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Abstract: This study focuses on microscale anisotropy in rock structure and texture, exploring its
influence on the macro anisotropic electromagnetic parameters of the geological media, specifically
electric conductivity (σ), relative permittivity (ε), and magnetic permeability (µ). The novelty of this
research lies in the advancement of geophysical monitoring methods for calculating cross properties
through the estimation of effective parameters—a kind of integral macroscopic characteristic of
media mostly used for composite materials with inclusions. To achieve this, we approximate real
geological media with layered bianisotropic media, employing the effective media approximation
(EMA) averaging technique to simplify the retrieval of the effective electromagnetic parameters (e.g.,
apparent resistivity–inversely proportional to electrical conductivity). Additionally, we investigate
the correlation between effective electromagnetic parameters and geodynamic processes, which is
supported by the experimental data obtained during monitoring studies in the Tien Shan region. The
observed decrease and increase in apparent electrical resistivity values of ρk over time in orthogonal
azimuths leads to further ρk deviations of up to 80%. We demonstrate that transitioning to another
coordinate system is equivalent to considering gradient anisotropic media. Building upon the
developed method, we derive the effective electric conductivity tensor for gradient anisotropic media
by modeling the process of fracturing in a rock mass. Research findings validate the concept that
continuous electromagnetic monitoring can aid in identifying natural geodynamic disasters based
on variations in integral macroscopic parameters such as electrical conductivity. The geodynamic
processes are closely related to seismicity and stress regimes with provided constraints. Therefore,
disasters such as earthquakes are damaging and seismically hazardous.

Keywords: electric conductivity; macro anisotropic electromagnetic parameters; anisotropy;
bianisotropic effective parameters; homogenization; geologic fractured media; earthquake hazard analysis

1. Introduction

The study of modern geodynamic processes employs non-destructive methods in
analysis of the physical parameters associated with the time variation of the stress–strain
state (SSS) of geological media, specifically the lithosphere. Non-destructive methods
mostly use on-surface monitoring tools based on remote response, like magnetotelluric
sounding (MTS). This analysis is crucial for field assessments of earthquake-generating
fault monitoring, which holds high priority in engineering geology, geotechnics, and
geotechnical earthquake engineering. Geological rocks are microscopic heterogeneous
media, where pores, cracks, inclusions, and mineral grains act as inhomogeneities at
various spatial scales. However, the observed physical properties of rocks are macroscopic,
as per the theory of microscopic heterogeneous media. Changes in macro anisotropic
parameters are linked to irreversible deformations occurring within the Earth’s crust [1,2].
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Electromagnetic monitoring is one of the geophysical methods employed to study these
processes. By utilizing controlled sources of electromagnetic fields and describing the
fractured rock as a bianisotropic medium, new effects can be observed, including exceptions
to the electromagnetic reciprocity transfer (ERT) principle. “The complex interpretation
of the fracture system studied can provide direct inputs for hydrogeological models, but
can also provide conceptual information for the development of the geosphere module in
safety calculations. . . . The stochastic fracture network models are often accompanied by
only a few large-scale features (faults, deformation zones) that are important enough to be
modeled deterministically” [3].

Continuous geophysical monitoring of modern geodynamic processes is a highly
successful technological approach for analyzing incoming geological and geophysical
information with the aim of advancing theory and preventing global natural disasters. It is
a frontier of the modern epoch in testing the environment [4]. Electromagnetic monitoring of
the Earth’s crust in seismically hazardous regions constitutes a fundamental area of research.
It enables not only the monitoring of geodynamic processes in the Earth’s crust but also
theoretical development and assessment of the physical parameters of the geological media.
Geophysical monitoring has become an indispensable tool for studying the development
and current state of geodynamic processes. Electromagnetic monitoring, including both
water areas and land-based monitoring, including wells, plays a crucial role in this regard.

The purpose of this study is to investigate the relationship between modern geody-
namic processes in the Earth’s crust through the distribution of the macro anisotropic
properties of rocks variations and establish a theoretical basis according to EMA for further
investigations. Modern geodynamic processes involve vast rock masses and result in the
ordering or disordering of rock structures within large geological formations. This, in turn,
affects the effective electrical parameters of these formations. Since it is impractical to
physically or experimentally model the influence of powerful geodynamic processes on the
physicoelectric properties of rocks, mathematical modeling becomes crucial in determining
effective petrophysical characteristics. Typically, rock masses are characterized by factors
such as connectivity, size, orientation, or fractures. When drilling, “a flow in the fracture
system in a 3D rock volume while structural data (borehole images, outcrops, etc.) describe
the static components (orientation, intensity, spatial model, etc.) of the fracture system” [3]
is used. Fracture parametrization (geometry of fracture networks in crystalline rocks) and
the anisotropy of the system and its electrical conductivity have been extensively studied [5].
To account for various geological factors, it is necessary to establish a rigorous physical
model of the rock with an appropriate mathematical formulation. Various methods exist to
establish the relationship between microstructure and porous material properties, such as
those described in [6–12] for elastic deformation and those for homogenization [13].

The novelty of this scientific approach lies in the improvement of methods for cal-
culating effective parameters and studying the macro anisotropic characteristics of rocks
through the approximation of real geological media with layered bianisotropic media.
Such approximations of matrices incorporate inclusions with various shapes and different
properties [13]. Somehow, petrological and cross property relations are also included, e.g.,
the general singular approximation (GSA) [6]. Here, bianisotropic media refers to media
characterized by a multitude of parameters contained in four permeability tensors. We here
and onward in all the text consider an element network model (capillarity system) in which
the omega shape (Ω) inclusion serves as a structural element of the bianisotropic media.
This provides a magnetoelectric relation, where the electric and magnetic moments induced
in the inclusion by the electromagnetic field are perpendicular to each other. When two Ω
inclusions are positioned in a plane with mutually perpendicular straight sections, a “cap”
is formed, which acts as a structural element of uniaxial bianisotropic media. We define
an effective electromagnetic parameter of a media as a parameter obtained through the
homogenization method of macroscopic Maxwell equations [14,15] applied to its function
on spatial coordinates over a physically small finite volume. The idea is significant, as
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homogenization theory was employed for the analysis of periodic micro-structure contact
stress in compressed granite.

In general, methods of electromagnetic monitoring of modern geodynamic processes
can be categorized as active and passive. Passive methods involve passive registration of the
Earth’s own electromagnetic radiation and are associated with irreversible deformations
of rock during crack-forming processes when the stress–strain state changes. In such
cases, sources of endogenous electromagnetic fields are generated, which are the focus of
passive electromagnetic monitoring [16]. Accordingly, we respect the following principle:
with a given observation system, either generally inhomogeneous media or macroscopic
anisotropic parameters of the geoelectric media are considered. For each electromagnetic
monitoring point, a geoelectric model was preliminarily built to depths of about 40 km
(based on the MTS profile), which shows the distribution of geoelectric inhomogeneities,
i.e., objects with different electrical conductivity in the geological environment. We could
thus monitor the position of objects with different electrical conductivity over time.

The object of study in electromagnetic monitoring of modern geodynamic processes
is changes in the electromagnetic parameters of geological media, which are associated
with both reversible and irreversible deformations of rock under the influence of external
factors [17]. These factors include lunar–solar tides, fluid dynamics, tectonic processes, and
anthropogenic impacts on the lithosphere, leading to changes in the stress–strain state of
the geological media [18]. Observation systems with controlled sources of electromagnetic
fields are employed, including methods of magnetotelluric sounding of the Earth [19–21],
which provides information on the physicoelectric (electromagnetic, magnetochemical,
physicochemical, etc.) parameters of the lithosphere. These parameters are integral and
macroscopic in nature. The lunar–solar connection with Earth’s electromagnetic parameters
has been established [22–25]. This study aims to investigate the changes in macroscopic
physicoelectric properties of rocks associated with variations in their internal microstructure.
Since the electromagnetic field on a macro scale follows Maxwell’s equations, it is logical to
approximate it using layered bianisotropic media to study the macroscopic parameters. This
implies that these parameters can be measured using existing electromagnetic monitoring
systems that usually help in identifying natural disasters such as earthquakes.

Research on electrical parameters and related phenomena in geodynamically active
zones is being conducted worldwide [24–27], including seismically hazardous regions
such as Altai [28–30], Tien Shan [31–34], Kamchatka [35,36], and Kola [21,37]. The results
of these studies indicate a correlation between changes in electrical resistivity and geo-
dynamic processes occurring in deep layers of the Earth’s crust. In certain cases, it has
been observed that the apparent electrical resistivity is particularly sensitive to seismic
events at specific azimuthal rotations, as demonstrated by detailed hourly variations in the
relative resistivity value ∆ρk [33]. Various works, such as [16,38–41], provide evidence of
geoelectric anisotropy.

Summary outline:

• The novelty of this research lies in the advancement of geophysical monitoring meth-
ods applying effective media approximation (EMA) averaging theory to real geological
media as layered bianisotropic (fractured) media, subsequently employing them for
simplified retrieval of effective parameters. Additionally, the correlation between
effective parameters and geodynamic processes is under attention.

• We try to prove this approach by showing experimental data obtained during moni-
toring studies in a geodynamically active region. For this reason, in the next section,
we present the results of monitoring data from stress-sensitive points in Kyrgyz Tien
Shan over time. These results prove that the measured electromagnetic parameters
in the same place are not stable and show variability over time, which could be influ-
enced by changing telluric currents or due to external factors, either internal structural
and textural rock reorganization (e.g., fluid flow convection), leading to temporal
geoelectric anisotropy.
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• Section 3 presents the mathematical formulation of the electromagnetic theory for bian-
isotropic media. It explains that simple parametrization of Maxwell’s equation may
contain effective parameters, which could even be complex or a function of capillarity.

• The Results and Discussion and Conclusions sections summarize achievements and
practical geological model applications. Appendix A is additional, helping readers
understand the averaging procedures used (homogenization).

2. Materials and Methods

Understanding the structural and textural reorganization of rocks and changes in their
physicoelectric properties during the development of geological media is an important
research objective because it leads to variations in measured electromagnetic parameters
(apparent resistivity). Active electromagnetic monitoring of modern geodynamic processes
is a valuable tool for investigating these phenomena [17,19,42]. This section explains how
the reorganization of rocks and changes could be reflected in geophysical fields in situ and
the possible transition to EMA through description by effective electromagnetic parameters.

2.1. Electromagnetic Monitoring of Strain-Sensitive Zones in the Tien Shan

Anisotropy is the most sensitive parameter in electromagnetic monitoring as it re-
sponds to changes in the stress–strain state (SSS) of rocks at a quantitative level. These
changes are reflected in the structural and textural rearrangement of rock. In the experimen-
tal data obtained from the central Tien Shan region, a clear variation in electrical resistivity
along orthogonal azimuths has been observed [33,43,44]. Kyrgyzstan, being a seismically
active zone, is continuously studied [45].

The observation system remains consistent, and transitioning to another system is
equivalent to considering gradient anisotropic media. The task is to transform the model
from a micro-heterogeneous rock structure to a homogeneous anisotropic one. The mea-
sured macroscopic parameters and internal structure can be described using effective
media approximation (EMA). Furthermore, the relationship between effective parameters
and geodynamic processes is considered while respecting the electromagnetic reciprocity
transfer (ERT) principle.

As an example of studying the anisotropy parameter using field data, we can refer
to the results of passive electromagnetic monitoring in a geodynamically active region.
Electromagnetic monitoring using Phoenix MTU-5 equipment has been conducted in the
northern Tien Shan since 2003 [34,44]. The magnetotelluric sounding (MTS) installation
is physically oriented at the observation point xy and yx (0◦ and 90◦) following standard
procedures [46], ensuring a strict northerly orientation. The installation is placed in 0.25 m
trenches on the ground surface. One of the key parameters monitored is the soil’s moisture
content, as this influences the electric current flow through the porous media and generates
electromagnetic perturbations. Over time, variations in the soil’s geotechnical and hydraulic
properties occur, often influenced by lunar–solar tides. Apparent electrical resistivity (ρk)
and its inverse parameter, electrical conductivity (σ), are well-known indicators of soil
condition, exhibiting high variability in fracture zones near long-lived active faults. This
method is widely used by numerous scientists to understand changes in the underground
environment [28,38].

Phoenix MTU-5 equipment is typically used to record variations in five components
of the electromagnetic field (Ex, Ey, Hx, Hy, Hz) for horizontally layered media. To obtain
effective parameters, values for apparent resistivity (ρk), impedance tensor components
(Zxx, Zxy, Zyx, Zxx), or impedance phases (ϕ = 2arg Z + π/2) are used. The general

formula for apparent resistivity is ρk =
|Z2|
ωµ0

, whereω represents the observed frequency
and µ0 represents vacuum magnetic permeability [46]. Rotations are performed along
both the main components (Zxy and Zyx) and the additional components (Zxx and Zyy)
of the impedance tensor. In this case, an example is given with the rotation of the main
components to better illustrate their relationship with various geophysical parameters
(although additional components may be more correlated at specific observation points).



Appl. Sci. 2023, 13, 8063 5 of 33

The Tien Shan region, with its complex mountainous and geological conditions, exhibits
significant heterogeneity [47,48], which can be described in terms of bianisotropic media.

To establish the relationship between conductivity variations and the direction of rota-
tional angles, the following equations (Equation (1)) proposed in [46] are used to calculate
the values of the impedance tensor and the corresponding variations for arbitrary azimuths:

Zxy(α) = Zxy cos2 α− Zyx sin2 α−
(
Zxx − Zyy

)
sin α cos α,

Zyx(α) = Zyx cos2 α− Zxy sin2 α−
(
Zxx − Zyy

)
sin α cos α,

(1)

where Zxx, Zxy, Zyx, and Zxx are the components of the impedance tensor Z = E/H in the
respective directions (corresponding to their first index), Ex = ZxxHx + ZxyHy; Ey = ZyxHx
+ ZyyHy. The orientation of the impedance components aligns with the orientation of the
electromagnetic field components, and α represents the clockwise rotation angle of the axes.

The methodology for processing MTS monitoring data is detailed in [31,49]. Figure 1
shows the network of monitoring points (deep MTS points) in the northern Tien Shan region.
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Figure 1. The monitoring network of the Research Station of the Russian Academy of Sciences in
Bishkek in the central Tien Shan, along with the Kambarata point, on a geographic elevation map. The
network includes various types of monitoring points: stationary points, regime monitoring points,
and points of deep magnetotelluric soundings. The key features depicted in Figure 1 are as follows:
1—Aksu and Chon-Kurchak stationary points, Kentor mini-polygon, and Ukok regime monitoring
point; 2—cities; 3—fault structures; 4—borders of the Kyrgyz Republic; 5—point of explosion at the
Kambarata point; 6—points of deep MTS.
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To represent the results of monitoring data processing, we utilized time–frequency
series (TFS), which visualize the variability in measured electromagnetic field components
with depth (logarithm of the sounding period) as the coordinate system is rotated by a
certain angle (in degrees). Previously, some results showed good evidence of temporal
variations. A widely researched study that is a very powerful example of a geodynamic
man-made event with all known parameters (time, yield, volume) associated with initiated
geodynamic natural events is the Kambarata blast-fill dam experiment. Figure 2 displays
the TFS for the Kambarata point (top left panel in Figure 1) with a rotation step of α = 15◦

azimuth. The TFS shows the variations in apparent resistivity (∆ρk), which represents
the difference between the average and current values along the considered azimuth
within a 72 h period [31,49]. This initial step allows for the analysis of anisotropy in
physicoelectric parameters under different coordinate system orientations over continuous
time. It is evident that the variations (∆ρk) occur and exhibit uniqueness over time. These
variations are influenced by changing telluric currents due to external factors such as lunar–
solar tides, fluid dynamics, or man-made impacts on the lithosphere, as observed at the
Kambarata point. The Kambarata 2 blast-fill dam is located in the geodynamically active
and seismic part of the central Tien Shan [50]. The Kambarata explosion, which occurred on
22 December 2009 at 11:54 UTC in Kyrgyzstan (coordinates of the main explosion measured
by GPS: 41.77467◦ N, 73.33122◦ E), was an exceptionally powerful event for geophysical
monitoring. The explosion had a total yield of 2800 tons of TNT equivalent.

Additionally, another form of MTS monitoring data is represented in polar diagrams,
which depict changes in electromagnetic parameters over a specific time period. Figure 3
demonstrates the behavior of apparent resistivity (ρk) before and after the Kambarata
industrial explosion and subsequent earthquakes [31,49]. These polar diagrams serve as
circular sounding monitoring tools that remain invariant regardless of the orientation of
the instrument installation. This represents the second step in analyzing physicoelectric
parameters with sounding period parameters.

Geodynamic processes manifest in the geological media as a result of stress and state
imbalances. These processes involve both reversible and irreversible deformations [51–53]
and occur slowly over extended periods, except for events like earthquakes. They also
lead to structural and textural adjustments in rocks. Technogenic activities such as mining
actively stimulate geodynamic processes as they disrupt the relative stress balance within
geological media [51]. Shear stresses, tensile forces, and deformations occur, accompanied
by continuous quasi-plastic flow, cracking, and the rupturing of rocks near mining sites [54].

In certain cases, fluid dynamics also contribute to geodynamic processes. For example,
during oil extraction, the physical properties of the reservoir rock change as water fluid
replaces the oil, leading to deformation (failure), fracturing of the rock matrix [55], and
plastic deformation [56]. Another example concerns water tanks. Similarly, water-related
factors such as changes in water level, leaching, and watering [54] can cause irreversible
deformations and variations in the physical and mechanical properties of rocks.
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Figure 2. Variations in the anisotropic properties of electrical resistivity (∆ρk) at the Kambarata point
at different azimuths as represented by TFS. The TFS plot is accompanied by the vertical component
(An) of lunar–solar tides at the top. The vertical green lines indicate the moments of seismic events
near the observation point. At the left side, α shows the clockwise angle of rotation for the axes.
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Figure 3. Polar diagrams showing the variations in apparent resistivity (ρk) over time at a fixed
point before and after an explosive earthquake. The diagrams depict the dependence of resistivity
on the sounding period (T) and azimuth (α) in degrees (Az). (a) represents the data 12 h before the
earthquake, while (b) shows the data 6 h after the earthquake.

2.2. Geodynamic Process Reflexion in the Physicoelectric Properties of Rocks

The variations in electrical resistivity are closely related to the process of rock defor-
mation [57,58]. Deformation begins with the closure of fractures in the rock sample, and
the extent of sample deformation nonlinearly depends on pressure. Simultaneously, the
resistivity of the rock decreases due to the conductive surface increasing. As deformation
progresses, elastic deformation exhibits a linear dependence on stress, leading to a linear de-
crease in resistivity. Increasing stresses initiate the development of both existing and newly
formed cracks. Further stress buildup results in the release of accumulated elastic energy
and a sharp increase in the number of cracks. At this point, an uncontrolled process of brit-
tle fracture ensues, accompanied by a decrease in stresses and a sharp increase in resistivity.
Thus, irreversible geodynamic processes manifest as the disruption of rock continuity and
the formation of cracks, either without visible displacement or with displacement within
their planes due to mechanical impacts caused by tectonic and non-tectonic forces [57,58].

Fracturing is a significant process occurring in all rocks under various geological
conditions. The formed cracks are filled with fluids and particles from the deformable rock,
altering the overall physical and mechanical properties of the rock [59]. In cases where
highly conductive fluids fill the cracks, the structural features of the rock no longer play
a role, and the electrical resistivity anisotropy coefficient decreases to unity as moisture
content increases. However, in other cases, the anisotropy of electrical resistivity provides
valuable information about the structural and textural features of the rock, such as layering,
shearing, fracturing, etc. [39,60].

It is well established that resistivity anisotropy is highly sensitive to changes in rock
stress. The anisotropy of electric conductivity correlates with the anisotropy of permeability
in rock layers and serves as an indicator of the self-organized structure of the rock itself.
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Isotropy, therefore, represents a special case characterized by a disordered rock structure.
To establish a quantitative relationship between the structural–textural and physicoelectric
parameters of the rock, it is necessary to construct a phenomenological model of electrical
resistivity that considers the structural features of the rock.

The geophysical literature has developed various types of structural phenomenological
models and solutions for its numerical description. However, the calculation of electrical
resistivity for such models is limited to transversely isotropic media, primarily due to the
limited development of the Maxwell homogenization technique [13,61], which enables the
transition from the local physicoelectric parameters of the media to macro-parameters.

2.3. Scope of Application for Effective Electromagnetic Parameters

Based on numerous field experiments (Figure 1), it has been observed that modern
geodynamic processes lead to rock reorganization—changes in structural and textural
characteristics. These modifications manifest as variations in the macro anisotropic electro-
magnetic parameters of the geological media at the macroscale level. These phenomena
were first recognized by O.B. Barsukov [51]. To study these phenomena, it is necessary
to explore the connection between the microstructure of rocks and their macroscopic pa-
rameters. This connection is addressed through the EMA theory, which considers effective
electromagnetic parameters of micro-inhomogeneous media. The EMA theory assumes a
relationship between the macroscopic parameters of the medium and its micro-composites,
resulting in anisotropy [62]. Some electrical anisotropy studies started in the 20th century
include those by Matlas and Habbejam [39], Berdichevsky et al. [63], and Lilley [64].

In the context of the central Tien Shan region and its deep-seated rocks (depicted in
Figure 4), the investigation of effective electromagnetic parameters becomes crucial. These
rocks exhibit a micro-heterogeneous nature, and understanding their behavior requires the
calculation of effective electromagnetic parameters. This relationship aligns well with the
observations made in the MTS turnaround analysis depicted in Figures 2 and 3. By studying
the relationship between the microstructure and macroscopic parameters of such rocks,
we can gain insights into the anisotropic properties and their impact on electromagnetic
monitoring data.
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Figure 4. Micrographs of thin sections of Ortosuu mantle and crustal xenoliths. (A–F) Spinel (Sp)
lherzolites; (G,H) mafic granulites; Ol, olivine; Opx, orthopyroxene; Cpx, clinopyroxene; Pl, plagio-
clase; Kph, kelyphite aggregate that replaces primary garnet. Tool: Camebax electron microprobe
manufactured by Cameca with automated stages down to <3-micrometer precision. Analysis down
to a weight of several hundred ppm for selected elements. The field of width of each micrograph is
8 mm [65].

2.4. Calculations of the Effective Electric Conductivity of Rocks

Transition from the local electromagnetic characteristics of geological media to integral
parameters is of great practical importance. Due to the large linear dimensions of the
electromagnetic field sources and/or receivers, as well as the complex structure and vast
volumes of the geological media, obtaining information about the local distribution of
electromagnetic parameters within the rock is fundamentally impossible.
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The problem of transitioning from local to integral parameters in electrical prospecting
is analogous to the transition from microfields to macrofields in electrodynamics. Homoge-
nization (averaging) of physically infinitesimal volumes transforms the Lorentz equations
for microfields (describing the electromagnetic field under vacuum) into Maxwell’s equa-
tions, which describe the electromagnetic field in continuous media. The nature of charge
location, movement, and interaction is not considered in Maxwell’s equations; instead,
these phenomena are characterized through the relative dielectric and magnetic permeabil-
ity and electric conductivity (ε, µ, σ) media parameters. Spatial and temporal averaging of
microscale fields simplifies the solution of electromagnetic problems. However, solving
Maxwell’s equations introduces the challenge of dealing with boundary conditions, which
are absent in the Lorentz equations [66].

In geoelectrics during prospecting, a similar problem arises where each grain of rock-
forming minerals has its own electromagnetic parameters, such as relative permittivity,
magnetic permeability, and specific electrical resistivity. The complex relationship of
electromagnetic parameters across spatial coordinates within rock samples poses significant
challenges in solving Maxwell’s equations for such media. To overcome these difficulties,
an additional stage of Maxwell homogenization is proposed. During this stage, Maxwell’s
equations for a continuous media are averaged while considering the boundary conditions.
Spatial averaging is performed over a small, physically finite volume, leading to the
consideration of macroscale anisotropy in the effective resistivity and electric conductivity
(σeff). We show this procedure in Appendix A.

There are different approximations of two-phase geological media that are still under
investigation, and we introduce some of them here. The effective electric conductivity
for spherical inclusions and layered media has been a subject of research since Maxwell’s
work to obtain the effective resistivity of two-phase media [67,68]. Subsequently, many
researchers have tackled this problem. An up-to-date view is supported by Kanaun [69,70].
According to S. Kanaun [69], we know that, “a homogeneous anisotropic conductive media
with a set of anisotropic heterogeneities and its’ numerical solution, using Gaussian approx-
imating functions around isolated anisotropic spherical and cylindrical inclusions in an
anisotropic homogeneous host media was studied by numerous researchers” [71,72]. These
approaches share a common model that describes the relationship between electric and
elastic properties through effective properties by following Maxwell’s methodology [68].
Understanding the effective conductivity of bianisotropic media in terms of composites
with anisotropic components is an up-to-date view proven by Kanaun [69]. V.R. Bursian
developed a method [73] to obtain effective resistivity for layered media, demonstrating
that the roundness of grains introduces anisotropic effects in electrical resistivity. A.S.
Semenov [74] investigated the effective resistivity of paralloid-shaped inclusions, while
A.M. Nechai [75] approximated real media with lumped parameters to obtain effective
resistivity for cube-shaped inclusions. Similar conclusions were drawn in [6–10], which
discuss the dependence of effective electrical conductivity on the number of inclusions. The
authors also explored models that describe the dependence of elastic and electromagnetic
parameters on grain shape, specifically the aspect ratio [76]. These parameters directly
influence the distribution of thermal properties. In [13], the correlation between emerging
effects in elastic parameters is explained as a consequence of the anisotropy of the geo-
logical environment. These approaches are based on the approximation of homogeneous
anisotropic micro-heterogeneous media, providing a universal and common framework.
V.P. Gubatenko [77] utilized averaging methods and expansion over the time period to
consider the macroscale anisotropy tensor of electric conductivity (σ) in relation to the
dielectric constant (ε). The effective resistivity of elliptical inclusions has been calculated
from various perspectives by numerous researchers [69,78–82]. However, the full spectrum
of anisotropy effects is not yet completely understood.
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2.5. Theory: Electromagnetic Properties of Rock Capillarity

An important problem in the detailed description of the physicoelectric parameters of
rocks is the complex configuration of hydrodynamic capillarity systems. In the context of
the theory of effective media approximation (EMA), capillarity is treated as a conductor,
while the host rock is considered an insulator. This allows for the geological parameter
known as the tortuosity of the capillarity system to be obtained. EMA helps us to avoid spe-
cial theory for electrokinetic (due to capillarity fluid mineralization) and mechano-electrical
effects (rock failure and piezoelectric effects). The study of rocks with a developed capillar-
ity system leads us to the formulation of new material equations known as bianisotropic
media theory [83–88].

Bianisotropic media are characterized by linear electromagnetic properties described
by general Maxwell’s equations:

J = σE + ξH, B = ζE + µH (2)

rotH = σE + dD/dt, rotE = −dB/dt, (3)

where J is the electric current density (A/m2), B is the magnetic induction intensity
(Wb/m2), E is the electric field intensity vector (V/m), H is the magnetic field inten-
sity vector (A/m), D = εE is the electric displacement vector (C/m2), ε is the dielectric
constant, σ is the electric conductivity, and µ is magnetic permeability [68,89]. The items
dD/dt and dB/dt are time derivatives. ξ and ζ are called effective parameters and are new
in the theory and application of electrical prospecting and have not yet received definite
designations. Equation (3) is given in differential form.

The effective parameters ξ and ζ are necessary for an adequate description of the
electromagnetic behavior of a rock with a complex system of capillaries. They take into
account the tortuosity of capillaries filled with a conducting fluid. The physical properties
depend on the connectivity of joint patterns [60]. Physical interpretation of these parameters
is associated with the generation of electric currents through induced electromotive force
(parameter ξ) and the appearance of magnetic dipoles (parameter ζ) due to the presence
of closed conductors in the media. These conductors, or closed loop currents, arise due
to the complex geometry of the capillarity system, which can theoretically be divided
into simpler elements. The electromagnetic behavior and electrical resistivity features
of bianisotropic media have been previously studied [88–92]. In previous works by the
authors, it was demonstrated that the effective parameters σ, µ, ξ, and ζ are 3 × 3 matrices
because they correspond to three spatial components where anisotropy is observed [17,91].
In this study, we will focus on obtaining the effective parameters for a rock with a complex
conductivity system.

We first consider a rock volume that contains a system of capillaries with a complex
configuration and infinite length (closed porosity). In this case, the electric conductivity
of the media is solely determined by the conductivity of fluids filling the thin, extended
capillaries. The idealized model of a horizontally layered system with capillaries is shown
in Figure 5, where x, y, and z are spatial coordinates.

In this model, each individual capillary filled with fluid forms a rectilinear electric
current that is galvanically connected to a loop-shaped capillary, referred to as the Ω (omega
shape) inclusion [93,94]. The media in this case is considered dielectric, and the magnetic
permeability remains constant along the entire length of the loop, equal to the magnetic
permeability of a vacuum. This type of media is composite. More complex models can be
found in [70].

The problem of Maxwell homogenization is calculating the effective parameters for
the suggested model of rock electric conductivity. To achieve this, we need to transform
the complex system of electric current density J into a simpler configuration. The idea
behind this transformation is shown in Figure 6 and can be represented as the addition and
subtraction of electric current densities at the bottom of each segment of the Ω inclusion.
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Figure 5. An idealized model of a network of capillaries with a complex configuration and Ω
inclusions.

Figure 6. Assumed diagram of the circulation of electric currents and their separation inside Ω-
inclusion capillarity, where Js is a straight current density and Js

1 and Js
2 = −Js are two closed-loop

current densities. Addition and subtraction are introduced intentionally.

In Figure 6, it can be observed that by adding and subtracting currents, whose sum is
zero, the complex system of currents within the Ω inclusion can be divided into current
densities with simpler geometries: a straight current density, Js, and two closed-loop current
densities, Js

1 and Js
2 = −Js. The closed electric currents form two coaxial magnetic dipoles.

We can now apply homogenization to calculate the effective electromagnetic parameters of
the capillarity system. Closed currents, similar to magnetic dipoles, are volume parameters,
and the homogenization process reduces them to calculate the average magnetic moment
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for a given volume. Homogenization of a system of coaxial straight currents does not
present significant difficulties. It is important to note that a similar transformation can be
applied to more complex capillary flow geometries.

The scheme for separating electric current densities, taking into account capillary size, is
illustrated in Figures 7 and 8, along with the distribution of currents in the capillaries [94,95].

The loop current density in the inset (Figure 8b) is divided by a dotted line into two
components, Js = J1 + J2. The need for such a division will be clear from the following
discussion. According to the procedure described above, the system of currents is added
and subtracted from the current at the bottom of the Ω inclusion (Figure 7), provided that

4∫
3
(J + J1 + J2)zdxdy = 0,

6∫
5
(J1 + J2)xdxdy = 0,

where points 3, 4, 5, and 6 mark the cross sections of the capillaries where the total current
density must be zero. The first condition eliminates currents that are normal to the surface
of the capillarity, as shown by the dashed line in Figure 8a,b. The second condition relates
the current density in the closed part of the capillarity to the current in its rectilinear part
(Figure 8c). In other words, the introduced currents do not change Maxwell’s equations,
but the currents in the Ω inclusion are presented as a sum of three components (Figure 8):
a rectilinear current density (J1) and two closed current densities. The latter have the same
direction and are written in the form Js

1 = rotM1 and Js
2 = rotM2 (Figure 8), where closed

currents are the curls, which describe the rotation of a vector field enclosing charge M1 in a
bigger loop and M2 in a smaller loop. In this case, the electric currents in the newly formed
currents are continuous. Since the currents are relatively small, they will be ignored.

Figure 7. Graphical solution for the separation of electric current densities in Ω inclusions (in
bianisotropic media). Points 3, 4, 5, and 6 mark the cross sections of the capillaries, where the total
current density must be zero. Addition and subtraction are introduced intentionally for loop dividing.
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Figure 8. Representation of electric current densities in Ω inclusions (in bianisotropic media) as a
sum of three components: (a) upper part showing loop current density (Js

1); (b) central part showing
loop current density (Js

2); (c) lower part showing linear current density (JL).

The original Maxwell’s equations from Equation (3), where σ is the electric conductivity
of the capillarity and µ is the magnetic permeability of the media, can then be transformed
into the complex form with the imaginary unit i:

rotH = σE + iωD = J + J1 − J1 + J2 − J2 = J1 + Js
1 + Js

2,
= rotJ1 + rotM1 + rotM2
rotE = −iωµH.

(4)

The model is now supplemented with a capillarity system oriented along the Y axis
and not interacting with the original system (Figure 8) and a system of linear capillaries
oriented along the vertical Z axis under conductivity, at which the conductivity of the
rock will be the same in all directions. Ignoring the interaction between Ω inclusions, we
could apply coordinate averaging for electrical conductivity: σe = 1

1
∆X
∫
L

1
1

Sx
∫

Sx
σdydz

dx
(see

Appendix A). Therefore, the material equations (Equation (2)) averaged over the rock
volume in complex form are written as

J = iJx = iσeEx − iiωµαe Hy,
B = jµβeEx + µH,

(5)

where αe = nα; βe = nβσ∗ are some parameters of pore and capillarity tortuosity; n is a
quantity of inserts in a volume unit; i and j are capillarity units inside the volume; and x,
y, and z are spatial coordinates. Thus, the effective parameters ξ and ζ from Equation (2)
become complex ξ = iωµαe and ξ = µβe.

Accordingly, other spatial components are

Jx = σEx − iωµαHy; Bx = µHx − µβEy;
Jy = σEy + iωµαHx; By = µHy + µβEx;

Jz = σEz; Bz = µHz, because the model is horizontally layered.
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The material equations in general view then take the complex vector form

J =
_
σ E− iωµ

_
α H,

B = µ
_
βE +

_
µH,

(6)

where
_
σ =

σ 0 0
0 σ 0
0 0 σ

;
_
α =

 0 α 0
−α 0 0
0 0 0

;
_
β =

0 −β 0
β 0 0
0 0 0

;
_
µ =

µ 0 0
0 µ 0
0 0 µ

.

The bianisotropic effective parameters
_
α and

_
β are antisymmetric matrices, and their

structure depends on the orientation of the Ω inclusion relative to the straight, linear part of

the capillarity. For instance,
_
α and

_
β change signs (opposite signs) when the Ω inclusion is

rotated by 180◦ relative to the rectilinear segment (resulting in an L-shaped media). Other

orientations lead to different structures for matrices
_
α and

_
β . For example, a 90◦ rotation

gives rise to diagonal matrices known as Tellegen media [96].
In a constant electromagnetic field, the effects of bianisotropic media disappear in

an electric field but remain present in a magnetic field. One remarkable property of
bianisotropic media is the violation of the principle of reciprocity, which can be illustrated
in a simple manner (Figure 9).

Figure 9. Demonstration of violation of electromagnetic reciprocity transfer (ERT) for capillarity in
an Ω inclusion.

As a result, the electric current density becomes the sum of the conduction current
(from the linear part of the capillarity) and the induction of the magnetic field due to
the loop. When the electromagnetic field propagates from top to bottom (from the first
source), the electric current in the Ω inclusion is the sum of the electric current from the
linear part of the capillarity and the electric current density induced by the magnetic field’s
induction in the loop (Jx = σEx + aHy) (Figure 9). Conversely, when the electromagnetic
field propagates from bottom to top (from the second source), the electric current in the
Ω inclusion is the sum of the electric current density from the linear part of the capillarity
and another, which is induced by the magnetic field’s induction in the loop but with a
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negative sign (Jx = σEx − aHy). Therefore, the electric current density either increases or
decreases depending on the direction of electromagnetic field propagation. This effect can
be explained formally as follows:

If we consider the system of Maxwell’s equations (Equation (5)) in a homogeneous me-
dia with electromagnetic parameters, σ0 is media conductivity, µ0 is the media permeability,
and iωD is equal to 0:

rotH = σ0E,

rotE = −iωµ0H. (7)

If we represent magnetic field
~
H = f H and electric field

~
E = qE as multiplexing by

functions f and q, which will be defined below, then Maxwell’s equations for these vectors
of the electromagnetic field, taking into account (7), take the form

rot
~
H = rot f H = f rotH + grad f ×H = σ0 f q

q E + grad f
f × f H = σ0

f
q

~
E + grad f

f ×
~
H

rot
~
E = rotqE = qrotE + gradq× E = −iωµ0q f

f H + gradq
q × qE = −iωµ0

q
f

~
H + gradq

q ×
~
E

Considering f = ed and q = ec are exponential functions, where d and c are some
functions of spatial coordinates, we obtain [94]

rot
~
H = σ0ed−c

~
E + gradd×

~
H,

rot
~
E = −iωµ0ec−d

~
H + gradc×

~
E.

Particularly, assuming d = c = α23x + α13y + α12z = g, we obtain

gradg× =

 0 −α12 α13
α12 0 −α23
−α13 α23 0

 = α = β, (8)

from which we obtain the system of Maxwell’s equations for bianisotropic media:

rot
~
H = σ0

~
E + α

~
H,

rot
~
E = −iωµ0

~
H + β

~
E.

(9)

Thus, violation of the principle of reciprocity (ERT) in bianisotropic media leads
to exponential growth of the electromagnetic field in one direction and an exponential
decrease in the opposite direction (Equation (9) vs. Equation (6)). This property can be
utilized to study the tortuosity of the capillarity system of electric conductivity in rocks.

However, due to the challenges in solving forward and inverse problems for bian-
isotropic media, there is currently no scientifically justified technical solution for their
use in electromagnetic monitoring. Some progress has been made in modeling inversion
and interpretation of magnetotelluric responses, as shown in [97]. Additionally, there
are solutions for forward problems [98,99]. Section 3.2 presents geological object models
for bianisotropic media using EMA theory. It is worth noting that the development of
bianisotropic media EMA began in the 1920s, and contributions by V.R. Bursian [73] in the
Russian-speaking sector have been fundamental to the development of the fundamental
foundations of electrodynamics.

3. Results and Discussion
3.1. The Monitoring of Geodynamic Processes

The current tectonic regime of submeriodional transpression in the Tien Shan region
leads to changes in the integral macroscopic parameters of geological media, resulting in
variations and anomalies being observed in continuous measurements of electrophysical
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parameters such as apparent electrical resistivity. Successful monitoring examples, such
as the Kambarata experiment, demonstrate that certain azimuthal rotations make the
apparent electrical resistivity most sensitive to simultaneous seismic events. The developed
effective media approximation theory allows for mathematical definition of the effective
electrical conductivity tensor (σeff) for gradient anisotropic media by averaging the spatial
dependence of parameters over a small, physically finite volume.

Experimental data for the Tien Shan region demonstrate clear decreases and increases
in electrical resistivity values along orthogonal azimuths (Figures 2 and 3). Cleavage
microcracks, which can be parallel or perpendicular, are common in rock masses and
contribute to the observed anisotropy in changing physical parameters. The present study
identifies key points with complex relationships between variations in apparent electrical
resistivity and the stress–strain state of crustal parts in order to investigate geodynamic
processes in seismically active zones. Slow fluid redistribution between fracture and
pore systems during seismic event preparation is also reflected in variations in electric
conductivity, as shown in [29].

Effective parameters such as electric conductivity are useful for studying the impact
on geological media, and EMA theory allows for their manipulation. Apparent resistivity
and impedance phase values are employed to assess effective parameters, which are highly
sensitive to geological media. The choice of coordinate system affects the effective electric
conductivity, and switching to another system can result in gradient anisotropic media.

Appendix A provides general expressions for effective electric conductivity, while
the following subsection explores several models of rock deformation and their reflection
in macro anisotropic electrical parameters that are relevant for active electromagnetic
monitoring considering different kinds of monitoring system configurations.

3.2. The Geodynamic Model Examples

Homogenization, which represents the physical meaning of mean value averaging
operations, is valid for these selected media models. There are three models of bianisotropic
media: fracturing in the rock mass, quasi-plastic deformation of rocks, and rock failure
near the borehole. Partly, examples and descriptions of the propagation of an electromag-
netic field in anisotropic and bianisotropic two-dimensional horizontally inhomogeneous
layered media and radially inhomogeneous media were considered by the authors of [81].
Solutions for the forward problems of geoelectrics are mainly limited to special study
cases of bianisotropic media. For example, for a model of two-phase composite materials
with an anisotropic microstructure (non-randomly oriented non-spherical inclusions), a
clear correlation was established between two groups of anisotropic effective properties:
conductivity and elasticity. Here, we show three models: fracturing in the rock mass,
quasi-plastic deformation of rocks, and rock failure near the borehole. For the below model
calculation, please refer to the PhD thesis of P.N. Aleksandrov [17].

3.2.1. Model of Fracturing in the Rock Mass

As the analysis of the manifestation of geodynamic processes shows, they are ex-
pressed in the structural and textural rearrangement of the rock. We will consider these
transformations using the example of fracture formation in fractured carbonate reservoirs.
At first, vertical cracks appear in the initially layered rock model under the influence of
irreversible deformations. Such a model, corresponding to the model shown in Appendix A
(Equation (A2)), can be described by the following distribution of local electrical parameters:

σ = 10X(x)Y(y)Z(z),
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where

X(x) =


0.01, x = [0, 0.2]

10, x = [0.02, 0.02 + h]
0.01, x = [0.02 + h, 0.04 + h]

; Y(y) =



1, y = [0, 0.02]
0.15, y = [0.02, 0.04]
0.5, y = [0.04, 0.06]
2, y = [0.06, 0.061]

0.3, y = [0.061, 0.081]

; Z(z) =

{
1, z = [0, 0.2]

0.1, z = [0.2, 2.2]
.

The dependence of the effective tensor of resistivity on macroscale anisotropy is shown
in Figure 10.

The behavior of the graph of the anisotropy coefficient shows that the macro anisotropic
characteristics of the rock in terms of electric conductivity depend, and quite strongly, on
the presence, thickness, and electric conductivity of cracks. In this case, the macroscale
anisotropy coefficients change to

k11
22 =

√
ρ22

ρ11
= [1.26, 0.38]; k11

33 =

√
ρ33

ρ11
= [1.29, 0.38]; k22

33 =

√
ρ33

ρ22
= [1.01, 1.01]

when the crack opening degree (h) changes from 0 to 3.2·10−4 m.

Figure 10. Model of a fractured carbonate reservoir (general volume view, Ω-shaped capillarity and

idealized bianisotropic media with Ω inclusions). Below: calculated model. Legend: --•--k11
22 =

√
ρ22
ρ11

;

• • • k22
33 =

√
ρ33
ρ22

are the coefficients of macroscale anisotropy.

This change is sufficient and permits us to assert that the resistivity macroscale
anisotropy tensor is an informative parameter sensitive to modern geodynamic processes.
Additionally, we conclude that it is necessary to monitor all elements of the macroscale
anisotropy tensor because, as follows from the above calculations, the anisotropy coeffi-
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cient k22
33 varies slightly depending on the crack opening degree. Thus, all the elements of

the macroscale anisotropy tensor are specific objects of research in active electromagnetic
monitoring. The following model confirms this fact.

3.2.2. Model of the Quasi-Plastic Deformation of Rocks

The model shown in Figure 11 characterizes irreversible geodynamic processes in the
layer pack as a result of quasi-plastic movement of the rock mass. It assumes that the geo-
electric boundaries do not change in the layer unit. The layers themselves undergo changes
in terms of the formation of micro-dislocations in the form of cleavage (see [100,101]) in
each layer.

Figure 11. Model of the quasi-plastic deformation of horizontally layered rocks with cleavage.
(a) 1–9—random types of fractured anisotropic media with cleavage. Lines form tilted rock types
with various directions of fractures. (b) Below surface cross section of layered rocks with cleavage,
an example of the type of geologic formation for monoclinic layers is shown with undersurface
perpendicular cut lines (effective parameters of electrical conductivity σ̂1, σ̂2, σ̂3), with the upper part

showing calculated coefficients of macroscale anisotropy: ••• k12
11 =

√
ρ12
ρ11

; ---k22
11 =

√
ρ22
ρ11

.

In a Cartesian coordinate system, a two-dimensional model is analogous to strata
interlayering. Each layer, with a thickness of hi, is characterized by the anisotropy tensor of
electric conductivity,

σi =

(
σi

11 0
0 σi

22

)
,

with constant elements of this tensor. The macroscale anisotropy tensor of effective electric
conductivity will then have the form

σe f f =

(
σ11 0
0 σ22

)
,

where for n layers

σ11 =
1

n
∑

i=1
hi

n

∑
i=1

σi
11hi; σ22 =

1

1
n
∑

i=1
hi

n
∑

i=1

hi
σi

22

.
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The anisotropy coefficient is equal to

k11
22 =

√
σ11

σ22
=

√√√√√ 1
n
∑

i=1
hi

n

∑
i=1

σi
11hi

1
n
∑

i=1
hi

n

∑
i=1

hi

σi
22

.

Let us consider one important case observed experimentally that does not yet have a
theoretical explanation. In some cases, during field and laboratory studies of geological
objects, it is noted that the anisotropy coefficient is

k11
22 =

√
ρ22

ρ11
=

√
σ11

σ22
,

where ρ11 is the resistivity of the layered media along the strata and ρ22 is the resistivity of
the layered media across the strata, which may be less than 1.

To explain this fact, let us consider a two-dimensional model of a three-layer media,
each layer of which has the following mesoanisotropy of electric conductivity: the first
layer with electric conductivity and thickness, and the second with a thickness and electric
conductivity tensor:

σ2 =

(
σ11 0
0 σ22

)
,

where the third layer is isotropic with electric conductivity σ3 and thickness h3.
The macroscale anisotropy tensor of the effective electric conductivity then takes the

form

σe f f =

(
σ1h1+σ11h2+σ3h3

h1+h2+h3
0

0 h1+h2+h3
h1ρ1+h2ρ22+h3ρ3

)

where ρ1 = 1
σ1

, ρ22 = 1
σ22

, and ρ3 = 1
σ3

.
For h1 = h2 = h3 and σ1 = σ3 = 1/ρ = σ, the anisotropy coefficient k11

22 takes the form

k11
22 =

√
5 + 2(σρ22 + σ11ρ)

9
.

Hence, it follows that the macroscale anisotropy coefficient k11
22 is greater than 1 at

σρ22 + σ11ρ > 2 and less than 1 at σρ22 + σ11ρ < 2.
Thus, the presence of an anisotropic layer in a stack of layers can lead to an anisotropy

coefficient of less than 1.
Let us next consider the case of interlayering of anisotropic strata. Each layer of

this model is characterized by the electrical conductivities σi
11, σi

22 (in the case of electric
conductivity tensor reduction to a diagonal form), and αi by the rotation angle of the
anisotropy tensor relative to the selected coordinate system:

σi =

(
σi

11 cos2 αi + σi
22 sin2 αi (σi

22 − σi
11) cos αi sin αi

(σi
22 − σi

11) cos αi sin αi σi
11 sin2 αi + σi

22 cos2 αi

)
.

Each layer has a thickness of hi. The described model is consistent with model
(Appendix A, Equation (A9)).

We will next consider the dependence of the effective tensor of resistivity’s macroscale
anisotropy on changes in the anisotropic characteristics of the intermediate layer. For this
purpose, calculations were carried out for a three-layer model with the following parame-
ters:

σ1 = 0.1, h1 = 0.01,
σ2

11 = 0.1, σ2
22 = 0.2, α2 = [0.2π], h2 = 0.01,

σ3
11 = 0.1, h3 = 0.01.
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In this model, the angle of rotation of the anisotropy tensor of the second layer was
changed from 0 to 2π. Graphs of changes in the coefficients of macroscale anisotropy,
k12

11 =
√

ρ12
ρ11

and k22
11 =

√
ρ22
ρ11

depending on the angle, are shown in Figure 11. From
the behavior of these graphs, we observe that the diagonal elements of the macroscale
anisotropy tensor change slightly depending on the angle rotation, while the off-diagonal
elements change very significantly. The absolute value of the off-diagonal elements is
changed to the measurable value.

A similar approach to calculating the effective parameters is valid in any other orthogo-
nal coordinate system where the coordinate planes coincide with the planes of discontinuity
in the electromagnetic parameters. In other words, when the representation in a certain
coordinate system is valid, the description of the microstructure takes the form of a product
of isolated functions of coordinates in a given coordinate system. As an example, consider
a cylindrical coordinate system, which is important for studying the dynamics of physico-
electric parameters associated with the destruction of rocks near production boreholes.

Thus, in the examples considered for a Cartesian coordinate system and for a cylin-
drical one the macro anisotropic electrical parameters became gradient anisotropic media
when passing from one coordinate system to another.

Obtaining such information is associated with some methodological difficulties. The
known technique of azimuthal resistivity sounding (ARS) is aimed at measuring the appar-
ent anisotropy in direct current methods. However, there are no grounds to unambiguously
recognize this setup as the only possible option for measuring the anisotropy of the elec-
tric conductivity of the media, since other installations also carry information about the
anisotropy of the media.

3.2.3. Model of Rock Failure near the Borehole

The borehole model (Figure 12) reflects irreversible geodynamic processes near wells.
It mainly characterizes tensile deformations, due to which radial and azimuthal fracture
cracks are formed. The development of fracturing and the accompanying process of filling
the fractures with fluid will be accompanied by a change in the resistivity of the near-well
space. As a result, the macroscopic geoelectric characteristics of the rock near the well
become azimuthally anisotropic.

To determine the effective electric conductivity of the rock near the well, we use
the cylindrical coordinate system with new coordinates, namely ρ, φ, and z, where ρ is
the radial coordinate, φ the azimuthal coordinate, and z the vertical coordinate. As the
homogenization volume, we select a segment bounded by an ∆φ angle, ∆ρ radius, and
∆z thickness.

We consider the model of the media to be uniform along the Z axis. The inclusions
have sizes of ∆ρ1, ∆φ1, and ∆z1 and electric conductivity of σ1, while the size of the pore
space is ∆ρ0 with electric conductivity of σ0(Figure 12).

In the general case, the electric conductivity in the entire homogenization volume
cannot be represented as a product of isolated functions of coordinates. However, in
each separate layer, bounded in Figure 12 by the dotted line, electric conductivity has the
following appearance. Therefore, we first average the electric conductivity in each layer
over the spatial coordinates.
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Figure 12. The model of rock destruction near the borehole of the rock corresponds to the fractured-
capillarity type of pore space (bianisotropic media). A simplified view of a borehole area is shown
with a zoomed-in permeable formation depicting the invasion zone of the well. Right: A cut piece of
a round clock specimen of layered rocks. σ0 and σ1 are electric conductivities of pore and inclusion
spaces. The size of the pore space is ∆ρ0, ∆ϕ0, and ∆z0. The inclusions have sizes of ∆ρ1, ∆ϕ1, and
∆z1. The dimensions of the rock media are ∆ρ = ∆ρ0 + ∆ρ1, ∆ϕ = ∆ϕ0 + ∆ϕ1. The media is uniform
along the vertical axis Z.

At ρ ∈ ∆ρ1,

σe f f =


σ1

∆ϕ1
∆ϕ + σ0

∆ϕ0
∆ϕ 0 0

0 1
1

σ1

∆ϕ1
∆ϕ + 1

σ0
∆ϕ0
∆ϕ

0

0 0 σ1
∆ϕ1
∆ϕ + σ0

∆ϕ0
∆ϕ

,

where ∆φ = ∆φ1 + ∆φ0; if ρ ∈ ∆ρ0, σe f f = σ0.
With this operation, the transition to the (radially) layered anisotropic model (1.6) is

carried out. Passing this to the entire homogenization volume, i.e., averaging (radially)
layered anisotropic media, we finally obtain

σe f f =

σ11 0 0
0 σ22 0
0 0 σ33

, (10)

where ∆ρ = ∆ρ1 + ∆ρ0;

σ11 = 1
∆ρ1
∆ρ

1

σ1
∆φ1
∆φ

+σ0
∆φ0
∆φ

+
∆ρ0
∆ρ

1
σ0

;

σ22 = ∆ρ1
∆ρ

1
1

σ1

∆φ1
∆φ + 1

σ0
∆φ0
∆φ

+ ∆ρ0
∆ρ σ0;

σ33 = ∆ρ1
∆ρ (σ1

∆φ1
∆φ + σ0

∆φ0
∆φ ) + ∆ρ0

∆ρ σ0.
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The anisotropy coefficients of the effective electric conductivity are

k22
11 =

√
σ22
σ11

=
√
(∆ρ1

∆ρ
1

(σ1
∆ϕ1
∆ϕ +σ0

∆ϕ0
∆ϕ )

+ ∆ρ0
∆ρ

1
σ0
)(∆ρ1

∆ρ
1

1
σ1

∆ϕ1
∆ϕ + 1

σ0
∆ϕ0
∆ϕ

+ ∆ρ0
∆ρ σ0);

k33
11 =

√
σ33
σ11

=
√
(∆ρ1

∆ρ (σ1
∆ϕ1
∆ϕ + σ0

∆ϕ0
∆ϕ ) + ∆ρ0

∆ρ σ0)(
∆ρ1
∆ρ

1
1

σ1

∆ϕ1
∆ϕ + 1

σ0
∆ϕ0
∆ϕ

+ ∆ρ0
∆ρ σ0).

(1)

Thus, as a result of the destruction of the rock space near the well, the initially
isotropic and homogeneous geoelectric media with electric conductivity is transformed into
a uniformly anisotropic one with an electric conductivity tensor of 1.14. The macroscale
anisotropy tensor of the obtained azimuthal anisotropic model characterizes the irreversible
deformations of rock near the workings of the mine.

As a numerical example, let

∆φ0 = 2, ∆φ1 = 1, ∆φ = 3,
∆ρ0 = 0.08, ∆ρ1 = 0.04, ∆ρ = 0.12,
σ0 = 0.01, σ1 = 0.1.

The numerical values of the macroscale anisotropy tensor will then be equal to

σ11 = 0.0125;
σ22 = 0.012; k22

11
∼= 1;

σ33 = 0.027; k33
11 = 1.4.

Thus, with the destruction of the rock near the well, the macroscale anisotropy tensor of
electric conductivity changes significantly. In this case, the anisotropy coefficient increases
by a significant (measurable) value, namely a factor of 1.4.

3.3. Discussion: Reasons for Variability in Macro Anisotropic Parameters

The hypothesis of fluid redistribution between fracture systems of different orienta-
tions [21,38,102,103] is accepted as a working hypothesis to explain variations in apparent
resistivity associated with changes in the stress–strain state of geological objects. The
closure or opening of fluid-filled end-to-end pore networks (cracks) leads to changes in the
electromagnetic characteristics of the media, anomalous values in geophysical fields, and
the appearance of rock with anisotropic properties [104].

The study of macroscale anisotropy provides a universal tool for assessing the stress–
strain state of rocks at an inter-scale view considering their structural, textural, and physical
properties. At the microscale level, models of telluric currents are described using Lorentz
equations [66], which are then converted to Maxwell’s equations at the macroscale. The
approximation of rocks as layered bianisotropic media allows for the convenient study of
macroscale parameters and transformation from one coordinate system to another. When
we cross from the standard Cartesian coordinate system to any other system, the transition
remains equivalent to considering gradient anisotropic media. In this case, the relationship
between cross properties under EMA with effective parameters and geodynamic processes
is considered.

Electromagnetic monitoring enables the observation and analysis of time-dependent
variations in the physicoelectric parameters of rocks. This allows for the consideration of
these parameters as functions of time, leading to the transition from 3D problems, where
only spatial coordinates are considered, to 4D problems, where the fourth dimension is
time. The gains of the fourth dimension are temporal changes and, consequently, frequency
dependence [46,63]. This approach is essential for studying modern geodynamic processes,
as the preparation of endogenous processes occurs over geological epochs. In the context
of 4D problems, the observation and processing systems are considered stationary, and the
results of studying physicoelectric macro-parameters are directly related to the dynamics of
the observation system over time. The variability in measured physicoelectric parameters,
such as apparent resistivity, is influenced by external sources outside the measurement
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system. Therefore, solving 4D problems requires the development of methodological foun-
dations for geophysical monitoring and improvements to the systems used for processing
multiparametric data.

In the case of an arbitrary dependence in electric conductivity, which is different from
the product of isolated functions of spatial coordinates in the chosen coordinate system,
transitioning to another coordinate system does not allow us to obtain an electric conduc-
tivity tensor that is independent of spatial coordinates. However, it is possible to transition
from a micro-inhomogeneous media to a uniformly anisotropic one if the boundaries of
media contact coincide with the coordinate axis planes. The requirement that the planes
of electric conductivity’s discontinuity align with the coordinate planes is fundamental
because it is not possible to transition from a micro-inhomogeneous model of rock structure
to a homogeneous anisotropic model when switching to another coordinate system.

The transition becomes more challenging for frequency-dependent parameters since it
requires that the dependence of the dispersive media be expressed as a product of complex
functions of a single coordinate. This idea encounters an unresolved problem at the moment.
However, for one-dimensional models, it is possible to obtain effective electromagnetic
parameters known as the Maxwell–Wagner effect [77,105].

The calculations performed in this study demonstrate that structural and textural
rearrangement of rocks leads to changes in the structure of all elements of the resistivity
macroscale anisotropy tensor. Therefore, an electromagnetic monitoring system should aim
to track all elements of the macroscale anisotropy tensor of electric conductivity. Choosing
an observation system for electromagnetic monitoring involves analyzing various systems
to determine the most sensitive and informative approach for all elements of the macroscale
anisotropy tensor of electric conductivity. This necessitates solving forward and inverse
problems in inhomogeneous anisotropic media. Our findings validate the concept that
continuous electromagnetic monitoring can aid in identifying natural disasters such as
earthquakes based on variations in integral macroscopic parameters.

4. Conclusions

Monitoring of geodynamic processes through geophysical methods remains crucial in
the context of natural and man-made disasters. The novel cross properties in bianisotropic
media (fracturing rock) employing effective media approximation (EMA) through the
estimation of effective parameters are presented in this paper. The consideration of effective
electrical conductivity as an important parameter in bianisotropic media provides a modern
approach to interpreting experimental measurements and is a novel way of addressing
inverse problems related to geophysics. Further investigations and case studies are needed
to deepen understanding in this area.

Regarding the above considerations, results, and discussion, we conclude that the
following:

1. Variations in the structural and textural characteristics of rocks and their relation
to physicoelectric properties reflect irreversible geodynamic processes. This can be
verified in time with non-destructive monitoring such as magnetotelluric sounding.

2. Transitioning to another coordinate system is equivalent to considering a gradient
anisotropic media and simplifies derivation of effective media parameters.

3. The Maxwell homogenization technique enables the transition from local physico-
electric parameters of the media to macro-parameters. Establishing a relationship
between macro- and micro-parameters of electric conductivity enables mathemat-
ical modeling of various geodynamic processes (such as cracking) and changes in
local electric conductivity, which help in understanding how macroscopic resistivity
changes under the influence of rock deformations.

4. The simulation results show the following:

(a) The macroscale anisotropy tensor of electric conductivity depends signifi-
cantly on the rock structure and is a sensitive parameter to changes in local
physicoelectric characteristics.
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(b) During electromagnetic monitoring, it is essential to study and monitor changes
in all elements of the macroscale anisotropy tensor, as they provide valuable
information about modern geodynamic processes.

(c) The electromagnetic monitoring system for changes in the macroscale anisotropy
tensor of electric conductivity should cover a volume of research that cor-
responds to the extent of modern geodynamic processes. This requirement
should be considered when designing appropriate monitoring systems.
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Appendix A. Solution for the Calculation of Effective Electromagnetic Parameters

In order to study the assessment of the sensitivity of anisotropic parameters of the me-
dia to the dynamics of geological processes during geophysical monitoring, we investigate
the problem of obtaining effective electromagnetic parameters of a rock based on the mean
value theorem [106]. A detailed explanation with a proof demonstration can be found in a
PhD thesis [17].

According to this theorem, if the functions f (x) and g(x) are integrable at the [a, b]
segment while g(x) ≥ 0 or g(x) ≤ 0, and if f (x) is continuous, then the number ζ in the

interval [a, b] a < ζ < b exists, and
b∫
a

f (x)g(x)dx = f (ζ)
b∫
a

g(x)dx.

This allows us to go to mean values:

1
b− a

b∫
a

f (x)g(x)dx = f (ζ)
1

b− a

b∫
a

g(x)dx = f (ζ)g̃.

We subsequently introduce the homogenization (averaging) operator:

< • >ξ=
1

∆ξ

∆ξ∫
0

•dξ,

where ξ represents any of the x, y, or z spatial coordinates in a Cartesian coordinate system.
Let us carry out the averaging of Ohm’s law written in differential form:

J = σE. (A1)
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Connecting the current density of conductivity J and the electric intensity E through
the electric conductivity σ is given as a product of isolated functions of spatial coordinates:

σ = X(x)Y(y)Z(z). (A2)

In this case, the possible interfaces between the media will coincide with the coordinate
planes. Taking this circumstance and the mean value theorem into account, we will average
the x-th component of the constituent equation (Equation (A1)) in projection onto this axis.
To do this, we find the average density of the electric current flowing in the direction of the
X axis:

1
∆y∆z

∆y∫
0

∆z∫
0

Jxdydz =
1

∆y∆z

∆y∫
0

∆z∫
0

σExdydz =
1

∆y∆z

∆y∫
0

∆z∫
0

σdydz˜̃Ex, (A3)

where ˜̃Ex = Ex(x, λ2, λ3), λ2 ∈ [0, ∆y], λ3 ∈ [0, ∆z].
For averaging over the x coordinate, we rewrite (A3) in the following form:

1

1
∆y∆z

∆y∫
0

∆z∫
0

σdydz

<< Jx >y>z=
˜̃Ex.

Averaging the last equation over x, we obtain:

1
∆x

∆x∫
0

dx

1
∆y∆z

∆y∫
0

∆z∫
0

σdydz

<< J̃x >y>z=
1

∆x

∆x∫
0

Ex(x, λ2, λ3)dx =< ˜̃Ex >x,

where << Jx >y>z=<< Jx(λ1, y, z) >y>z, λ1 ∈ [0, ∆x], or

<< J̃x >y>z=
< Y >y< Z >z

< 1
X >x

< ˜̃Ex >x .

Making similar transformations for the remaining components of the constituent
equation (Equation (A1)), we obtain the anisotropy tensor of effective electric conductivity
σeff:

σe f f =


〈Y〉y〈Z〉z
〈 1

X 〉x
0 0

0 〈X〉x〈Z〉z
〈 1

Y 〉y
0

0 0
〈X〉x〈Y〉y
〈 1

Z 〉z

 (A4)

We will characterize this type of anisotropy with the auxiliary term mesoanisotropy.
Obviously, in a real situation, the volume of natural homogenization due to the huge
volumes of the studied media, large linear dimensions of sources, and receivers of the
electromagnetic field can be much larger than the homogenization volume used to obtain
mesoscale anisotropy. Indeed, it is possible to observe the strata interlayering in geological
rocks, which individually have a clear-cut anisotropic characteristic. Macroscale anisotropy
will characterize such a pack of layers as a single unit, where each layer has its own
mesoanisotropy of electric conductivity. The mathematical model of such a geologic pack
can be represented, in general form, by the diagonal tensor of electric conductivity of the
second rank:

σ =

σ11 0 0
0 σ22 0
0 0 σ33

, (A5)
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where each diagonal element of the symmetric electric conductivity tensor depends on the
coordinates in the form

σii = Xii(x)Yii(y)Zii(z), i = (1, 3). (A6)

In this case, the interfaces of the anisotropic layers will be parallel to the coordinate
planes.

This model of the local electric conductivity of rocks, which generalizes case (A2), char-
acterizes the strata interlayering with different anisotropic electrical parameters. Moreover,
each layer has different electric conductivity along and across the strata.

After averaging the constitutive equation (Equation (A1)) with the local electric con-
ductivity given in the form (A6), we obtain

σe f f =



〈Y11〉y〈Z11〉z〈
1

X11

〉
x

0 0

0 〈X22〉x〈Z〉22z〈
1

Y22

〉
y

0

0 0
〈X33〉x〈Y33〉y〈

1
Z33

〉
z

. (A7)

The next model of local electric conductivity for which the use of the mean value theo-
rem is valid, and the model of greatest interest, is the model where the electric conductivity
tensor is given in the form

σ =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

, (A8)

where each element of the conductivity anisotropy tensor depends only on one spatial
coordinate, such as

σii = Xii(x), i = (1, 3). (A9)

This model can be interpreted as a layered anisotropic model of the geological media.
The ideology of the Maxwell homogenization method in this case could be expressed

as the following representation. We need to go from the general form of relationship
between the electric current density (J) and the electric intensity (E), using homogenization
over one of the x, y, z coordinates, to the representation where the discontinuous J and E
components of the vectors depend on the continuous J and E components:

Jx = σ11Ex + σ12Ey + σ13Ez,
Jy = σ21Ex + σ22Ey + σ23Ez,
Jz = σ31Ex + σ32Ey + σ33Ez.

(A10)

In this case, the mean value theorem can be applied. Alternatively, we transform the
system of Equation (A10) to such a form when it is possible to satisfy the conditions of
the mean value theorem. Since each element of the electric conductivity tensor (1.8) only
depends on one spatial coordinate (x), it is sufficient to only average over this coordinate.
For this, we rewrite this equation system (1.10) in the following form:

Ex = 1
σ11

Jx +
σ12
σ11

Ey +
σ13
σ11

Ez,
Jy = σ21

σ11
Jx +

σ11σ22−σ12σ21
σ11

Ey +
σ11σ23−σ13σ21

σ11
Ez,

Jz =
σ31
σ11

Jx +
σ11σ32−σ31σ12

σ11
Ey +

σ11σ33−σ13σ31
σ11

Ez.
(A11)
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After one-axis mean value theorem application over the coordinate x (A11) equations
and transforming them to the form (1.10), we obtain

J̃x = σ11 < Ex >x +σ12Ẽy + σ13Ẽz,
< Jy >x= σ21 < Ex >x +σ22Ẽy + σ23Ẽz,
< Jz >x= σ31 < Ex >x +σ32Ẽy + σ33Ẽz,

(A12)

where

σ11 = 1
< 1

X11
>x

; σ12 =
<

X12
X11

>x

< 1
X11

>x
; σ13 =

<
X13
X11

>x

< 1
X11

>x
;

σ21 =
<

X21
X11

>x

< 1
X11

>x
; σ22 =

<
X21
X11

>x<
X12
X11

>x

< 1
X11

>x
+ < X22 >x − < X21X12

X11
>x;

σ23 =
<

X21
X11

>x<
X13
X11

>x

< 1
X11

>x
+ < X23 >x − < X21X13

X11
>x; σ31 =

<
X31
X11

>x

< 1
X11

>x
;

σ32 =
<

X31
X11

>x<
X12
X11

>x

< 1
X11

>x
+ < X32 >x − < X31X12

X11
>x;

σ33 =

〈
X31
X11

〉
x

〈
X13
X11

〉
x〈

1
X33

〉
x

+ 〈X33〉y −
〈

X31X13
X11

〉
x
.

As a result, we finally obtain the macroscale anisotropy tensor of electric conductivity:

σe f f =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

. (A13)

Thus, we obtain the effective electric conductivity tensor for a gradient anisotropic
medium, which is related to the spatial coordinates in the presented form in Equation (A9).

Comment. Obviously, the volume of the mean homogenization value is associated
with the geometric divergence of the electromagnetic field: the closer the front of the
electromagnetic wave is to the plane, the more accurate the result of homogenization is.
It is difficult to provide any precise quantitative estimate of the homogenization volume.
V.R. Bursian showed [73] that if the electric current density J and the electric intensity E in
each homogeneous element of the Maxwell homogenization volume are constant vectors,
and if the continuous components of these vectors vary weakly within the Maxwell ho-
mogenization volume, then the homogenization method (physical meaning of mean value
averaging) provides practically exact dependences of the effective parameters from the
local physicoelectric characteristics of rocks. Macroscale anisotropy of electric conductivity
is associated with the observation system and the scale of the study of geological media,
which contrasts with true anisotropy that is associated with the structure of the crystal
lattice substance. It is known that electromagnetic microscale fields obey the Lorentz equa-
tions [66]. There are dielectric vacuum permittivity and vacuum magnetic permeability
and there is no electric conductivity. The latter appears as a result of space–time mean
value averaging, and transformation to Maxwell’s equations for macroscale fields is thus
carried out. Consequently, relative electric conductivity and relative dielectric and magnetic
permeabilities appear. Obviously, the scale of geophysical research is associated with the
observation system. Hence, we conclude that the effective electromagnetic parameters
present the effect of the observation system. It is necessary to consider inhomogeneous
media with one observation system in relation to another in order to ascertain the macro
anisotropic parameters of the geoelectric media.
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