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Abstract: In order to improve the speech enhancement ability of FullSubNet model, an improved
method FullSubNet-pMix is proposed. Specifically, pMix module is added to the structure of full-
band frequency domain information processing, which realizes the information interaction between
amplitude spectrum and phase spectrum. At the same time, the hyperparameters used in training
are optimized so that the full-band and sub-band structure of the system can play a better role.
Experiments are carried out on selected test sets. The experimental results show that the proposed
method can independently improve the speech enhancement effect of the model, and the effect on
the four evaluation indicators of WB-PESQ, NB-PESQ, STOI, and SI-SDR is better than the original
model. Therefore, the FullSubNet-pMix method proposed in this paper can effectively enhance the
ability of the model to extract and use voice information. The impact of different loss functions on
the training performance was also verified.

Keywords: speech enhancement; signature processing; phase information; information exchange;
hyperparameter optimization

1. Introduction

In people’s daily lives, speech signals are easily contaminated by external factors,
such as background noise and reverberation. The purpose of speech enhancement is to
attenuate noise and reverberation from noisy speech and to preserve clean speech. In recent
years, deep learning-based speech enhancement has achieved significant progress. This
method can be broadly categorized into two approaches: time domain method and time-
frequency domain method. The former method directly processes the speech waveform in the
time domain [1–3], while the latter method employs short-time Fourier transform (STFT) to
convert the time-domain speech into a frequency spectrum represented in the time-frequency
domain and processes the spectrum as input features [4–6]. The latter approach can enhance
the noisy speech by predicting masks (e.g., IBM [7], IRM [8], CRM [9], and PSM [10]) required
for speech enhancement. These masks come in different types and serve various purposes.

FullSubNet is a time-frequency domain-based speech enhancement model [11] that
takes the magnitude spectrum of the noisy speech as input features. Through a deep
learning structure consisting of two parts, full-band and sub-band, it generates a mask to
achieve speech enhancement. The model has achieved good results, but there are points for
improvement in the approach it uses. Firstly, the original model does not utilize the phase
spectrum of the noisy speech, which can result in deviations in the phase of the enhanced
output compared to clean speech. Additionally, during the sub-band division, the width of
each sub-band also affects the model’s performance. Choosing an appropriate sub-band
width hyperparameter allows the model to better capture the local frequency characteristics
of speech. The Lookahead hyperparameter influences the model’s consideration of future
information. Selecting suitable values for these two hyperparameters will allow the model’s
capabilities to be more fully utilized. The proposed method in this paper addresses these
two aspects and improves upon the original model.
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2. Related Works

This paper presents an optimization of the original FullSubNet model and proposes the
FullSubNet-pMix method. This method utilizes both the magnitude spectrum and the phase
spectrum of the speech, allowing the information from these two spectra to interact with
each other. The extracted information after interaction better reflects the characteristics of
the noisy speech. Furthermore, hyperparameter optimization was performed on the model.
The width of the sub-band frequency range was adjusted to achieve a more reasonable
division of frequency bands. Additionally, the value of the Lookahead hyperparameter
was changed to enable the model to consider future information more appropriately.
Experimental results demonstrate that the proposed model outperforms the original model
in terms of speech enhancement on the same training and test sets. Through ablation
experiments, it was found that the respective improvements independently contribute to
the enhancement of the model’s speech enhancement performance.

To achieve the capabilities described in the speech enhancement model, two key points
need to be addressed: firstly, to obtain more valuable information during the pre-processing
of speech before training; secondly, to effectively and fully utilize the acquired information
during the model training process.

In speech enhancement, the valuable information primarily includes the magnitude
spectrum, phase spectrum, real spectrum, and imaginary spectrum of the speech. The
real spectrum and imaginary spectrum contain both magnitude and phase information.
In recent years, various approaches have been proposed to better utilize the extracted
information. The PACDNN model [12] enhances both the magnitude spectrum and phase
spectrum simultaneously. The CycleGan model [13] applies 2D convolutional processing to
the magnitude spectrum and phase spectrum of the speech. One model [14] leverages the
real spectrum and imaginary spectrum of the audio and utilizes encoder layers to reduce
information loss during the training process. Another model [15] for speech enhancement
directly utilizes deep complex-valued networks on the STFT representation, incorporating
the phase information of the input speech. Some models [16,17] takes the real and imagi-
nary spectrum of the speech signal as input, which contain the phase information of the
signal. The FullSubNet+ model [18] takes the magnitude spectrum, real spectrogram, and
imaginary spectrogram of the speech signal as input, where the latter two spectrograms
contain the phase information of the signal.

3. The Proposed Method Architecture

The objective of this paper is to enhance noisy speech in the short-time Fourier trans-
form (STFT) domain and attenuate background noise and reverberation to obtain clean
speech. To accomplish this task, a model architecture named FullSubNet-pMix is proposed,
as shown in Figure 1. This method utilizes the magnitude spectrum and phase spectrum of
the speech in the frequency domain. It consists of three main components: an information
interaction module, a full-band module, and a sub-band module. The sub-band module
takes the information from the full-band module as part of its input.
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Figure 1. Structure of FullSubNet-pMix. The pMix block implements the interaction of magnitude and
phase information. The unfold block partitions the magnitude spectrum into sub-bands. The full-band
block obtains the features of the full-band. The concatenate operation concatenates the sub-bands’
features with the full-band’s features. The sub-band block obtains the features of all sub-bands.
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The model takes the magnitude spectrum Xm(F×T) and the phase spectrum Xp(F×T) as
input, where F represents the temporal length of the speech and T represents the number
of frequencies obtained after performing STFT on the speech.

After the magnitude spectrum and phase spectrum are input into the model, the
pMix module is first utilized to extract the temporal correlation of the phase spectrum and
facilitate information interaction between the magnitude and phase spectra. The output of
this module, denoted as Xmp, is then fed into the subsequent full-band module to extract
features and obtain the full-band feature Fmp, which contains both the phase spectrum and
magnitude spectrum information.

By contrast, the initial input magnitude spectrum is divided into multiple sub-band
units Fsub, using the unfold module, where each unit corresponds to a specific frequency
range. The full-band spectrum feature Fmp and the sub-band units Fsub are concatenated to
form the complete sub-band information. This information is then fed into the sub-band
module to extract information and generate the predicted target CIRM using deep learning.
The following sections provide a detailed description of these modules.

The structure of the PMix module is illustrated in Figure 2. This unit takes the
magnitude spectrum and phase spectrum as inputs and pads them with zeros, where the
number of zeros is determined by the Lookahead value. PMix consists of four consecutive
Magphase units. In each Magphase unit, a single 2D convolutional layer is used to process
the input phase spectrum feature, followed by the information interaction between the
phase and magnitude spectra. The corresponding formula is as follows:

XP0
0 = XP (1)

XPi
1 = convPi (XPi

0 )(i = 0, 1, 2) (2)

XPi
2 = fm2p

(
XPi

1 , Xmi
)

(3)

XPi+1
0 = XPi

2 (i = 0, 1, 2) (4)

where convPi represents the output features of the i-th phase spectrum passed through the
convolutional layer in Magphase. XPi

0 and XPi
1 represent the input and output information,

respectively. The convolutional layer utilizes a kernel of size 15× 1, aiming to capture
the temporal correlation of the phase spectrum within a certain time range. There is no
normalization layer or activation function following this convolutional layer.
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Figure 2. Structure of pMix. The term ‘lookahead’ refers to zero-padding applied after the input
features. The structure inside the dashed box is called the Magphase unit, and four connected
Magphase units form the pMix block.

The addition of phase features in the input helps improve the training results of speech
enhancement, and the interaction between phase and magnitude features also contributes
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to the prediction of the target result [19]. In the final part of the Magphase unit, there is a
module that facilitates the interaction of information between the magnitude and phase.
The calculation formula for the elements input into this module is as follows:

Xmi
2 = fp2m

(
Xm, XPi

1

)
(5)

XPi
2 = fm2p

(
XPi

1 , Xmi
)

(6)

where fp2m represents the transfer of phase spectrum information to the magnitude spec-
trum, and fm2p represents the transfer of magnitude spectrum information to the phase
spectrum. The formula for this function is as follows:

fi(x1, x2) = x1·Tanh(conv(x2)) (7)

where · denotes element-wise multiplication between two matrices, and conv represents a
1× 1 convolution. The effect of the Tanh function is to restrict the range of the output of the
convolutional layer to [–1, 1], thereby introducing non-linear activation on the output of the
convolutional layer and enhancing the network’s expression capability. The convolutional
layer performs spatial feature extraction on input data, capturing local patterns and spatial
hierarchies, allowing the model to learn important features of the phase spectrum and
magnitude spectrum.

The magnitude spectrum contains the amplitude information of the signal, while
the phase spectrum contains the phase information. By using the Magphase module to
combine these two spectra, the model can simultaneously consider both amplitude and
phase features. Therefore, using the combination of magnitude and phase spectra can
provide a more comprehensive feature representation, thereby enhancing the capability of
the model.

To enable the model to learn features of both magnitude and phase in the full-band,
there is a full-band module. The structure of this module, as shown in Figure 3, primarily
consists of a LSTM layer with 512 hidden units. It is designed to extract the full-band
information Xmp obtained from the output of the pMix module and output the full-band
feature Fmp, which includes both magnitude and phase information.
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The unfold module’s specific function is to divide the full-band into sub-bands. For
each frequency f in the noisy speech spectrum, it takes the corresponding frequency vector
→
X f

1 along the time axis. With this vector as the center, it selects n frequency vectors from
both sides, resulting in a total width of 2× n. For the frequency axes on the upper and
lower sides of the spectrum where the surrounding frequencies are less than n, the missing
side’s frequency axis vector is mapped to the missing part of the vector. This process
generates sub-bands centered around the corresponding frequency axes. Combining all the
sub-bands together forms the Fsub unit. The number of sub-bands in this unit is the same as
the number of frequency points in the full-band spectrum, which is f .

The width of the sub-bands affects the model’s extraction of inter-sub-band correlation
features. In the model, the sub-bands are divided by taking one frequency point as the
center and extending it above and below by a set length. In this paper, after performing
STFT, the number of frequency points F in the spectrum is 257, which corresponds to the
division of 257 sub-bands.
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In the original FullSubNet paper [11], the width of the sub-bands was set to 15.
However, after conducting experiments, it was found that adjusting the width of the sub-
bands resulted in better experimental results. This indicates that an appropriate sub-band
width allows the model to learn sub-band features more effectively.

The Fsub unit and the Fmp unit are concatenated to obtain the final value given to the
sub-band unit, denoted as F =

{
Fsub, Fmp

}
. F consists of f + 1 independent vectors, each

with a dimension of (t, 2n + 1), where t represents the temporal length of the corresponding
noisy signal. In terms of the included features, Fsub contains the spectral information sur-
rounding the corresponding frequency axis and the temporal correlation features, i.e., local
information. Fmp contains the global information extracted from the amplitude and phase
spectrum, including the full-band amplitude information and phase information.

In order to enable the model to learn the detailed sub-band features of the audio signal
spectrum along the frequency axis, a sub-band module is introduced at the end of the model.
The structure of this module is depicted in Figure 4, and it consists of two unidirectional
LSTM layers with 384 hidden units each. No activation layer is included between these
layers. The sub-band module predicts the complex ratio mask (CRM) by weighting the
sub-band noise with respect to different frequency bands and combining it with the output
of the previous full-band feature extractor.
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The same loss function as the baseline model [11], mean square error (MSE) loss, was
used. Additionally, the impact of two other loss functions, mean absolute error (MAE) loss
and Huber loss, on the model’s training effectiveness was also tested. The formulas for
these three loss functions are as follows:

McIRM = cIRM(b, f , t, m) (8)

McRM = cRM(b, f , t, m) (9)

MSELoss =
1
n

n

∑
i=1

(McIRM −McRM)2 (10)

MAELoss =
1
n

n

∑
i=1
|McIRM −McRM| (11)

HuberLoss(b, f , t, m) =

{
1
2 (McIRM −McRM)2, |McIRM −McRM| < δ

δ|McIRM −McRM| − 1
2 δ2, |McIRM −McRM| > δ

(12)

where b represents the number of audio samples in each training batch, f represents the
number of frequency bins in the spectrum, t represents the length of the time axis in the
spectrum, and m = (1, 2) denotes the real and imaginary parts of the mask. Huber loss is a
combination of the other two loss functions, with δ as a hyperparameter. The value of δ
determines the emphasis of Huber loss on MSE loss and MAE loss.

CRM is generated by the model when inputting the noisy speech, and CIRM is the
complex ideal ratio mask constructed from the real and imaginary parts of the clean and
noisy speech spectrum; it is calculated by the following formula:

Mr =
YrSr + YiSi
Yr2 + Yi

2 (13)
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Mi =
YrSi −YiSr

Yr2 + Yi
2 (14)

where Y represents the noisy speech, S represents the clean speech, and M represents the
complex ideal ratio mask, with the subscripts r and i denoting the real and imaginary
parts, respectively.

4. Experimental Setup
4.1. Dataset

The dataset used in this experiment is the Interspeech 2021 Deep Noise Suppression
Challenge dataset [20]. It includes clean speech, test sets, noise, and reverberation. The
clean speech consists of 500 h of speech segments from 2150 speakers, while the noise
comprises 150 classes with over 180 h of sound segments. The processing of these sound
segments aligns with the training set processing method described in [18].

The test set used in the experiment is the Interspeech 2021 test dataset, which is the
same as the test set used in other comparative experiments.

4.2. Experimental Details

Before performing deep learning, it is necessary to convert audio into time-frequency
domain by using short-time Fourier transform (STFT) to obtain the spectrum as input
feature. The formula for time-frequency transformation is as follows:

STFT(t, f ) =
∫ ∞

−∞
x(τ)h(τ − t)e−j2π f τdτ (15)

where t represents the duration of the audio, f represents the number of frequency points
in the spectrum, and h(τ − t) represents the analysis window function used in this STFT.
The window function used in this paper is a Hann window of length 32 ms (512 frames)
with a frame shift of 16 ms.

The formula for the discrete short-time Fourier transform is as follows:

X(td, fd) =
N−1

∑
n=0

x(n + tdH)w(n) exp
(
−2πi fdn

N

)
(16)

where x(n + td H) represents the input discrete-time audio signal, H represents the hop size,
which indicates the length of window function movement on the signal, w(n) represents
the window function, td represents the time frame of the spectrum, and fd represents the
frequency bin of the spectrum.

After performing STFT, we obtain the phase spectrum and magnitude spectrum of
the speech signal, as well as the real spectrum and imaginary spectrum. This paper mainly
focuses on the first two.

Programming environment: In our study, we employed the Python programming
language for implementing all models on a Windows 10 system. During the training phase,
a NVIDIA Tesla V100S GPU with 32 GB of memory was utilized to enhance computa-
tional performance.

Consistency was maintained in the training parameter configuration across all speech
data. We employed the Adam optimizer with a learning rate of 1 × 10−3. To promote effec-
tive learning, exponential decay with decay rates of β1 = 0.9, β2 = 0.999 was applied once
per epoch. The batch size for training was set to 32. Additionally, to ensure reproducibility,
the random seed values for numpy, pytorch-gpu, and pytorch-cpu were set to 0.

The baseline model comprises a full-band unit and a sub-band unit. For the baseline, a
sub-band width of 15 was employed. To capture future information, we set the Lookahead
value to 32.

In our proposed method, we introduced a pMix unit alongside the full-band and
sub-band units. The pMix unit consisted of four unidirectional Magphase units. The
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number of hidden units in the LSTM layers for the full-band and sub-band units remained
consistent with the baseline, specifically 512 and 384, respectively. In our specific model
configuration, the sub-band width was set to 10, while the Lookahead value was set to 2.

4.3. Evaluation Protocol

There are two main methods for evaluating the quality of speech enhancement: subjec-
tive evaluation and objective evaluation. Subjective evaluation provides a direct reflection
of human perception of speech quality, but it is time-consuming and requires human
participation. Therefore, in the experiments, objective evaluation methods are primarily
chosen to simulate human perception of speech quality using various types of data.

STOI is short-time objective intelligibility measure. It is calculated using the follow-
ing formula [21]:

dj,m =

(
xj,m − µxj,m

)T(
yj,m − µyj,m

)
‖xj,m − µxj,m‖‖yj,m − µyj,m

‖ (17)

STOI =
1

JM ∑
j,m

dj,m (18)

where m represents the m-th frame of the speech, j represents the j-th one-third octave band,
x represents the clean speech, y represents the normalized and clipped enhanced speech, µ
represents the sample average of the corresponding vectors, dj,m represents the intermediate
intelligibility measure, M represents the total number of frames, J represents the number of
one-third octave bands, and STOI is the average of the intermediate intelligibility measure.
The value of dj,m is between 0 and 1 due to the magnitude relationship between vector
products and modulus products, and the value of ∑

j,m
dj,m is between 0 and JM. The value

of STOI is also between 0 and 1.
A higher value indicates a higher proportion of speech that is intelligible to human ears

after speech enhancement, resulting in better perceived speech quality. When presenting
evaluation results, the STOI value is typically expressed as a percentage.

SI-SDR is scale-invariant signal-to-distortion ratio. It is calculated using the follow-
ing formula:

SI − SDR = 10 log10
‖XC‖2

‖XN‖2 (19)

where XC represents the time-domain vector of the clean speech, XN represents the time-
domain vector of the noise, where XN is obtained by subtracting the model’s output speech
from the clean speech. A higher SI-SDR value indicates less distortion in the enhanced
speech compared to the clean speech.

5. Result and Analysis
5.1. Comparison of Models Using Different Hyperparameters

The sub-band width has a significant impact on feature extraction in the sub-band
model. The sub-band width itself is a hyperparameter, determining the size of frequency
bands into which the frequency axis is equally divided before extracting sub-band features.
When the value of i is too small, it indicates that the frequency bands are centered around
the corresponding frequency axis, resulting in a limited inclusion of adjacent frequencies.
In this case, the sub-band can only capture correlated features within a narrow frequency
range. When the value of i is too large, it means that a large number of adjacent frequencies
are included, and the sub-band width gradually approaches the full-band, losing the ability
to extract sub-frequency-domain correlations effectively. Only by setting an appropriate
value for the sub-band width can it align with the frequency characteristics of human
speech, allowing the model to learn sufficient and clear correlated features. Therefore, it
is necessary to experiment with different sub-band widths in order to find the sub-band
width value that approaches the optimal solution.
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The Lookahead value represents the number of milliseconds by which the amplitude
spectrum and phase spectrum of the input speech are zero-padded at the end of the time
axis. A larger Lookahead value indicates that the full-band model considers more future
information corresponding to the current input speech, thereby emphasizing the correlation
features between the current speech and the future input speech. In previous experiments,
this value is commonly set to 32 milliseconds. As shown in Table 1, in the ablation
experiments that incorporated the influence of echo, various combinations of Lookahead
values and sub-band widths were explored, aiming to find the most suitable values while
considering the correlation between these two hyperparameters. From experiments 1 to
8, it was found that when the number of Magphase units is 4, a closer Lookahead value
to 2, and a sub-band width closer to 10 results in better model performance. By contrast,
experiments 9 to 13 revealed that when the number of Magphase units is 3, a Lookahead
value closer to 16 and a sub-band width closer to 20 led to better model performance.
This conclusion demonstrates the complex interdependence among the hyperparameters
of the proposed model, and selecting appropriate values for these hyperparameters can
effectively improve the model’s performance.

Table 1. The effect of different hyperparameters on speech enhancement ability.

Num Model Magphase Lookahead
(ms) Sb_num WB-PESQ NB-PESQ STOI SI-SDR

1 FullSubNet-pMix 4 8 10 2.771 3.265 95.91 17.17
2 FullSubNet-pMix 4 6 10 2.737 3.252 95.65 17.00
3 FullSubNet-pMix 4 4 10 2.760 3.255 95.85 17.17
4 FullSubNet-pMix 4 2 5 2.726 3.218 95.76 17.09
5 FullSubNet-pMix 4 2 7 2.764 3.244 95.84 17.17
6 FullSubNet-pMix 4 2 13 2.817 3.300 96.04 17.27
7 FullSubNet-pMix 4 2 15 2.838 3.325 96.08 17.51
8 FullSubNet-pMix 4 2 10 2.866 3.342 96.24 17.66
9 FullSubNet-pMix 3 20 8 2.785 3.273 96.00 17.27

10 FullSubNet-pMix 3 20 32 2.756 3.275 95.78 17.11
11 FullSubNet-pMix 3 25 32 2.745 3.234 95.60 17.95
12 FullSubNet-pMix 3 20 16 2.861 3.353 96.15 17.54
13 FullSubNet-pMix 3 32 15 2.835 3.329 96.07 17.49

5.2. Comparison of Models Using Different Magphase

The Magphase unit is used to extract the amplitude spectrum and phase spectrum fea-
tures of speech in the full-band unit and combine the information provided by them. Table 2
presents ablation experiments with different numbers of Magphase units, demonstrating
the effectiveness of these units in improving the model’s performance. In the model struc-
tures used in Table 2, apart from the varying number of concatenated Magphase units, all
other units and parameters are kept the same. The Magphase column indicates the number
of concatenated information interaction units in the FullSubNet-pMix model. The results
of experiments 1 to 6 in Table 2 demonstrate that adding these units amplifies the effect of
speech enhancement. Furthermore, the data from experiments 7 to 11 in Table 2 indicate
that the best amplification effect is achieved when the number of Magphase units is 4.
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Table 2. The effect of Magphase units on speech enhancement capabilities.

Num Model Magphase Lookahead
(ms) Sb_num WB-PESQ NB-PESQ STOI SI-SDR

1 FullSubNet 0 32 15 2.782 3.268 95.83 17.12
2 FullSubNet-pMix 3 32 15 2.835 3.329 96.07 17.49
3 FullSubNet 0 32 10 2.630 3.149 95.32 16.69
4 FullSubNet-pMix 3 32 10 2.699 3.225 95.54 16.96
5 FullSubNet 0 2 10 2.792 3.276 96.05 17.30
6 FullSubNet-pMix 3 2 10 2.805 3.288 95.88 17.32
7 FullSubNet-pMix 1 2 10 2.798 3.277 95.92 17.27
8 FullSubNet-pMix 2 2 10 2.771 3.252 95.82 17.14

10 FullSubNet-pMix 4 2 10 2.866 3.342 96.24 17.66
11 FullSubNet-pMix 5 2 10 2.819 3.317 96.15 17.46

5.3. Actual Effects and Comparison with Advanced Systems

Figure 5 compares the actual effects of speech enhancement between the baseline
(FullSubNet) and FullSubNet-pMix using spectrograms. In the figure, (a) represents the
noisy speech with reverberation; (b) represents the noisy speech without reverberation,
where the added noise is the same as in (a); (c) represents the result of baseline speech
enhancement with reverberation; (d) represents the result of baseline speech enhancement
without reverberation; (e) represents the result of speech enhancement using the proposed
method with reverberation; and (f) represents the result of speech enhancement using the
proposed method without reverberation. The green boxes in the figure indicate the specific
differences between the baseline and the proposed method after speech enhancement. From
the figure, it can be observed that, regardless of the presence of reverberation, FullSubNet-
pMix achieves better speech enhancement results compared to the baseline.
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Figure 5. Comparison of the actual effect of voice enhancement. (a) represents the noisy speech
with reverberation; (b) represents the noisy speech without reverberation; (c) represents the result
of baseline speech enhancement with reverberation; (d) represents the result of baseline speech
enhancement without reverberation; (e) represents the result of speech enhancement using the
proposed method with reverberation; (f) represents the result of speech enhancement using the
proposed method without reverberation.
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The experimental results were compared with other models on the Interspeech 2021
test dataset. These models were selected from previous participating models in the In-
terspeech speech enhancement competition, and corresponding papers were published.
Since some of these models are not open source, the data used in the table are obtained
from their respective papers. The DCCRN-E model [4] utilizes a five-layer convolutional
encoder to extract high-level features from the input. The PoCoNet model [22] employs
self-attention mechanisms to capture temporal information. The TRU-NET model [23] uses
energy-normalized spectrum as input features for each channel.

For the results obtained by the proposed models in the table, Table 3 corresponds
to the evaluation of speech enhancement results in the presence of reverberation in the
noisy speech, while Table 4 represents the case without reverberation. FullSubNet refers to
the baseline model with Lookahead hyperparameters of 32 and a sub-band width of 15.
FullSubNet-pMix represents the proposed method in this paper, with 4 Magphase units,
a Lookahead of 2, and a sub-band width of 10. From the table, it can be observed that,
for all four evaluation metrics, the proposed method outperforms other recent speech en-
hancement models in the presence of reverberation. In the absence of reverberation, except
for a slight inferiority compared to TRU-NET, the FullSubNet-pMix model shows better
speech enhancement performance compared to other models. Regardless of the presence
of reverberation, the results show improvement compared to the baseline, demonstrating
the effectiveness of the proposed method.

Table 3. Comparison of speech enhancement results among different models (with reverberation).

Model Look Ahead WB-PESQ NB-PESQ STOI SI-SDR

Noisy - 1.822 2.753 86.62 9.033
DCCRN-E [4] 37.5 - 3.077 - -
PoCoNet [18] - 2.832 - - -
TRU-NET [19] 0 2.740 3.350 91.29 14.87

FullSubNet [11] 32 2.782 3.268 95.83 17.12
FullSubNet-pMix 2 2.866 3.342 96.24 17.66

Table 4. Comparison of speech enhancement results among different models (without reverberation).

Model Look Ahead WB-PESQ NB-PESQ STOI SI-SDR

Noisy - 1.582 2.454 91.52 9.07
DCCRN-E [4] 37.5 - 3.266 - -
PoCoNet [18] - 2.748 - - -
TRU-NET [19] 0 2.860 3.360 96.32 17.55

FullSubNet [11] 32 2.742 3.245 96.04 17.27
FullSubNet-pMix 2 2.830 3.317 96.37 17.95

5.4. Comparison of Models Using Different Loss

The speech enhancement performance of FullSubNet-pMix was compared using
different loss functions during training. Three loss functions, namely MAE loss, MSE loss,
and Huber loss, were compared. The training dataset consisted of reverberant noisy speech.
The final results are presented in Table 5. The value of the hyperparameter δ in Huber loss
is set to 1.

Table 5. Comparison of speech enhancement results among different loss (without reverberation).

Model Loss WB-PESQ NB-PESQ STOI SI-SDR

FullSubNet-pMix MAE Loss 2.392 2.998 95.31 17.20
FullSubNet-pMix Huber Loss 2.807 3.305 96.22 17.59
FullSubNet-pMix MSE Loss 2.866 3.342 96.24 17.66
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The experimental results were compared with other models on the Interspeech 2021
test dataset. The model used is FullSubNet-pMix with a Magphase set to 4, a lookahead set
to 2, and a sub-band width set to 10. From the experimental results, it can be observed that
using MSE loss as the loss function yields the best training performance with this model.

6. Conclusions

This paper presents improvements on the FullSubNet model by introducing a pMix
unit, which enables the model to utilize phase spectrum information and facilitate informa-
tion interaction between magnitude and phase spectra, leading to the extraction of more
comprehensive features from the noisy speech. The parameters of the original model were
also optimized, resulting in improved performance as demonstrated by the ablation experi-
ments. The proposed approach achieves superior results compared to the baseline model
on the utilized dataset and outperforms the majority of existing deep learning-based speech
enhancement models. Additionally, it was experimentally verified that MSE loss achieves
the best performance when training the proposed model in this study. However, there are
still areas for further improvement in this method, such as exploring better ways to leverage
full-band phase information and incorporating phase features into the sub-band units.
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