagnose
hypertension by extracting features from an ECG signal and directly inputting them into
a common machine learning algorithm, such as SVM, logistic regression, Decision Tree,
and so on. For example, Poddar et al. [19] extracted many HRV-related features from
RR intervals sequence based on ECG signal and then fed them into a SVM to identify
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hypertensive subjects. Similarly, Ni et al. [20] employed a logistic regression algorithm to
discriminate hypertensive and normotensive. The performance of these methods are good;
however, the outputted classification results are unable to interpret why the subjects suffer
from hypertension, which is unfavorable for doctors to analyze the patient’s condition in
depth. To solve this issue, Melillo et al. [21] employed a decision tree-based classifier to
model the HRV-related features and obtained a set of dendroid decision rules. If a subject
matches a rule antecedent, he or she will be classified by the corresponding rule consequent,
i.e., the class label. These rules can be used to explain why subjects are hypertensive to
some extent. However, the method can only consider just one feature at each tree node
when constructing the decision tree, which may lose the useful correlation relationship
among features and hence lead to limited classification performance. Hence, it is important
to design a novel kind of classifier that can not only diagnose hypertension accurately
but can also generate informative classification results to interpret or reflect the subject’s
physiological state.

The CARs-based classifier is viewed as a very promising technique, and has been
successfully applied in many fields, such as identifying heart disease diagnosis [16,17],
activity recognition [9], predicting pandemic influenza [14], learning business rules [11],
and discriminating protein–protein interaction type [15], etc. The CARs-based classifier
considers all the features at the same time and extracts meaningful association rules from
them, which significantly prompts the classification performance. Additionally, it can also
generate a set of informative CARs that can accurately reflect the subject’s physiological
state. The first CARs-based classifier is called CBA (classification based on associations) [7]
and its construction process is comprised of three steps: mining CARs, selecting a powerful
subset of CARs, and building a classifier based on the selected CARs. After that, many
follow-up studies were proposed [8,10,12,13], but their main steps remain unchanged. In
particular, there are some issues with each step when applying CARs-based classifiers in
real-world problems. In the first step, the mining of CARs is usually time-consuming. For
example, CBA [7] extracts CARs based on the Apriori algorithm, which needs to iterate
the dataset many times and hence results in a huge time overhead. To solve this issue,
many new methods have been proposed, including methods based on FP-growth and
the ER-tree [8], vertical dataset layout [22], equivalence class rule tree [23], ECR-tree with
Obidset [12], lattice [24], and multi-core processor architecture [18]. In the second step,
how to select an effective subset of CARs is a real challenge. Most methods select CARs by
considering the coverage of the dataset [7–9,11,14–17]. For example, Liu et al. [7] selects
CARs that can accurately match at least one instance. Similarly, Li et al. [8] designs a
coverage threshold δ to make sure each instance in the training set can be covered by
δ rules, aiming to increase the number of selected CARs. Part et al. [15] takes both the
significance of CARs and overlapping rules into consideration. However, these CARs’
selection methods ignore the redundancy and distribution of the CARs. In the third step,
using only one CAR to classify an instance is hard to obtain high performance [7]. Moreover,
It Is likely that there may be no matching CARs in some instances. To this end, Li et al. [8]
proposes a weighted χ2-based method that classifies instances by integrating multiple
CARs. CAEP [25] selects a set of emerging patterns and fuses their classification power to
assign a possibility for each class, where the class with the largest possibility is viewed as
the final class label.

To effectively tackle real-world classification tasks such as hypertension diagnosis, this
study designs a novel associative classifier named C-MWCAR, which can simultaneously
solve the above-mentioned problems. Concretely, it reduces the time overhead of mining
CARs by using a dictionary order-based CAR mining algorithm (i.e., DOCMA) to optimize
the most time-consuming steps of the Apriori algorithm. Afterwards, it utilizes a branch-
based CAR selection algorithm (i.e., BCASA) to guarantee that the selected CARs are more
representative and concise. Finally, it classifies instances by building a multiple weighted
CARs-based classifier (i.e., MWCC), which can solve the problem of no matching CARs
and obtain higher performance at the same time.
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3. Materials and Methods

In this section, the basic idea of associative classifiers is introduced and formalized
first, then the details of the C-MWCAR are explained comprehensively.

3.1. Formalization of Basic Associative Classifier

In this section, the basic concepts of associative classifiers are formalized. For CARs-
based classifiers, the dataset is usually organized as a relational table. Let D = {d1, . . . ,
di, . . . , dN} be the dataset, which contains N instances and each of them is described by
k − 1 features. Let Y = {y1, . . . ,yi, . . . ,yM} be a finite set of class labels which contains M
known classes. Each instance in D has been labeled with one class of Y. To simplify the
narration, we treat the class label as a special feature; thus, each instance has k features.
These k features can be discrete or continuous, but they should be adjusted into uniform
formats before mining CARs. For a discrete feature, its possible values are directly mapped
to consecutive numbers. For a continuous feature, its value range is first discretized into
several intervals which are then mapped to consecutive numbers. For example, assume
that an instance is characterized by three features (i.e., feature A and B, and class C) and
that A and B are discretized into four and three intervals, respectively, while C contains two
class labels. In this case, the intervals of A and B and the class labels of C can be orderly
mapped to numbers 1 to 4, 1 to 3, and 1 to 2, respectively. Based on the discretization and
mappings, an instance can be represented as a set of <feature, value> pairs, where the feature
refers to the feature’s name like A, B, or C, while the value refers to the corresponding
number. In particular, each pair is called an item. Let I = {item1, . . . , itemi, . . . , itemL} be the
set of items derived from the N instances in D, which contains L items. Next, we define
itemSet as a subset of I where no items derived from the same feature exists. Note that the
items in each itemSet follow the same feature order. In particular, an itemSet containing k
items is called a k-itemSet. Furthermore, if a k-itemSet (k ≥ 2) has one class-derived item,
we call it a candidate class association rule (CCAR), which is expressed as follows:

ruleItems→ y (1)

where y, i.e., rule consequent, represents the class-derived item, while ruleItems, i.e., rule
antecedent, denotes the rest items of the k-itemSet. A CCAR with support (sup) s means that
s% of the instances in D contain the ruleItems and are labeled with y. A CCAR has confidence
(conf) c means that c% of instances in D that contain the ruleItems are labeled with y. Let
Rcount and Ccount represent the number of instances in D that contain the ruleItems, and
the number of instances in D that contain the ruleItems and are labeled with y, respectively.
Thus, the sup and conf of a given CCAR can be computed as follows:

sup = (CCount/|D| )× 100%, (2)

con f = (CCount/RCount)× 100%, (3)

where |D| is the number of the instances in D. A CCAR whose sup is bigger than a user-
specified support (userSup) is called a frequent candidate class association rule (FCCAR),
otherwise called an infrequent candidate class association rule (ICCAR). Moreover, an
FCCAR whose conf is bigger than a user-specified confidence (userConf ) is called a class
association rule (CAR).

To facilitate the understanding, a simple example to indicate the relationship among
the CCAR, FCCAR, and CAR is provided. Given a CCAR with the form of:

{〈A, 1〉, 〈B, 3〉} → 〈C, 5〉, (4)

where A and B are attributes, and C is the class label. Actually, the {〈A, 1〉, 〈B, 3〉} and
〈C, 5〉 are the ruleItems and y in Equation (1), respectively. Assume that the Rcount and the
Ccount of the {<A, 1>, <B, 3>} are 3 and 2, respectively, and the number of instances in D
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is 10. Thus, the sup of the CCAR is 2/10 = 20%, and the confidence is 2/3 = 66.7%. If the
minSup is specified as 10%, we say this CCAR is a FCCAR since its sup is greater than the
minSup. Furthermore, if the minConf is set to less than 66.7%, this CCAR is actually a CAR,
and hence can be employed when building the CARs-based classifiers.

The symbols frequently used in this paper are shown in Table 1.

Table 1. Frequently used symbols and their definitions.

Symbols Definition

li[j] The jth item of the ith itemSet
Lk The set of all the frequent k-itemSets
Li

k The ith element of the Lk
Ck The set of the candidate k-itemSets
li
k The ith element of the set of the Ck

CCARk The set made up of all the CCARs that contain k items
ICCARk The set made up of all the ICCARs that contain k items
CARk The set made up of all the CARs that contain k items.

RuleSet The complete set of the extracted CARs
D The dataset, with Di representing the ith instance in D
Y The class label set, with Yi representing the ith label in Y
I The set of the items, with Ii representing the ith items in I

3.2. Implementation of the Proposed C-MWCAR
3.2.1. Workflow of C-MWCAR

As shown in Figure 1, C-MWCAR mainly contains three components, i.e., DOCMA,
BCSA, and MWCC. DOCMA extracts the complete set of CARs from the discretized features.
With the optimized connection strategy, optimized pruning strategy, and pre-pruning
strategy, the speed of CAR extraction is promoted significantly. BCSA then divides the CAR
set into several branches, from each of which the most representative CARs are selected.
Afterwards, BCSA further select a more concise set of CARs from the above-mentioned
representative CARs by simultaneously measuring the coverage and redundancy of the
CARs. When classifying an unknown instance, the features of the unknown instance are
extracted and then formalized in advance by using the method introduced in Section 3.1,
then the MWCC selects the most similar CARs compared with the formalized unknown
instance from the concise set of CARs for each class (in this step, the similarity of each of the
selected CARs to the unknown instance is computed), and further computes the weighted
importance of each of the selected CARs. Finally, the class label of the unknown instance is
determined by simultaneously considering the similarities and the weighted importance of
the selected similar CARs. The details of the implementation of the proposed DOCMA,
BCSA, and MWCC are described in the following sections.

3.2.2. Dictionary Order-Based CAR Mining Algorithm (DOCMA)

The Apriori algorithm [26] is usually employed to extract the association relationship
among items due to its simplicity and intelligibility. Thus, in this paper, we exploit the
Apriori algorithm to mine the CARs, which will traverse the dataset repeatedly. Roughly,
in the 1st pass, it picks out all the frequent 1-itemSets. In the (k + 1)th pass, it first generates
candidate (k + 1)-itemSets based on the frequent k-itemSets obtained in the kth pass. Next,
it picks out all the CCARs from the obtained candidate (k + 1)-itemSets. At the end of
the current pass, CARs are picked out from the obtained CCARs based on the values
of the sup and conf. Finally, the CARs extracted from each pass conjointly make up the
final CAR set. However, this procedure needs to repeatedly connect frequent k-itemSets
into candidate (k + 1)-itemSets and prune ICCARs from CCARs in each pass, which is
very time-consuming and severely limits the practicability of the method. To this end,
we propose the DOCMA by designing and proving a set of definitions, theorems, and
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corollaries, by which the time cost of the connection of frequent k-itemSets and the pruning
of ICCARs from CCARs can be significantly reduced.
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Definition 1. (The connectivity of two k-itemSets): Given two frequent k-itemSets l1 and l2, we say
they are connectable only if (l1[1] = l2[1]) ∧ . . . ∧ (l1[k – 1] = l2[k – 1]) ∧ (l1[k] 6= l2[k]) is valid
and l1[k] and l2[k] are derived from different features, where li[k] is the kth item of the ith frequent
k-itemSets. In particular, they produce only one candidate (k + 1)-itemSet, i.e., <l1[1], l2[2], . . . ,
l1[k], l2[k]>, as the connection result which is denoted as l1 ./ l2.

Definition 2. (The dictionary order of two k-itemSets): Given two k-itemSets l1 and l2, they meet
the dictionary order with l1 preceding l2 if (l1[1] = l2[1]) ∧ . . . ∧ (l1[I – 1] = l2[I – 1]) ∧ (l1[i] <
l2[i]), (1 ≤ I ≤ k) is true, which is denoted as l1 < l2.

Theorem 1 . The k-itemSets in Lk follow the dictionary order.

Proof. Assume that there are m (k – 1)-itemSets in Lk−1. I Apriori algorithm will sequentially
judge if each of the binary tuples, i.e., (l1l2), . . . , (l1lm), . . . , (l2l3), . . . , (l2lm), . . . , (lm−1lm)
is connectable and if the corresponding connection result is frequent. Here, mathematical
induction is employed to prove Theorem 2. When k = 2, the 1-itemSets in L1 are already in
dictionary order, hence, it is obvious that the above binary tuples are in dictionary order.
When k > 2, if the (k – 1)-itemSets in Lk−1 are already in dictionary order, as only the
last items of two connectable (k – 1)-itemSets are different, the final obtained frequent
k-itemSets are also in dictionary order. To sum up, Theorem 2 is established. �

Theorem 2. Given three k-itemSets l1, l2, and l3 (l1 < l2 < l3), if (l1[1] = l2[1]) ∧ . . . ∧ (l1[I
– 1] = l2[I – 1])∧(l1[i] < l2[i]), (1 ≤ I ≤ k) is true, there must exist a j (1 ≤ j ≤ i) that makes
l1[j] < l3[j] valid.

Proof. In the first case, i.e., l2[i] ≤ l3[i]: since l1[i] < l2[i], there exists a j = I that makes
l1[j] < l3[j] valid. In the second case, i.e., l2[i] > l3[i]: since l2 < l3, there must exist a j
(1 ≤ j ≤ i) that makes l2[j] < l3[j] true. Moreover, considering that l1[j] = l2[j] (1 ≤ j ≤ i), we
obtain l1[j] < l3[j]. To sum up, Theorem 1 is correct. �
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Corollary 1. Given two frequent k-itemSets l1 and l2 in Lk, if l1 < l2 and they are not connectable,
then l1 and any frequent k-itemSet that is behind l2 are also not connectable.

Proof. Assume that lx is a k-itemSet in Lk which is behind l2, i.e., l1 < l2 < lx is true. Since l1
and l2 are not connectable, the largest I making (l1[1] = l2[1]) ∧ . . . ∧ (l1[I – 1] = l2[I – 1])
∧ (l1[i] < l2[i]) true is k – 1. Meanwhile, in the first k – 1 items of Lx, there must be a j that
makes l1[j] < lx[j] true according to Theorem 2. Therefore, l1 and lx are not connectable. �

Theorem 3. In Lk, if the number of frequent k-itemSets that contain a given frequent 1-itemSet is
smaller than k, then, the generated candidate (k + 1)-itemSets that contain the frequent 1-itemSet
cannot be frequent.

Proof. According to the characteristics of the Apriori algorithm, we know that for a
candidate (k + 1)-itemSet (denoted as li

k+1), if li
k+1 is frequent and contains a frequent

1-itemSet denoted as li
1, then li

k+1 should have k k-subsequences (i.e., k-itemSets) containing
li
1 and all of them are frequent and in Lk. Therefore, in Lk, if the number of k-itemSets

containing a given frequent 1-itemSet is smaller than k, then the candidate (k + 1)-itemSets
generated by connecting those k-itemSets cannot be frequent. �

Algorithm 1 shows how the proposed DOCMA works. Based on Corollary 1, the
optimized connection strategy is as follows (lines 10–19). When connecting two frequent
k-itemSets l1 and l2, if l1 and l2 are not connectable, then l1 can give up comparing with all
the k-itemSets that are behind l2. Moreover, the optimized pruning strategy is described
as follows (lines 22–30). Given an arbitrary (k – 1)-subsequence of a candidate k-itemSet
and a (k – 1)-itemSet in Lk−1, denoted as c and l, respectively, if c < l, it is impossible for
c to be the same as the (k – 1)-itemSets behind l in Lk−1. Hence, the candidate k-itemSet
cannot be frequent, so that we can prune it now. Based on Theorem 3, we can design a
pre-pruning strategy to further reduce the number of connection operations required as
follows (lines 3–9). We first count the number of k-supersequences (i.e., k-itemSets) of
each frequent 1-itemSet in Lk. If the number is smaller than k, we can then delete the
corresponding k-itemSets from Lk before connecting frequent k-itemSets, as the generated
candidate (k + 1)-itemSets containing the deleted k-itemSets cannot be frequent.

3.2.3. Branch-Based CAR Selection Algorithm (BCSA)

By now, we have obtained a large number of CARs (denoted as RuleSet); however, we
should not include all of them in the final classifier because they contain much redundant
and noisy information. However, we also cannot discard any of the CARs arbitrarily since
each has a certain classification ability. Intuitively, for a given CAR, greater confidence and
greater support usually mean that the CAR is more reliable and more useful, and hence
should be included into the final classifier. Nevertheless, based on extensive experimental
results on our dataset, we notice that similar CARs, i.e., CARs that contain many same
items, often have similar confidence and support. Therefore, if we directly select CARs
based on their confidence and support, the selected CARs are likely to be similar to each
other. That is, the selected CARs will belong to the same part of the RuleSet, which makes
them unrepresentative and redundant. To solve this issue, we propose the BCSA, i.e.,
Algorithm 2, which consists of two stages. In particular, the first stage is to preliminarily
select a set of representative CARs from the different parts of the RuleSet, from which the
second stage then picks out a smaller but more concise set of CARs.
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Algorithm 1: Dictionary order-based CAR mining algorithm (DOCMA)

Input: User-specified support (userSup), user-specified confidence (userConf ).
All the frequent 1-items, i.e., L1.
Output: The complete set of CARs, which is denoted as RuleSet.
1. RuleSet = Ø; CCARk = Ø; ICCARk = Ø; CARk = Ø; Ck= Ø; // initialization
2. for (k = 2; Lk−1 6= Ø; k++) do
3. // delete frequent (k – 1)-itemSets that cannot generate frequent k-itemSets
4. for (I = 1; I ≤ Lk−1.size(); i++) do
5. numTemp = the number of k-supersequence of Li

1 in Lk−1
6. if (numTemp < k – 1) then
7. delete all the k-supersequence of Lk

1 from Lk−1
8. end if
9. end for
10 // optimized connection of frequent (k – 1)-itemSets
11. for (I = 1; I < Lk−1.size(), i++) do
12. for (j = 2; j = Lk−1.size(); j++)do
13. if (Li

k and Lj
k are connectable) then

14. Ck = Ck + Lk
1 ./ Lk

1
15. else
16. break;
17. end if
18. end for
19. end for
20. // select the CCARk in current pass
21. CCARk = {c ∈ Ck | c has only one item derived from class attribute}
22. // optimized pruning of ICCARk
23. for (I = 1; I ≤ CCARk.size(); i++) do
24. for (j = 1; j ≤ CCARi

k.(k – 1)-subsequence.size(); j++)do
25. if (the jth (k – 1)-subsequence of CCARj

k is not in Lk−1) then
26. ICCARk = ICCARk + CCARi
27. break;
28. end if
29. end for
30. end for
31. // remove some ICCARs from CCARk in advance
32. FCCARk = CCARk – ICCARk
33. // select the CARk in current pass based the values of sup and conf
34. for (I = 1; i≤CCARk.size(); i++) do
35. if (FCCARi

k.sup ≥ userSup && CCARi
k.conf ≥ userConf ) then

36. CARk = CARk + FCCARi
k

37. end if
38. end for
39. RuleSet = RuleSet∪ CARk
40. end for

In the first stage (lines 1–6), we first divide the RuleSet into a set of non-overlapping
branches according to the items of each CAR. Here, the branch is defined as a set of CARs
that have the same prefixes, i.e., the first few items. In particular, if the first k items of
these CARs are same, we say that these CARs are in the same k-branch. In this study, we
first divide the RuleSet into several k-branches, from each of which we then pick out the
CARs that correspond to the maximal confidence or maximal support, respectively, as the
representative CARs. In this way, we can guarantee that the selected CARs are made up of
the most powerful CARs coming from different parts of the RuleSet, so that the selected
CARs are of higher diversity and hence are more likely to cover more unknown instances
in the future.
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Algorithm 2: Branch-based CAR selection algorithm (BCSA)

Input:

• k: the number of same prefixes in each branch
• RuleSet: the complete set of CARs mined by using DOCMA
• T: the dataset.
• The given coverage threshold C and the given redundancy threshold R.

Output:

• FinalCARs: the final CARs set that will be used to build the classifier.

1. branches = RuleSet.divide(k) // divide RuleSet into k-branches
2. // select CARs with biggest Conf or biggest Sup from each k-branch
3. for (i = 1; i ≤ branches.size(); i++) do
4. rCars = rCars + branches(i).biggestConf() //rCars is initially empty
5. rCars = rCars + branches(i).biggestSup()
6. end for
7. sortedCars = sort(rCars) // sortedCars is sorted representative CARs
8. FinalCARs = Ø, CV = 0; // CV is the computed coverage value
9. for (i = 1; i ≤ sortedCars.size(); i++) do
10. Num = 0;
11. for (j = 1; j < T.size(); j++) do
12. if (T(j) matches sortedCars(i)) then
13. Num++;
14. end if
15. end for
16. if (Num > 0 && sortedCars(i).redundancy < R && CV < C) then
17. FinalCARs = FinalCARs + sortedCars(i)
18. end if
19. update(CV); //update the current coverage value
20. if (CV ≥ C) then
21. break;
22. end if
23. end for
24. return (FinalCARs);

The second stage aims to extract a smaller but more concise set of CARs from the
obtained representative CARs for the final classifier. Ideally, the selected CARs should
be able to classify most of the instances in the training set. Meanwhile, the redundant
information contained in the selected CARs should be as little as possible. To meet these
two requirements, we first rank the representative CARs in descending order (line 7). Given
two CARs ri and rj, ri is said to have a higher rank than rj, denoted as ri > rj, if and only if
(1) ri.conf > rj.conf ; (2) ri.conf = rj.conf but ri.sup > rj.sup; or (3) ri.conf = rj.conf, ri.sup = rj.sup,
but ri has more items than rj does. As a result, CARs that have stronger classification ability
are sorted in the front. We then design two metrics, i.e., coverage and redundancy, to
respectively measure the generalization ability of the CARs that have already been selected
into the final CARs set, with the amount of redundant information contained in a given
CAR as follows:

Coverage =
NC
ND

(5)

Redundancy =
NPC
NCC

(6)

where NC, ND, NCC, and NPC stand for the number of instances that can be matched by
CARs previously selected, the number of instances in the dataset, the number of instances
that can be matched by the current CAR, and the number of instances in NCC that can
be matched by previously selected CARs, respectively. For example, assume that the
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dataset contains 20 instances and that there are 3 representative CARs, having been in
descending order. Assume that these CARs can respectively match 2, 5, and 6 instances;
however, they can only match 6 different instances in total due to redundancy, i.e., 4 of these
6 instances that can be matched by the third CAR have been matched by the first or second
CAR. In this case, NC = 6, ND = 20, NCC = 6, and NPC = 4; coverage = 6/20 = 30%; and
redundancy = 4/6 = 66.7%. Finally, we sequentially judge whether each CAR in the sorted
representative CARs should be included in the final CAR set. As shown in Algorithm 2
(lines 8–24), for a given CAR ri in the sorted representative CARs, we first go through the
dataset to see if ri can match at least one instance. If so, we then compute the coverage and
redundancy. Only when they are respectively smaller than the given coverage threshold C
and the given redundancy threshold R will ri be included in the final CAR set. In this way,
the final CAR set used to build the classifier can match as many instances as possible while
containing less redundant information.

3.2.4. Multiple Weighted CARs-Based Classifier (MWCC)

When classifying a new instance, most existing CARs-based classifiers usually label
it with the consequent (i.e., the class-derived item) of the first CAR in the obtained final
CAR set that matches the instance. If there are no matching CARs, it will be assigned a
default class [7]. However, the above procedure has two shortcomings when facing actual
problems. We find that although the discretized feature values of some new instances
cannot match any CARs, they are very similar to some CARs. On this occasion, classifying
those instances with the default class will unavoidably lose some useful information,
leading to reduced classification performance [8]. Moreover, sometimes one instance can
match several CARs; however, these CARs are conflicting CARs. In other words, the class
labels of those matching CARs are different from each other. Thus, we will be unable to
classify the instance since we do not know which CAR we should use. Here, it takes the
diagnosis of hypertension as an example to illustrate the shortcomings. Hypertension is a
quite complex physiological status where physiological indexes often change continuously,
which makes hypertensive patients usually show much different physiological indexes.
Even the same patient’s physiological indexes recorded at different times may also be
different. Therefore, given a new subject, it is likely that the subject’s physiological indexes
cannot match any of the CARs obtained already but are similar to some of them. Moreover,
hypertensive patients may not show any symptoms at times, which may result in a patient’s
physiological indexes matching several CARs having conflicting class labels. To tackle these
problems, we designed a novel associative classifier named MWCC. Concretely, MWCC
first selects a set of CARs that are most similar to the given instance based on the similarities
between the CARs and the instance. We then compute the weighted classification abilities of
the selected CARs. Finally, we classify the instance by considering the obtained similarities
and the weighted classification abilities simultaneously. In this way, the problem of no
matching CARs and conflicting CARs can be effectively solved.

To measure the similarity between a CAR and an instance, we design a metric named
similarity which is defined as follows:

Sim(CAR, Instance) =
∑i=N

i=1
(Maxi−Mini)

2−(CARi−Instancei)
2

(Maxi−Mini)
2

N
(7)

where N denotes that the given CAR contains N items, CARi is the value of the ith item
of the CAR, Instancei is the value of the corresponding item of the instance (that is, CARi
and Instancei come from the same feature), and Maxi and Mini, respectively, denote the
maximum and minimum values of the aforementioned item in the dataset. Obviously, the
part, i.e., (Maxi −Mini)

2, is fixed when CAR is given, so that the more similar the CAR
is to the given instance, the bigger the computed similarity is, and the more likely the
instance belongs to the class represented by the CAR. In particular, the denominator, i.e.,
N, is employed to eliminate the effects caused by different numbers of the items of CARs,
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which means that the computed similarity represents the average similarity of each item.
For each instance, we select the K most similar CARs from different classes, respectively,
for the final classification procedure.

The classification ability of each CAR may differ from each other; hence, we should
not treat them equally. Intuitively, if the support of an item changes dramatically from
one class to another, the item may have much stronger ability to classify the instances
containing this item, and hence should be assigned a higher weight. Given an item, its
weight regarding a given class A is marked as W(item, A), which is defined as follows:

W(item, A) = f req(item, A)×∏i=N−1
i=1 (1− f req(item, Bi)) (8)

where freq(item,A) denotes how frequently the item appears in CARs whose class label is A,
N indicates that the dataset contains N classes in total, and Bi represents the ith class except
for class A. Obviously, the computed weight tends to be high if the item appears frequently
in class A but infrequently in other classes. Based on the weight of an item defined above,
the weight of a CAR regarding class A can be defined as follows:

W(CAR, A) =
∑i=N

i=1 W(itemi, A)

N
(9)

where N denotes the number of items of the given CARs, while itemi represents the ith item
of the CAR.

After obtaining the similarities of the K most similar CARs and their weights relating
to each class, the final class label of the new instance can be determined as follows:

Result = argmax
ωj

(
∑i=K

i=1 W
(
CARi, ωj

)
× Sim

(
CARi, ωj

))
(10)

where ωj represents the jth class of the dataset and CARi is the ith similar CARs regrading
to the current class.

4. C-MWCAR Applied to Hypertension Diagnosis

Hypertension is a typical and extremely harmful cardiovascular disease which affects
more than 40% of adults in the world, according to a report from the World Health Or-
ganization [27]. The traditional clinical method to diagnose hypertension is to measure
blood pressure by using a cuff-based mercury sphygmomanometer, which is not suitable
for daily use in the home environment. More importantly, hypertension is a quite com-
plex physiological status where blood pressure always fluctuate unpredictably. However,
the sphygmomanometer can only give discontinuous measurement results, which is not
conducive to accurate analysis of the disease status. Hence, a classifier that can not only
produce higher classification performance but can also generate interpretive classification
results is suitable for the hypertension diagnosis task. This is the reason why this study
specially designs a CARs-based classifier (i.e., C-MWCAR), instead of applying a common
machine learning technique such as logistic regression.

This section focus on introducing the process of applying C-MWCAR to hypertension
diagnosis, with the experimental setup, results, and evaluation given in Section 5.

4.1. Data Collection and Preprocessing

As a typical cardiovascular disease, in recent studies, hypertension is usually di-
agnosed by analyzing heart rate variability (HRV) [20,28–32]. HRV is a useful tool to
characterize the fluctuation pattern of the heart-beat interval sequence. On the other hand,
as a non-intrusive and easily accessible physiological signal, a ballistocardiogram (BCG) sig-
nal [33,34] can accurately reflect the micro body vibrations caused by heart beats. Therefore,
the BCG signal has been widely used to extract heart-beat interval sequence and further
analyze HRV. Hence, this study also utilizes the BCG signal to diagnose hypertension.
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In this study, an off-the-shelf BCG acquisition system named RS-611 [35] is employed
to collect the BCG signal. As shown in Figure 2, the main components of RS-611 are a
micro-movement sensitive mattress (MSM) with two hydraulic pressure sensors placed in
the upper part and lower part of the MSM, respectively, an analog-digital (AD) converter,
and a terminal PC. When a subject lies on the MSM, the pressure changes caused by heart
beats can be recorded in real time, which is called the BCG signal. Compared with other
wearable data acquisition devices such as ECG Holter [36] and smart watch [37], RS-611 is
completely unobtrusive and the users do not need to attach any electrodes or devices on
their body.
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Figure 2. The micro-movement sensitive mattress-based BCG signal acquisition system (RS-611).

This study recruited 128 staff members of our university as subjects. First, their blood
pressure was measured by a trained nurse using a standard mercury sphygmomanometer.
In particular, blood pressure was measured in the left arm twice after five minutes of rest,
with the subjects in seated position, according to the guidelines of the American Society of
Hypertension [15]. For each subject, blood pressure was recorded in four separate sessions
within three weeks, and the averaged values were then used to represent the final systolic
and diastolic blood pressure values. Subjects with blood pressure values greater than
140/90 mmHg were viewed as hypertensive patients, while the rest were regarded as
normotensive subjects. For each subject, one night of BCG was collected when they were
sleeping, since the physiological indexes are relatively stable and not affected by other
factors during sleep. The statistical results of the BCG dataset are summarized in Table 2.

Table 2. Statistics of the experimental BCG dataset (mean ± standard deviation).

Subject Information Hypertensive Normotensive

Number 61 67
Sex (Male/Female) 33/38 35/32
Age (years 55.6 ± 7.9 53.2 ± 9.2
Heart Rate (bpm) 77.1 ± 9.2 73.6 ± 8.3
Body Mass Index (kg/m2) 24.3 ± 3.6 23.7 ± 3.3
Systolic blood pressure (mmHg) 155.6 ± 11.2 112.1 ± 15.7
Diastolic Blood Pressure (mmHg) 103.6 ± 8.2 74.4 ± 6.3
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A segment of the BCG signal is shown in Figure 3a, from which we extract heart-beat
interval sequence through the following steps. First, we normalize the BCG signal by
means of the Z-score method [33] in order to eliminate the individual error caused by body
weights, since different body weights can modulate the amplitude of the BCG to some
extent. Next, the frequency band that reflects the heart beats is extracted by designing an
elliptic bandpass filter, so as to remove the noise caused by breathing or other reasons.
Based on trial and error, the stopband corner frequency and the passband corner frequency
are finally set to 13/6 Hz and 5/6 Hz, respectively. The stopband attenuation and the
passband ripple are set to 8 and 0.2, respectively. Figure 3b shows the filtered BCG signal.
Finally, an overlapping sliding window is used to automatically detect heart beats. In
particular, the window size is set to 100 samples by considering the signal sampling rate
(100 Hz) and normal heart rate range (60–100 beats per minute). The detected heart beats
are shown in Figure 3c, from which the heart-beat interval sequence is obtained.
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Figure 3. The original BCG, the filtered BCG, and the detected heart beats. (a) The original BCG
signal; (b) The normalized and filtered BCG signal; (c) The detected heart beats.

4.2. Feature Extraction and Discretization

In this section, a set of features is first extracted from the obtained heart-beat interval
sequence, then the obtained features are discretized and mapped into numbers in order to
meet the format for CAR mining.

4.2.1. Feature Extraction

To objectively evaluate the power of the proposed C-MWCAR, commonly used time-
frequency domain features and non-linear domain features in the hypertension diagnosis
field [20,28–32] are also used in this study, so as to eliminate the effects caused by the
features. The definition and description of the extracted features are listed in Table 3 and
the statistical analysis results are listed in Table 4.
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Table 3. List of the extracted features. The detailed definitions and descriptions of these features can
be found in [20,28–32].

Type Features Definition Description

TD 1

Max The maximum value of the
heart-beat intervals To describe the distribution of the heat-beat intervals

Min The minimum value of the
heart-beat intervals To describe the distribution of the heat-beat intervals

MEAN The mean value of the heart-beat intervals To describe the distribution of the heart-beat intervals
MEDIAN The median value of the heart-beat intervals To describe the distribution of the heart-beat intervals

SDNN The SD 4 of the heart-beat intervals
To measure the overall variation of the heart-beat
interval sequence

RMSSD The root mean square of the
heart-beat intervals

To reflect the rapid variation of the heart-beat
interval sequence

PNN50 The percentage of heart-beat intervals longer
than 50 ms

To describe the degree of change in the heart-beat
interval sequence

FD 2

vLF The power in the 0.0033 Hz–0.04 Hz band To reflect vascular mechanisms caused by
negative emotions

LF The power in the 0.04 Hz–0.15 Hz band To reflect sympathetic modulation of heart rate
HF The power in the 0.15 Hz band To reflect parasympathetic activity

LF/HF The ratio of power in the LF and HF bands To reflect the balance of sympathetic nerve and
parasympathetic nerve

ND 3

SampEn The Sample Entropy value with r = 0.15 × SD To investigate the complexity of heart-beat
interval sequence

DFA The short-term coefficient of detrended
fluctuation analysis

To investigate the inner correlation of successive
heart-beat intervals

SDS
The SD of the short-term variability of the
Poincare plot

To reflect the short-term variability of the
heart-beat intervals

SDL
The SD of the long-term variability of the
Poincare plot

To reflect the long-term variability of the
heart-beat intervals

1 Time domain features. 2 Frequency domain features. 3 Non-linear domain features.

Table 4. Statistical analysis results of the extracted features.

Type Features Normotensive Hypertensive

Time domain features

Max 1.1704 ± 0.1596 1.0767 ± 0.1804
Min 0.6800 ± 0.1296 0.7206 ± 0.1152

MEAN 0.8977 ± 0.1034 0.9010 ± 0.1301
MEDIAN 0.8860 ± 0.1311 0.9102 ± 0.1405

SDNN 0.1034 ± 0.0594 0.0539 ± 0.0401
RMSSD 0.1351 ± 0.0854 0.0698 ± 0.0628
PNN50 0.9496 ± 0.0331 0.8689 ± 0.0845

Frequency domain
features

vLF 5.7261 ± 4.0433 3.6910 ± 3.6003
LF 3.3063 ± 3.2327 1.1621 ± 1.7799
HF 6.0722 ± 6.3137 1.9928 ± 3.7635

LF/HF 0.6995 ± 0.3277 0.9367 ± 0.6504

Non-linear domain
features

SampEn 0.63 ± 0.14 0.6831 ± 0.1538
DFA 0.7 ± 0.2 0.65 ± 0.23
SDS 22.99 ± 2.56 18.67 ± 1.76
SDL 51.87 ± 6 37.39 ± 3.42

4.2.2. Feature Discretization

Since all the extracted features are continuous variables and cannot be directly used
to mine CARs, we utilize equal-width binning strategy to discretize the feature values
into several equal-width intervals. In this study, the value range of each feature is finally
discretized into five equal-width intervals based on doctors’ advice, which represent “very
low”, “low”, “medium”, “high”, and “very high”, respectively. The class attribute is
inherently discrete and has two categories, i.e., hypertensive patients and normotensive
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subjects. Finally, these discretized features (the class attribute included) are mapped to
“very low”, “low”, “medium”, “high”, or “very high” based on the method mentioned in
Section 3.

Here is an example of feature discretization based on the extracted feature shown
in Table 4. The range of feature SampEn is [0.386, 0.915], which is equal-width binned
into five sub-ranges, i.e., [0.386, 0.4918), [0.4918, 0.5976), [0.5976, 0.7034), [0.7034, 0.8092),
and [0.8092, 0.915], corresponding to “very low”, “low”, “medium”, “high”, and “very
high”, respectively. If a hypertensive subject has a SampEn value of 0.5, then his SampEn
value will be mapped into “low”. Similarly, a SampEn value of 0.6 will be mapped into
“medium”, and so on.

4.3. Hypertension Classification

When classifying a new subject, the K most similar CARs are first picked out from the
hypertensive group and normotensive group, respectively, by using Formula (7). After-
wards, the class of the subject is determined based on the similarities and weights of the
selected CARs by employing Formulas (8)–(10). The optimal value of the parameters in the
above process, i.e., the K, etc., will be tuned and discussed in Section 6.

5. Experimental Evaluation
5.1. Experimental Setup

We evaluate the performance of the proposed C-MWCAR on the hypertension di-
agnosis task based on a real BCG dataset of 128 subjects. In particular, 61 of them are
hypertensive and the rest are normotensive. For each subject, one night of BCG is collected
while sleeping, since at that time physiological indexes remain relatively stable. To achieve
robust evaluation results, 10-fold cross-validation is utilized. Concretely, the dataset is
randomly divided into ten portions, and nine of them are used as the training set and
the last one is used as the test set. Repeat this process ten times until each portion has
already been selected as the test set just once. Finally, ten groups of classification results
are obtained, and the averaged values are regarded as the final classification results. The
number of subjects in each portion is shown in Table 5.

Table 5. The division of the dataset.

Type Por.* 1 Pro. 2 Pro. 3 Por. 4 Por. 5 Por. 6 Por. 7 Por. 8 Por. 9 Por. 10 SUM

Hypertensive 6 6 6 6 6 6 6 6 6 7 61
Normotensive 7 7 7 7 7 7 7 7 7 6 68

Subtotal 13 13 13 13 13 13 13 13 13 13 128

* is the abbreviation of “Portion”.

When conducting the experiments, userSup and userConf are initialized to 0.25 and
0.75, respectively. Additionally, the length of the same prefixes (i.e., the k in BCSA), the
coverage threshold (i.e., the C in BCSA), the redundancy threshold (i.e., the R in BCSA),
and the number of similar CARs (i.e., the K in MWCC) are initialized to 4, 0.6, 0.85, and 3,
respectively. The selection process of these parameters is detailedly shown in Section 5.2.3.

Three widely used metrics, i.e., accuracy (ACC), sensitivity (SEN), and specificity
(SPE), are also utilized in this study [20].

The experiments are conducted in Matlab 2014a and Eclipse Neon on an Intel Core
i5-4590 PC with an 8 GB RAM running Windows 7 operating system.

5.2. Evaluation Results
5.2.1. Classification Performance Analysis

We first quantitatively study the performance improvements contributed by the pro-
posed BCSA and MWCC. As shown in Table 6, we set four methods for comparison,
named as “NONE”, “BCSA”, “MWCC,” and “BCSA + MWCC”, respectively. In particu-
lar, “NONE” means that neither the BCSA nor the MWCC is adopted when building the
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classifier, “BCSA” means that the BCSA algorithm is adopted while the MWCC algorithm
is not adopted when building the classifier, and “BCSA + MWCC” indicates that both of
the methods are adopted when building the classifier. From Table 6, we find that “BCSA”
obtains 5.0% of ACC, 5.6% of SEN, and 5.4% of SPE improvements, while “MWCC” obtains
7.1% of ACC, 8.1% of SEN, and 6.3% of SPE improvements in comparison with “NONE”,
which indicates that selecting a representative and concise set of CARs and making use
of multiple weighted CARs are very conducive to achieving more accurate results. More-
over, once BCSA and MWCC are combined, the performance significantly improves and
ACC, SEN, and SPE increase to 93.3%, 93.8%, and 92.7%, respectively, which shows the
effectiveness of our methods.

Table 6. Classification performance improvements contributed by BCSA and MWCC.

Combinations ACC SEN SPE

NONE 78.8% 79.6% 78.3%
BCSA 83.8% 85.2% 83.7%

MWCC 85.9% 87.7% 84.6%
BCSA + MWCC 93.3% 93.8% 92.7%

Afterwards, we compared the proposed C-MWCAR with four baselines proposed by
Poddar et al. [29], Ni et al. [20], Liu et al. [7], and Li et al. [8]. Poddar et al. [29] extracted
many HRV features and then directly inputted them into an LibSVM classifier. Ni et al.
transformed the extracted HRV features into different feature representations by using
feature pooling techniques, and then modeled obtained feature representations by utilizing
a L1-regularized logistic regression classifier [17]. The third [7] and fourth [8] methods
are two famous CARs-based classifiers, i.e., CBA and CMAR. CBA uses only one CAR to
classify a given instance (if there are no matched CARs, the instance will be labeled with a
default class), while CMAR employs multiple CARs to determine the final class labels. Note
that for fair comparison, these baselines are corrected based on the BCG dataset collected
in this study. In particular, Refs. [20,29] extracted their own HRV features, while CBA and
CMAR utilized the HRV features extracted in this study. In addition, the best parameter
combinations of the baselines were adopted. As shown in Figure 4, C-MWCAR obtained
the highest performance, and outperformed the method in [29] by 17.7%, 20.8%, and 17.9%
in terms of ACC, SEN, and SPE, respectively, which indicates that extracting the associate
relationship among features is useful for classification. The method in [20] showed slightly
higher performance than the method in [29] (2.2% of ACC, 2.0% of SEN, and 3.5% of SPE)
as it employed more complex feature combinations; however, its performance was much
lower than C-MWCAR (13.3% of ACC, 13.8% of SEN, and 11.3% of SPE). The performance
of CBA was lower than CMAR by 4.3%, 4.6%, and 4.3%, and much lower than C-MWCAR
by 10.2%, 12.1%, and 9.9% in terms of ACC, SEN, and SPE, respectively, which means
that utilizing multiple CARs can provide more useful information for classification. In
particular, C-MWCAR and CMAR use the same features but the former outperformed the
latter by 5.9% of ACC, 7.5% of SEN, and 5.6% of SPE, which may be because C-MWCAR
can select the most similar CARs and exploit their weighted classification abilities when
classifying each instance.

5.2.2. Efficiency of the Proposed DOCMA

We first investigate the efficiency of the designed DOCMA under different combina-
tions of support and confidence. From Figure 5, we can easily find that the time overhead
mainly depends on the support rather than the confidence. Furthermore, it will increase
significantly if the support decreases slightly. In particular, it takes nearly 4 h to mine all
CARs when the proposed DOCMA is not employed and the support is set to 0.2, which is
obviously unacceptable in practice. However, once the proposed DOCMA is applied, the
time overhead will decrease by more than half. Concretely, compared with the optimized
pruning strategy and the pre-pruning strategy, the optimized connection strategy brings
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the largest time savings. In particular, it reduces the time overhead by approximately 44%,
39%, and 47% when the support is set to 0.3, 0.25, and 0.2, respectively. Moreover, if the
optimized pruning strategy and the pre-pruning strategy are also employed, an additional
24.4–36.2% time savings can be obtained. In total, C-MWCAR can save 68.3–81.2% of time
and the best and worst performance are obtained when support and confidence are set to
0.3 and 0.7, and 0.25 and 0.8, respectively.

Figure 4. Performance comparison between C-MWCAR and four state-of-the-art baselines [7,8,20,29].
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Next, we compare DOCMA with three state-of-the-art CAR mining methods, i.e.,
CAR-Miner [12], ECR-CARM [23], and PMCAR [18], with the confffidence fixed at 0.8.
From Table 7, we find that DOCMA spends the least time except for when the support is
set to 0.2. Concretely, compared with CAR-Miner and ECR-CARM, DOCMA can save 3.6%,
36.5%, and 69.2%, and 38.1%, 60.7%, and 82.9% of the time when support is set to 0.2, 0.25,
and 0.3, respectively. Compared with PMCAR, DOCMA spends 17.7% more time when
support is set to 0.2 but saves 15.7% and 47.9% of the time when support is set to 0.25 and
0.3, respectively.

Table 7. Comparison of the efficiency of mining CARs between DOCMA and three state-of-the-
art baselines.

Algorithms Strategies Used to Mine CARs
Time Overhead 1

Sup = 0.2 Sup = 0.25 Sup = 0.3

DOCMA Use the Apriori-like algorithm with optimized
strategies to generate rules 3976.3 s 1369.7 s 129.9 s

CAR-Miner [12] Mine CARs based on the modified ECR-tree with
Obidset 4123.5 s 2156.8 s 421.8 s

ECR-CARM [22] Use equivalence class rule tree (ECR-tree) to generate
candidate rules 6425.8 s 3482.5 s 761.3 s

PMCAR [24] Mine CARs with parallel and distributed approaches 3379.4 s 1624.4 s 249.5 s
1 The confidence is fixed at 0.8.

5.2.3. Parameter Optimization

The support and confidence are two key parameters when mining CARs, and directly
affect the number of extracted CARs. If the number of CARs is too small, it may miss some
useful CARs; however, if the number of CARs is too large, it will incur too much noise
and redundancy. The number of mined CARs under different combinations of support
and confidence are shown in Figure 6, which shows that the number of the CARs mainly
depends on the support rather than the confidence. It soars sharply if the support decreases,
while it increases slightly if the confidence decreases. In particular, the number of CARs is
neither too small nor too large when the support is set to 0.25. In addition, we notice that
the growth of the number of CARs caused by the decrease of confidence when support
is set to 0.3 or 0.2 is more moderate than that when support is set to 0.25, which signifies
that the distribution of the CARs is much more even with respect to the confidence when
support equals 0.25. Therefore, the support and confidence are finally set to 0.25 and 0.75,
respectively.

When selecting CARs, the length of the same prefix k, the redundancy threshold R, and
the coverage threshold C directly determine the final CARs set, which will further affect the
final classification results. Too large an L value may lead to missing some effective CARs,
but too small an L value may make the selected CARs almost unrepresentative. Likewise, a
big R value makes selected CARs contain too much redundant information, while a small
R will leave out useful information. Moreover, if the value of C is too large or too small,
it may lead to over-fitting or under-fitting. In addition, in the classification process, the
number of similar CARs used to classify instances, i.e., K, is also a key parameter that
can directly affect the classification performance. Obviously, too small an N value cannot
obtain enough information from the CARs for classification, while too large an N value will
introduce unimportant information and hence distort the classification results. As shown
in Figure 7, we investigate the performance as k, R, C, and K vary independently.
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Figure 7. Optimization of the key parameters of the C-MWCAR. (a–d) reflect the variation of ACC,
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and the number of similar CARs change, respectively. Note that when studying the effects of a specific
parameter, the other parameters are set to default values. The default values of these four parameters
are 4, 0.6, 0.85, and 3, respectively.
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Figure 7a shows that ACC, SEN, and SPE have the same trend and they all first increase
and then decrease. They obtain their maximum when the length of the same prefix is set
to 4, 3, and 5, respectively. In order to keep all three metrics high, we make a trade-off
and suggest setting the length of the prefix as 4. As shown in Figure 7b, the maximum
values of the three metrics are obtained when the redundancy threshold is 0.6. Figure 7c
shows that ACC and SPE reach their maximums when the coverage threshold C is set to
0.8. However, for SEN, the optimal coverage threshold is 0.9, where ACC and SPE have
decreased considerably. To keep all three metrics relatively high, the coverage threshold C
is finally set to 0.85. In Figure 7d, all of the metrics rise sharply at first, and then decline
gradually, which can be explained by the fact that utilizing multiple CARs will bring more
comprehensive and stable information and hence improve the classification performance;
however, too many CARs will lead to over-fitting and thus result in reduced performance.
In this study, the number of CARs is set to 3, since the increment of ACC is less than the
reduction of SEN when the number of similar CARs varies from 3 to 4.

5.2.4. Visualization of the Mined CARs

We randomly select five CARs from the hypertensive group and normotensive group,
respectively, and then visualize them in Figure 8, with the null values of each CAR replaced
by the average value of the current item in the current group. From Figure 8, we find that
the overall trends of the CARs derived from the two groups are quite different from each
other. Concretely, the overall trend of the normotensive group remains relatively high
at first, and then gradually decreases until the end, except for the fluctuations at MIN,
PNN50, and SD1. As for the hypertensive group, its overall trend is just the opposite. More
specifically, the hypertensive group usually has smaller time-frequency domain features
except for MIN and PNN50 but bigger non-linear domain features compared with the
normotensive group, which is coherent with the results reported in previous medical
studies [31,38–40]. Hence, we think that the extracted CARs are conducive for doctors to
analyze the patient’s condition. For example, if the subject’s features converge towards
to or are similar to the CARs of the hypertensive group, then the doctors have reasons to
believe that the subject is likely to suffer from hypertension in the future, and thus give him
or her effective health interventions at once, which may avoid the occurrence or prevent
the deterioration of hypertension.
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6. Discussion

This paper proposed a multiple weighted class association rules-based classifier (i.e.,
C-MWCAR) and applied it to a real-world classification task. The experimental results
demonstrated the effectiveness and interpretability of the proposed method. In this section,
the advantages and limitations of C-MWCAR are discussed.

The advantages of C-MWCAR are as follows. Firstly, the effectiveness of C-MWCAR is
excellent. In particular, the BCSA of C-MWCAR can select representative CARs from each
branch for classification, and the MWCC of C-MWCAR can not only solve the problem
of having no matching CARs and the problem of having conflicting CARs but can also
make full use of the power of multiple CARs that are the most similar to the subject to
be classified. Therefore, C-MWCAR is much more accurate and useful when applied
to real-world problems. Secondly, the interpretability of C-MWCAR is impressive. C-
MWCAR can generate a set of CARs that can be used to explain why the subject is classified
as hypertensive or normotensive to a certain degree. However, traditional classifiers,
taking the Decision Tree classifier as an example, can generate a set of IF–THEN rules.
Nevertheless, its interpretability is limited, since Decision Tree only takes one feature
into consideration when building each tree node, instead of considering all the extracted
features simultaneously, which may leave out some valuable association relationship among
features. Moreover, the IF–THEN rules heavily rely on continuous feature values rather
than discrete feature values, therefore, once the dataset changes slightly, the IF–THEN rules
may have to adjust in order to adapt to the changed feature values. However, C-MWCAR
deems the features non-independent intrinsically, which accords with the actual situation,
so the interpretability of the CARs is more credible.

The limitations of C-MWCAR are as follows. Firstly, the process of feature discretiza-
tion may be affected by outliers. If there are some outliers for a feature, the feature values
of hypertensive subjects or normotensive subjects in terms of the feature may be discretized
into the same sub-range rather than different sub-ranges, which makes the feature lose its
distinguishing ability. Secondly, the scale of the dataset collected in this study is not large
since human-related physiological signals are hard to collect due to various restrictions
in practice, which may make the classification performance not stable. To obtain more
stable and reliable performance evaluation results, it is suggested to recruit more subjects to
collect enough data samples. Thirdly, the equal-width binning strategy used in this study to
discretize the features may be not the most powerful. In future, the performance of different
feature discretization strategies should be investigated. Fourthly, only the most frequently
used features are extracted in this study. To achieve higher classification accuracy, more
features should be explored and studied. It is notable that the increased number of features
almost only increases the time overhead of the process of CAR extraction but virtually has
no effect on the time overhead of applying the classifier to classify the subjects.

7. Conclusions and Future Work

In this paper, we proposed a novel classification framework named C-MWCAR, which
is able to obtain better classification performance by utilizing multiple weighted CARs. In
particular, C-MWCAR can select representative and concise CARs based on the distribution,
coverage, and redundancy of the CARs, and then build an effective classifier by considering
the similarities between CARs and the instance and the weighted classification abilities of
the CARs simultaneously. In addition, the designed CAR mining algorithm (i.e., DOCMA)
can significantly reduce the time overhead used for extracting the complete set of CARs,
which makes the application of CARs-based classifiers to real-world problems possible.
Experimental results based on a real BCG dataset of 128 subjects demonstrated that the
proposed C-MWCAR achieved 93.3%, 93.8%, and 92.7% in terms of ACC, SEN, and SPE,
respectively, which outperformed four baselines significantly. In addition, the proposed
DOCMA proved to be capable of reducing the time overhead by up to 81.2% when sup and
conf were set to 0.25 and 0.8, respectively. Moreover, the visualization of the CARs denoted
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that the mined CARs can explicitly reflect a subject’s physiological status; in other words,
the classification results were interpretable to some extent.

The contributions of this paper can be summarized as follows.

• To accelerate the extraction of CARs, a dictionary order-based CAR mining algorithm
(DOCMA) was designed by optimizing the Apriori algorithm [26]. To be specific,
we designed and proved a set of theorems and corollaries, by which the most time-
consuming steps, i.e., the connection of frequent k − 1 itemSets and the pruning of
infrequent k itemSets, can be greatly simplified. In addition, it can also pre-prune
the set of frequent k − 1 itemSets, which further reduces the number of connection
operations required. Experimental results showed that the proposed DOCMA saved
up to 81.2% of time and outperformed three state-of-the-art CAR mining methods.

• In order to deal with the numerous CARs, a branch-based CAR selection algorithm
(BCSA) was designed to select the most representative and concise CARs. It first
grouped all the CARs into non-overlapping branches, and then selected the most
representative CARs from each of them, which made the selected CARs more repre-
sentative. After that, we designed two metrics, named coverage and redundancy, by
which the CARs contained little new information but much redundant information
was filtered out, making the final set of selected CARs more concise and effective.

• To obtain higher classification performance, we proposed a multiple weighted CARs-
based classifier (MWCC) that classifies an instance by using multiple weighted CARs.
Specifically, it first picks out a set of CARs that are most similar to the given instance,
then it fuses their weighted classification abilities to compute the final classification
result. This strategy can not only solve the problem of no matching CARs but can also
achieve more accurate and robust classification results.

• We applied the proposed C-MWCAR to a real classification task, i.e., hypertension
diagnosis. Experimental results showed that C-MWCAR outperformed four state-
of-the-art baselines, and achieved 93.3%, 93.8%, and 92.7% in terms of accuracy,
sensitivity, and specificity, respectively. In addition, we found that the generated
CARs can intuitively reflect the patient’s physiological status, which signifies that
C-MWCAR is interpretable to some extent.

In the future, we will aim to build a new kind of CARs-based classifier that is much
simpler but can produce better classification performance, and then test it on more real-
world datasets.
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