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Abstract: FPN (Feature Pyramid Network) and transformer-based target detectors are commonly
employed in target detection tasks. However, these approaches suffer from design flaws that restrict
their performance. To overcome these limitations, we proposed TIG-DETR (Texturized Instance
Guidance DETR), a novel target detection model. TIG-DETR comprises a backbone network, TE-FPN
(Texture-Enhanced FPN), and an enhanced DETR detector. TE-FPN addresses the issue of texture
information loss in FPN by utilizing a bottom-up architecture, Lightweight Feature-wise Attention,
and Feature-wise Attention. These components effectively compensate for texture information
loss, mitigate the confounding effect of cross-scale fusion, and enhance the final output features.
Additionally, we introduced the Instance Based Advanced Guidance Module in the DETR-based
detector to tackle the weak detection of larger objects caused by the limitations of window interactions
in Shifted Window-based Self-Attention. By incorporating TE-FPN instead of FPN in Faster RCNN
and employing ResNet-50 as the backbone network, we observed an improvement of 1.9 AP in
average accuracy. By introducing the Instance-Based Advanced Guidance Module, the average
accuracy of the DETR-based target detector has been improved by 0.4 AP. TIG-DETR achieves an
impressive average accuracy of 44.1% with ResNet-50 as the backbone network.

Keywords: object detection; DETR; FPN; transformer; attention mechanism

1. Introduction

With the rapid development in the field of deep learning, significant progress has
been made in target detection techniques. Many advanced detectors based on CNN and
Transformer [1,2] have driven the steady development of the field. Among them, FPN [3],
as a simple and effective method, improves detector performance by passing semantic
information and implementing a hierarchy of CNN features. In recent years, the Trans-
former technique has gradually gained attention and has been applied to many target-based
detection methods [4–8]. Compared with traditional CNN-based detectors [9,10], these
Transformer-based detectors have achieved remarkable results. However, FPN structures
and Transformer-based detectors still have design flaws that affect model performance, as
described below:

Loss of texture information in FPNs. The classical FPN network significantly im-
proves the performance of the detection network through the learning of multi-scale
features. Subsequent studies [11–15] have used a similar structure. Several studies have
shown that low-level features are helpful for identifying larger targets, and the rich texture
information contained in low-level features aids in target localization and accurate bound-
ing box generation. However, features obtained from the backbone network inevitably lose
a large amount of texture information during the downsampling process, which may affect
the detection network’s ability to accurately acquire location information.
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Confounding effect of cross-level feature fusion. When performing cross-layer fea-
ture fusion, the up-sampled feature maps are superimposed with the original feature maps,
leading to feature discontinuities and confusion in the fused features, referred to as the
blending effect of features [3]. The severity of the blending effect increases as more feature
maps are superimposed.

The limitation of interaction between windows in Shifted Window based Self-
Attention. The global attention mechanism in Transformer-based detection networks
introduces a significant computational burden [16]. Although Shifted Window-based Self-
Attention reduces the computational complexity, interactions between windows are limited
to neighboring windows, potentially weakening the model’s perception of larger objects.

To address these issues, we proposed TIG-DETR(Texturized Instance Guidance DETR),
which includes a backbone network, a novel FPN (Texture-Enhanced FPN), and a detection
module based on DETR. TIG-DETR aims to mitigate the aforementioned flaws and improve
model performance.

Our contributions:

1. We introduced a novel approach to address the issue of missing texture information in
FPN by constructing a new bottom-up path that utilizes the low-level feature map in
the backbone. Unlike the traditional downsampling process in the backbone network,
our method aims to preserve textural information as much as possible by constructing
a new bottom-up path. By fusing this texture-rich feature map with the features at the
same level as the top-down path in FPN, we obtained a new feature map that contains
both rich semantic and texture information. Although previous studies [12,17,18]
have utilized bottom-up paths, their convolution-based downsampling still results
in significant texture information loss. In contrast, our method effectively retains the
texture information in the feature map.

2. We proposed a new attention module called ’Feature-wise Attention’ to mitigate
the confounding effects caused by cross-level feature fusion in FPN. This attention
module was designed to be lightweight and was applied to augment the final features
of the TE-FPN output. By incorporating this attention mechanism, we enhanced the
discriminative power of the features.

3. We introduced the Instance-Based Advanced Guidance Module to overcome the limi-
tations of interactions between windows in Shifted Window-based Self-Attention [16].
This module enhances the model’s perception of large object instances by allowing the
model to perceive the instances in the image before finer self-attention and enabling
information interaction between each window prior to window attention movement.
This approach significantly improves the model’s ability to capture and understand
large object instances.

Overall, our proposed methods contribute to the improvement of texture preservation,
feature fusion, and perception ability in the context of model.

In summary, TIG-DETR aims to overcome the design flaws in FPN and Transformer-
based detectors by addressing the loss of textural information in FPN, mitigating the
blending effect of cross-layer feature fusion, and improving the interaction capability of
windows in Shifted Window-based Self-Attention. Ultimately, these improvements enhance
the performance of the target detection model.

2. Related Work

FPN. Before the introduction of FPN, various approaches for feature processing existed,
including featurized image pyramids, single feature maps, and pyramidal feature hierarchy.
SSD [19] utilized pyramidal feature hierarchy, specifically focusing on hierarchical feature
prediction goals, to enable different level features to learn the same semantic information.
FPN [3] proposes a method for fusing features of different resolutions by element-wise
addition of the feature map from each resolution with the up-sampled low-resolution
feature map. This enhancement improves the features at different levels and subsequent
models have built upon the FPN foundation. PANet [12] introduced a bottom-up path
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enhancement to shorten the information path by utilizing the precise localization signal
stored in low-level features, thereby improving the performance of the feature pyramid
architecture. EfficientDet [9] borrowed the TopDown-BottomUp concept from PANet and
incorporated residual structures in each block to reduce optimization difficulties. Further-
more, the authors recognized that features from different layers possess varying semantic
information. Directly summing these features can lead to sub-optimal problems. To ad-
dress this, the authors introduced a learnable parameter in front of each layer of features to
automatically determine their weights. Aug-FPN [13] proposes Soft ROI Selection, which
involves pooling ROI features from different levels and fusing them to enhance the per-
formance of the feature pyramid architecture. To mitigate the loss of textural information
in high-level feature maps, Aug-FPN incorporates a residual enhancement branch specif-
ically designed to enhance the texture information of these high-level feature maps. In
CE-FPN [14], sub-pixel enhancement and attention-guided modules were employed in FPN
to fully leverage the rich channel information of each level feature map, while minimizing
the loss of channel information during the downscaling process.

Target detector. Traditional image target detection can be categorized into two main
types: two-stage detectors, with Faster R-CNN [20] being the most representative example,
and one-stage detectors such as YOLO [21], YOLO9000 [22], and YOLOV3 [23]. R-CNN [24]
demonstrated for the first time the significant improvement in target detection performance
by using CNN on the PASCAL VOC dataset [25] compared to HOG-like feature-based
systems. Fast R-CNN [26], proposed subsequently, overcomes the time-consuming aspect
of R-CNN’s SVMs [27] classification by employing ConvNet forward propagation for each
region without redundant computation. Fast R-CNN [28] extracts features from the entire
input image and passes them through the ROI pooling layer to obtain fixed-size features for
subsequent classification and bounding box regression in the fully connected layer. Instead
of extracting features for each region separately, Fast R-CNN extracts features once from
the entire image, reducing both the processing time and the storage space required for a
large number of features. Fast R-CNN [26] adopts selective search to propose RoIs but this
approach is slower and has the same running time as the detection network. In contrast,
Faster R-CNN [20] introduces a new RPN (region proposal network) that is composed
entirely of convolutional networks and efficiently predicts region proposals. The RPN
shares the same set of common convolutional layers with the detection network, and
the fully convolutional Mask R-CNN [28] optimizes the model by integrating low-level
and high-level features to enhance the classification task. YOLO [21] pioneered one-stage
target detection, and subsequent one-stage detectors have built upon its improvements.
Generally, two-stage detectors achieve higher localization and target detection accuracy,
while one-stage detectors offer faster inference speed. However, both types of detectors
are influenced by post-processing steps such as compressing redundant prediction results,
anchor frame design, and heuristics for assigning target frames to anchor frames [29]. In
contrast, DETR [5] achieves an end-to-end target detector by directly predicting without
relying on intermediate methods.

Transformer. Transformer was initially introduced as a Seq2Seq [30] model de-
signed for machine translation. Subsequent studies have demonstrated that a pre-trained
Transformer-based model (PTM) [31] can achieve state-of-the-art performance on various
tasks. Consequently, the Transformer has emerged as the preferred architecture for NLP
tasks. Besides the NLP domain, the Transformer has gained significant adoption in areas
such as computer vision, audio processing, etc. [32]. The Non-local Network [33] was the
first to employ the self-attentive mechanism in the field of computer vision, achieving suc-
cessful target detection. Several frameworks have been proposed in recent years [18,34,35]
to enhance the Transformer and optimize it from various perspectives. Visual transform-
ers [36] incorporate the Transformer into a CNN, enhancing the CNN network by allo-
cating semantic information of the input image to different channels and closely corre-
lating them through encoder blocks (referred to as VT blocks). VT blocks are employed
as an alternative to partial convolution to improve the semantic modeling capacity of
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CNN networks. SWIN-T [18] introduced Shifted Window based Self-Attention, signifi-
cantly reducing the computational complexity of the transformer when processing images.
Funnel Transformer [37] employs a funnel-like encoder architecture that incorporates
pooling along the sequence dimension to progressively decrease the length of the hidden
sequence and then employs upsampling for reconstruction, effectively reducing FLOP
and memory consumption. When employing the transformer in the computer vision (CV)
domain, the feature space resolution is constrained, and the network encounters challenges
in convergence during training. To address these issues, Zhu et al. [4] introduced De-
formable DETR, which accelerates model convergence by directing the attention module to
concentrate on a subset of key sampling points surrounding the reference.

Attention mechanism. Attention plays a crucial role in human perception of external
information, as humans selectively concentrate on the most salient parts when processing
information in a scene to enhance the capture of relevant information [38]. RAM [39] inte-
grates deep neural networks with an attention mechanism, enabling end-to-end updating
of the entire network by iteratively predicting significant regions. This marks the first
implementation of an attention mechanism in CNN networks. Numerous subsequent
works have adopted comparable attention strategies. STN [40] predicts the spatial trans-
formation by incorporating a sub-network that identifies significant regions in the input.
SE-Net [41] introduces a compact module that enhances inter-channel relationships by
utilizing global average pooling to compute attention across channels. GSoP-Net [42]
addresses the limitation of using global average pooling alone in SENet for collecting
contextual information, which restricts the modeling capacity of the attention mechanism.
To overcome this, GSoP-Net proposes the global second-order pooling (GSoP) block to cap-
ture higher-order statistics while incorporating global contextual information. CBAM [43]
incorporates global maximum pooling in addition to global average pooling, boosting
the attention mechanism’s response to maximum gradient feedback. Furthermore, the
combination of spatial attention and channel attention demonstrates superior performance
compared to channel attention alone. Adding spatial attention to channel attention verifies
that using both is better than using channel attention alone. In our Feature-wise Attention,
we introduced soft pooling [44] as novel contextual information to provide distinct gra-
dient feedback for individual features. This approach assigns different attention weights
to different features, thereby enhancing the preservation of textural information in the
image instances.

3. Materials and Methods

As shown in Figure 1, we propose Texturized Instance Guidance DETR (TIG-DETR)
architecture comprises a backbone, an FPN network, and a DETR-based detector. In order
to enhance the model’s localization capability, we introduced a bottom-up path in the
FPN that retains the texture information of the feature maps and combine it with the
pyramidal features produced in the top-down path of the FPN. This fusion results in a
feature map that contains both abundant semantic and texture information. The SRS (Soft
RoI Selection) module was employed to integrate the features produced at each level of
the feature pyramid, and Feature-wise Attention was utilized to enhance the features of
the resulting output feature map. Within the DETR-based detection model, we employed
local self-attention to improve the recognition performance of small object instances and
facilitate faster model convergence. Additionally, we introduced a module to address the
limitations of local attention in perceiving large object instances, thereby enhancing the
model’s capability to detect small object instances without compromising its performance
in detecting large object instances.



Appl. Sci. 2023, 13, 8037 5 of 16

Figure 1. TIG-DETR comprises a backbone network, a new pyramidal structure known as Texture-
Enhanced FPN (TE-FPN), and an enhanced DETR detector.

3.1. TE-FPN

The top-down propagation of robust semantic information by FPN enhances the
model’s ability to accurately classify features at all levels of the pyramid. The accurate
localization of instances in the model relies on their high response to instance parts or edges,
whereas the bottom-up path approach effectively propagates robust texture information,
thereby enhancing the model’s ability to localize features at all levels of the feature pyramid.
In this paper, we proposed a new pyramid structure Texture-Enhanced FPN (TE-FPN),
which contains a bottom-up path leading from the low level of the backbone network, so
that the fused feature map has both strong semantic and textural information. Additionally,
we introduced a novel channel attention mechanism to the Soft RoI Selection process,
aiming to further enhance the fused features.

Enhancing textural information with a bottom-up architecture. FPN acquires fea-
tures from the backbone and a large amount of texture information is inevitably lost when
the backbone is downsampled, a situation that may affect the accuracy of the detection
network in obtaining information about the location of instances in the image. To address
this limitation, we incorporated an ‘enhancing textural information with a bottom-up
architecture’ (ETA) into FPN, aiming to enhance the texture information in the feature map
at each level. Following the definition of FPN [3], feature layers of the same size were gen-
erated in each network phase, and different feature layers correspond to different phases of
the network. As shown in Figure 2, the Resnet-50 [45] serves as the backbone network and
{P2, P3, P4, P5} represent the feature layers generated by the FPN. {C2, C3, C4, C5} repre-
sent the feature layers at different stages in the backbone network and {D2, D3, D4, D5}
represent the feature layers of {C2, C3, C4, C5} after dimensionality reduction using convo-
lution. From C2 to C5, P2 to P5, and D2 to D5 spatial sizes were gradually downsampled
with a downsampling factor of 2. {N2, N3, N4, N5} represent the feature maps newly
generated by the bottom-up path, corresponding to {C2, C3, C4, C5}.

Specifically, the first step was to reduce N2 to C2 using convolution with a channel
dimension of 256. This channel dimension aligns with the feature map in FPN and en-
ables effective fusion between the two feature maps. Subsequently, the downsampled
feature map was further downsampled with sampling coefficients of 2, 4, and 8 to generate
{N3, N4, N5}, preserving more texture information compared to conventional convolu-
tional downsampling. The process is described as follows:

Ni = pool2i−2(N2), (1)

where poolγ denotes the downsampling of the sampling factor of γ.
Finally, depicted in Figure 3a, we up-sampled Pi using a sampling factor of 2 and

merged the up-sampled feature map with Ni+1and Di+1, which have the same size, to
generate Pi+1. Notably, P5 was obtained by merging only D5 and N5. The resulting
fused feature map contains a combination of rich semantic and textural information. To
mitigate the confounding effect after feature fusion, we employed a Lightweight Feature-
wise Attention (LFA) module, as shown in Figure 3b. In this module, we implemented a
lightweight attention mechanism using FC layers instead of the more complex shared MLP
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layers and combined the output feature vectors through element-wise summation with a
sigmoid function. The process can be summarized as follows:

LFA(F) = σ( f c1(Avgpool(x)) + f c2(Maxpool(x)),

+ f c3(So f tpool(x)))
(2)

where LFA denotes the lightweight channel attention function, σ denotes the sigmoid
function, Avgpool, Maxpool, So f tpool denotes the global average pooling, global maximum
pooling, and global soft pooling. Respectively, Lightweight Feature-wise Attention was
used to mitigate the confounding effect after feature fusion, rather than enhancing the
features themselves.

Figure 2. Overall structure diagram of TE-FPN. The proposed approach introduces an architecture
called enhancing textural information with a bottom-up architecture (ETA), which allows the input
of low-level features to each level of the feature hierarchy. The lightweight Feature-wise Attention
(LFA) was employed to extract channel weights using the channel attention module, which were then
used to generate the final integrated features. The Feature-wise Attention (FWA) leverages multiple
contextual information to acquire channel weights and enhance the features of the final output feature
map. (a) Schematic diagram illustrating the architecture of enhancing textural information with
a bottom-up approach. (b) Schematic diagram illustrating the enhanced features using Feature-
wise Attention.

Figure 3. (a) The schematic diagram illustrates our proposed bottom-up architecture for the feature
fusion module, enhancing texture information. (b) The diagram illustrates the schematic of the
Lightweight Feature-wise Attention.
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Feature-wise Attention. During the target detection task, the detector heavily relies on
the edge and textural information of the instances in the image to accurately delineate the
instances. However, the multi-scale feature fusion can introduce a blending effect, leading
to discontinuity in the fused feature map features. This can result in the detector acquiring
incorrect edge and texture information of the instances, ultimately affecting the accuracy of
instance localization and detection tasks. To mitigate the influence of the blending effect on
the model, we introduced a novel attention module called ‘Feature-wise Attention’ in its
lightweight version, specifically designed to address the impact of the blending effect on
model performance. In this work, we replaced the ROI module with the SRS for feature
fusion across different scales in the feature pyramid. Additionally, we incorporated the
standard Feature-wise Attention to enhance the features in the final output.

The Feature-wise Attention (FWA) is illustrated in Figure 4. In this mechanism, we first
utilized global average pooling, global soft pooling, and global maximum pooling to obtain
three different spatial contexts. These contexts captured various aspects of the feature map.
Next, each context was processed through an MLP layer with shared parameters. Finally,
the resulting feature vectors were combined using element-wise summation followed
by a sigmoid function. The channel attention in FWA focused on identifying significant
features within the graph. Global average pooling provides feedback for every pixel point
on the feature map, while global maximum pooling focuses on gradients by considering
only the areas with the highest response. On the other hand, soft pooling [44] produces
diverse gradient feedback for different pixel points during gradient backpropagation.
Global average pooling tends to capture overall image features, global maximum pooling
emphasizes instance edge information, and global soft pooling captures the overall texture
information of the instance. By incorporating the global soft pooling contextual information
and assigning higher weights to each pixel point of the instance, we enhanced the texture
information of the instance in the image. The Feature-wise Attention mechanism can be
summarized as follows:

FWA(F) = σ(mlp(Avgpool(x)) + mlp(Maxpool(x)),

+ mlp(So f tpool(x)))
(3)

where FWA denotes the attention mechanism and σ denotes the sigmoid function. By
adding FWA, the textural information of the instances in the image is enhanced to obtain
better localization.

Figure 4. Schematic representation of Feature-wise Attention.

3.2. Instance Based Advanced Guidance Module

The Transformer used in our TIG-DETR detector follows the structure of Shifted
Window-based Self-Attention in SWIN-T. It replaces the multi-headed self-attentive module
in DETR with W-MSA and SW-MSA in an alternating manner. The main goal was to reduce
the computational complexity of the Transformer part in DETR, enhance the detection
performance of small object instances, and speed up the model convergence. However,
the limitation of interaction between windows in Shifted Window-based Self-Attention
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affects the detection performance of large object instances. To address this, we introduced a
new module called Instance-Based Advanced Guidance Module (IAM) before the encoder.
This module allows the model to perceive the instances in the image before performing
local self-attention, compensating for the degraded detection performance of large object
instances caused by the window interaction limitation.

Specifically, as shown in Figure 5, the images from different stages in the backbone
underwent a scale-invariant downsampling process to achieve a consistent channel dimen-
sion. They were then resized to the final output size. Afterwards, they were fused with the
output image at multiple scales, enabling the fused feature map to combine information
from different scales and enhance the texture information of the image. After undergoing
an LFA, the fused feature map, originally of size w× h× C, was divided into M2 patches.
In Figure 5, we used M = 2 as an example. These patches were fused together through
concatenation, resulting in a patch of size (h/M)× (w/M)× CM2. The different colors
within the fused patches represent the channel information of the patches at different loca-
tions. Each pixel within the fused patch contains positional information from the patches at
different locations, allowing the model to extract global features, contextual relationships,
and better perceive objects of varying sizes. The fused patch was then passed through
the multi-headed self-attentive module and the output patch was used to reconstruct the
original feature map. We believe that this method is advantageous for improving Shifted
Window-based Self-Attention, as it enables the feature map to capture instances before
window attention. Despite a slight increase in computational complexity compared to
Shifted Window-based Self-Attention, we have successfully implemented this approach.
The details are as follows:

Ω(MSA) = 4hwC2 + 2(hw)2C (4)

Ω(W −MSA) = 4hwC2 + 2N2hwC (5)

Ω(IAM) = 4hwC2M2 + 2(h/M)2(w/M)2C. (6)

Figure 5. Schematic diagram of Instance-Based Advanced Guidance Module.

In the equation, N represents the edge length of the shifted window. It is observed
that the computational complexity of the global MSA increases quadratically with hw.
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When N remains constant, the computational complexity of W-MSA becomes linear. In
our IAM, with M fixed, the computational complexity of 2(h/M)2(w/M)2C in this part is
much smaller than 2(hw)2C. However, 4hwC2M2 for 4hwC2 is only a linear increase, much
smaller than the difference between the computation of 2(h/M)2(w/M)2C and 2(hw)2C.
Consequently, the computational complexity of IAM is still significantly lower compared
to the global MSA.

By performing the mentioned operations, we enhanced the textural information of the
image and establish associations among individual pixel points within the image prior to
applying movable window attention to the entire image. This allows the model to perceive
instances in the image before the finer self-attention operation, thereby improving its ability
to detect large object instances. A feedforward network (FFN) was employed after the
IAM module.

We presented the generalized Instance-Based Advanced Guidance Module, which
can be applied to various backbone networks without the need for FPNs. In the case of
a backbone with FPNs, we utilized FPNs to replace the multiscale fusion component of
the model.

4. Results

We conducted target detection experiments using TIG-DETR on the COCO. We com-
pared TIG-DETR and its individual components with other techniques. Additionally, we
conducted instance segmentation comparison experiments between TE-FPN and other
techniques on the Cityscapes.

4.1. COCO and Evaluation Metrics

We compared our techniques with others on the challenging COCO [46], which com-
prises over 1.5 million instances, including 80 target classes such as pedestrians, cars,
elephants, etc., and 91 material classes such as grass, walls, and sky. Each image is ac-
companied by five descriptive sentences and contains 250,000 pedestrians with key point
annotations. For our experiments, we used 115,000 images from the train2017 subset for
training, 5000 images for validation (val2017), and 20,000 images for the test-dev set (labels
for test-dev are not publicly released). We trained our model on the train2017 subset and
evaluated its performance on the val2017 set for the ablation study, as well as on the test-dev
set for final evaluation. All reported results adhere to the average accuracy (AP) metrics of
COCO. AP represents the average accuracy by considering IoU thresholds ranging from 0.5
to 1.0 with a step size of 0.05. AP50 represents the average accuracy at an IoU threshold of
0.5, and AP75 represents the average accuracy at an IoU threshold of 0.75, which is a more
stringent criterion. APS measures the average precision for detecting small targets with a
pixel area less than 322. APM measures the average precision for detecting medium targets
with a pixel area between 322 and 962. APL measures the average precision for detecting
large targets with a pixel area greater than 962.

4.2. Implementation Details

By default, we trained the TIG-DETR model using the AdamW [47] optimizer on
8 GPUs for 50 epochs. The initial learning rate was set to 2× 10−4 and, after the 40th epoch,
the learning rate was reduced by a factor of 0.1. For the TE-FPN model, we trained it on
8 GPUs for 15 epochs. During training, we extracted 16 images from one image to generate
training samples. The initial learning rate was set to 0.02 and it was reduced by a factor of
0.1 after the 10th and 14th epochs, respectively.

4.3. Main Results

We evaluated TIG-DETR and its components on the COCO test development set and
compared them with advanced two-stage detectors. The final results are presented in
Table 1. We compared TIG-DETR with DETR and, when using only ResNet-50 as the
backbone without FPN, our model achieved an AP score that was only 0.6 lower than DETR.
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TIG-DETR, which utilizes a local attention mechanism, significantly improves the model’s
convergence speed, which is only one-tenth of DETR. By introducing IAM to alleviate the
limitations of local attention in detecting large object instances, the model’s accuracy in
detecting large objects decreases slightly and, after adding TE-FPN, the AP reaches 45.9.
This demonstrates that IAM has a significant impact on improving the performance of local
attention in detecting large object instances. We further adjusted IAM by removing the
multiscale fusion and incorporating TE-FPN, resulting in a final AP of 44.1 for TIG-DETR. We
also applied IAM to other DETR detectors based on the local self-attention mechanism [4],
as shown in Table 1, demonstrating its effectiveness across different models. Notably,
IAM shows remarkable improvements in detecting large object instances, highlighting its
robustness and versatility. Visualization results are presented in Figure 6.

Table 1. Comparison with baseline and state-of-the-art COCO test development methods.

Method Backbone Schedule AP AP50 AP75 APS APM APL

Faster R-CNN ∗ ResNet-50-FPN ×1 36.4 58.1 39.1 21.3 40.5 44.6
Faster R-CNN ∗ ResNet-101-FPN ×1 38.6 60 42.1 22.2 42.5 47.1
Faster R-CNN ∗ ResNet-101-FPN ×2 39.4 61.1 43.2 22.6 42.7 50.1
Faster R-CNN ∗ ResNext-101-32x4d-FPN ×1 40.3 62.6 43.6 24.5 42.9 49.9
Faster R-CNN ∗ ResNext-101-64x4d-FPN ×1 41.7 64.9 44.4 24.7 45.8 51.3
Mask R-CNN ∗ ResNet-50-FPN ×1 37.1 58.9 40.3 22.3 40.5 45.5
Mask R-CNN ∗ ResNet-101-FPN ×1 39.1 61.2 42.2 22.8 42.3 49.2
Mask R-CNN ∗ ResNet-101-FPN ×2 40 61.8 43.7 22.7 43.4 52.1

RetinaNet ∗ ResNet-50-FPN ×1 35.8 55.7 38.7 19.4 39.7 44.9
RetinaNet ∗ MobileNet-v2-FPN ×1 32.9 52.1 34.9 17.9 34.8 42.6

DETR ResNet-50 ×1 42 62.4 44.2 20.5 45.8 61.1
Deformable DETR ResNet-50 ×1 43.8 62.6 47.7 26.4 47.1 58

Deformable DETR+IAM ResNet-50 ×1 44.3 62.9 48.3 26.3 47.6 60.3

Faster R-CNN * (ours) ResNet-50-TE-FPN ×1 38.4 61 41.9 23.1 41.7 47.5
Faster R-CNN (ours) ResNet-101-TE-FPN ×1 40.2 62.6 43.6 23.5 43.5 50.9
Faster R-CNN (ours) ResNet-101-TE-FPN ×2 41.1 63.4 44.3 23.6 44.1 52.7
Faster R-CNN (ours) ResNext-101-32x4d-TE-FPN ×1 41.5 63.8 45.1 24.8 45.1 52.3
Faster R-CNN (ours) ResNext-101-64x4d-TE-FPN ×1 42.7 65.4 46 25.9 45.9 53.5
Mask R-CNN (ours) ResNet-50-TE-FPN ×1 38.9 61.1 42.4 23.2 42.2 49
Mask R-CNN (ours) ResNet-101-TE-FPN ×1 40.4 63 44.2 23.7 43.3 51.4
Mask R-CNN (ours) ResNet-101-TE-FPN ×2 41.5 63.6 45.7 24.1 44.2 53.2

RetinaNet (ours) ResNet-50-TE-FPN ×1 36.9 57.9 39.6 20.8 40.1 46.4
RetinaNet (ours) MobileNet-v2-TE-FPN ×1 33.9 53.7 35.8 18.5 35.7 43.9

TIG-DETR ResNet-50 ×1 43.1 62.1 46.2 24.7 46.8 60.5
TIG-DETR ResNet-50-TE-FPN ×1 44.1 62.8 48.4 25.6 47.9 62.4

* We compared our TIG-DERE and TE-FPN with some advanced target detection networks and FPN networks in
the COCO dataset for our experiments. The symbol ‘∗’ means our re-implemented results throughdetection. The
bolded part of the font indicates the largest indicator in the comparison experiment.

Figure 6. TIG-DETR vs. DETR. red bounding box shows the detection result of DETR, while blue
bounding box shows the detection result of TIG-DETR.
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By replacing FPN with TE-FPN, we achieved an AP of 38.4 for Faster R-CNN using
ResNet-50 as the backbone, which is 2.0 points higher than Faster R-CNN based on ResNet-
50-FPN. Moreover, TE-FPN also performs well with more powerful backbone networks. For
instance, when using ResNext-101-32x4d, our approach improves the AP by an additional
1.2 points. Table 1 demonstrates the varying degrees of performance improvement achieved
by TE-FPN across different backbones, detectors, and tasks, highlighting its robustness and
generalization capability. Visualization results are presented in Figure 7.

Figure 7. TE-FPN vs FPN. red bounding box shows the detection result of FPN, while blue bounding
box shows the detection result of TE-FPN.

4.4. Ablation Study

In this section, we conducted ablation experiments to analyze the impact of each
component in our proposed TIG-DETR and TE-FPN modules.

4.4.1. TIG-DETR

To analyze the significance of each component in TIG-DETR, we systematically incor-
porated TE-FPN and IAM into the model to assess the influence of each component on the
model’s performance. The results of all the experiments are presented in Table 2.

Table 2. TIG-DETR ablation experiments on COCO.

IAM S-IAM TE-FPN AP AP50 AP75 APS APM APL

40.3 60.5 42.9 22.2 44.5 57.4√
43.1 62.1 46.2 24.7 46.8 60.5√
40.7 60.6 44.1 22.1 44.4 59.1√
43.7 62.4 47.6 26.7 47.6 60.7√ √
44.1 62.8 48.4 26.6 47.9 62.4

IAM denotes Instance-Based Advanced Guidance Module, S-IAM denotes Instance-Based Advanced Guidance
Module after removal of multiscale fusion, TE-FPN denotes Texture-Enhanced FPN. The bolded part of the font
indicates the largest indicator in the comparison experiment.

According to Table 2, the inclusion of the Instance-Based Advanced Guidance Module
enhances the model’s accuracy by 2.8 APs. Additionally, the introduction of multiscale
fusion leads to improved detection performance for instances of various sizes, particularly
for large object instances with a notable improvement of 3.1 APs.

The inclusion of the Instance-Based Advanced Guidance Module, which excludes
multiscale fusion, solely enhances the detection performance of large object instances by
1.7 APs. The overall improvement for the model is 0.4 APs.
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The introduction of Texture-Enhanced FPN results in a remarkable improvement of
3.4 APs in the model, highlighting the substantial performance enhancement brought by
Texture-Enhanced FPN to TIG-DETR.

4.4.2. TE-FPN

In order to analyze the significance of each component in TE-FPN, we incrementally
incorporated the bottom-up path, LFA, and FWA into the model to evaluate the effectiveness
of each component. The results also demonstrate the synergistic effect of combining
different components, highlighting their complementary nature. The baseline model for
this ablation study was a Faster R-CNN with Resnet-50 as the backbone. The detailed
results are presented in Table 3.

Table 3. TE-FPN ablation experiments on COCO.

SRS ETA LFA SRS+FWA AP AP50 AP75 APS APM APL

36.2 56.1 38.6 20.0 39.6 47.5√
36.8 59.1 39.8 20.7 40.2 48.3√
37.0 56.7 39.9 20.8 40.3 48.1√
36.8 56.5 39.3 20.6 40.2 48.0√
37.5 57.4 40.1 21.5 40.7 49.0

√ √
37.5 57.5 40.2 21.4 41.0 49.4√ √
37.6 58.0 40.1 21.5 41.3 49.6√ √
37.8 57.9 40.4 21.6 41.2 49.8√ √ √
38.2 58.8 40.9 21.9 42.3 50.4

We used Resnet-50+FPN+Faster-R-CNN as our baseline method and gradually added enhancing texture infor-
mation with a bottom-up architecture (ETA), Lightweight Feature-wise Attention (LFA), Feature-wise Attention
(FWA). SRS is an abbreviation for the Soft RoI Selection method mentioned in the paper. The bolded part of the
font indicates the largest indicator in the comparison experiment.

According to Table 3, the incorporation of bottom-up paths into TE-FPN improves the
baseline approach by 0.8 AP. This demonstrates the significant impact of enhancing texture
information in the feature map on enhancing model performance.

By incorporating LFA into the baseline method, the AP improves from 36.2 to 36.8.
This indicates that the lightweight Feature-wise Attention has a significant impact on
reducing the confounding effect caused by cross-scale feature fusion.

By replacing the ROI of the baseline method with SRS, the AP improves by 0.7.
Furthermore, the addition of FWA to the model results in an additional improvement of
0.6 AP. This highlights the significant enhancement effect of FWA on the features.

4.5. Cityscapes

We conducted additional experiments on TE-FPN using the Cityscapes [48] to assess its
effectiveness in performing instance segmentation tasks. The Cityscapes dataset consists of
street scenes captured by in-vehicle cameras, containing numerous overlapping and blurred
instances. We utilized 2.9K images for training, 0.5K images for validation, and 1.5K images
with fine annotations for testing. Additionally, 20K images with coarse annotations were
included but excluded from training. We present the results on the validation and secret
test subsets, evaluating the model performance based on AP and AP50 metrics.

The instance segmentation task focused on eight object classes: person, rider, car,
truck, bus, train, motorcycle, and bicycle. We trained the model using eight GPUs, with
eight images randomly sampled from each training image. The initial learning rate was set
to 0.01 and it was reduced to 0.001 after 18K iterations. The test performance results are
presented in Table 4.

We utilized Mask R-CNN with ResNet-50 as the baseline model and replaced the FPN
with TE-FPN. By pre-training our TE-FPN model on COCO, we achieved a performance im-
provement of 2.7 APs over Mask R-CNN for “fine-only” data. As shown in Table 4, TE-FPN
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consistently demonstrates notable results for the instance segmentation task, highlighting
the model’s strong generalization capability and its effectiveness across different tasks.

Table 4. The effectiveness of TE-FPN on Cityscapes.

Method AP [val] AP AP50 Person Rider Car Truck Bus Train Motorcycle Bicycle

Mask R-CNN [fine-only] 31.5 26.2 49.9 30.5 23.7 46.9 22.8 32.2 18.6 19.1 16.0
Mask R-CNN [COCO] 36.4 32.0 58.1 34.8 27.0 49.1 30.1 40.9 30.9 24.1 18.7

TE-FPN [fine-only] 34.2 29.5 54.8 34.0 27.8 52.7 25.6 35.2 23.0 21.1 19.1
TE-FPN [COCO] 39.6 34.9 61.2 39.1 31.1 54.3 31.5 43.9 31.1 26.2 22.4

Results on Cityscapes val subset, denoted as AP [val], and on Cityscapes test subset, denoted as AP. The bolded
part of the font indicates the largest indicator in the comparison experiment. The bolded part of the font indicates
the largest indicator in the comparison experiment.

4.6. Discusses

We conducted measurements of the training and testing time for TIG-DETR and its
component TE-FPN. Specifically, we compared our model with the baseline model using
ResNet50 as the backbone on the same batch size COCO. In the comparison of TE-FPN, the
training time for Faster RCNN with TE-FPN was approximately 1.05 h, while the training
time for Fast RCNN with ResNet50 FPN was around 0.93 h. Regarding the inference time,
TE-FPN achieved a speed of approximately 11.7 frames/s for images of the same pixel
size, whereas FPN achieved a speed of around 13.1 frames/s. As for TIG-DETR as a whole,
the training time for the DETR detector with Shifted Window-based Self-Attention was
close to 26 h and the inference speed was approximately 3.2 frames/s. After adding our
proposed Instance-Based Advanced Guidance Module, the training time increased to about
28 h and the inference speed decreased to around 3.1 frames/s. However, this resulted
in an improvement of 1.6 AP in the detection accuracy of large targets without affecting
the detection of targets at other scales. In summary, our proposed TIG-DETR achieved a
significantly better performance with a slight increase in training and inference time and
the overall accuracy of the final model reached 44.1%.

5. Conclusions

In this paper, we analyzed the problems of FPNs and DETR-based detectors and
found the problems of missing textural information in feature maps, severe confounding
effects caused by cross-scale fusion in FPNs, problems of DETR detectors with Shifted
Window-based Self-Attention due to the interaction between windows, and the problem
of the weakened perception of larger objects by the model due to the limited interaction
between windows. Based on these findings, we proposed a new target detection model,
TIG-DETR, to further improve the performance of the model. By integrating three sim-
ple and effective components, namely enhancing textural information with a bottom-up
architecture, Feature-wise Attention, and Instance-Based Advanced Guidance Module,
TIG-DETR can significantly improve the baseline approach.
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Abbreviations
The following abbreviations are used in this manuscript:

TE-FPN Texture-Enhanced FPN
TIG-DETR Texturized Instance Guidance DETR
FPN Three Feature pyramid network
SRS Soft RoI Selection
ETA Enhancing texture information with a bottom-up architecture
LFA Lightweight Feature-wise Attention
FWA Feature-wise Attention
IAM Instance Based Advanced Guidance Module
S-IAM Instance Based Advanced Guidance Module after removal of multiscale fusion
W-MSA Window based Self-Attention
SW-MSA Shift Window based Self-Attention
FFN Feed Forward Networks
MLP Multilayer Perceptron
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