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Abstract: In the field of robotics, a lot of theoretical models have been settled to formalize multi-agent
systems and design distributed algorithms for autonomous robots. Among the most investigated
problems for such systems, the study of the Uniform Circle Formation (UCF) problem earned a
lot of attention for the properties of such a convenient disposition. Such a problem asks robots to
move on the plane to form a regular polygon, running a deterministic and distributed algorithm by
executing a sequence of look–compute–move cycles. This work aims to solve the UCF problem for a
very restrictive model of robots: they are punctiform, anonymous, and indistinguishable. They are
completely disoriented, i.e., they share neither the coordinate system nor chirality. Additionally, they
are opaque, so collinearities can hide important data for a proper computation. To tackle these system
limitations, robots are equipped with a persistent light used to communicate and store a constant
amount of information. For such a robot model, this paper presents a solution for UCF for each of the
three scheduling modes usually studied in the literature: fully synchronous, semi-synchronous, and
asynchronous. Regarding the time complexity, the proposed algorithms use a constant number of
cycles (epochs) for fully synchronous (semi-synchronous) robots, and linearly, many epochs in the
worst case for asynchronous robots.

Keywords: autonomous mobile robots; uniform circle formation; opaque robots; luminous robots;
pattern formation; distributed algorithms

1. Introduction

The last decade has seen a major increase in the development and dissemination of
distributed environments for mobile entities, e.g., sensor networks, multi-robot systems,
and drone swarms, having a great impact in several different contexts. Along with the
application studies in the robotics and electronics fields [1–5], computer science research has
attempted to design theoretical models [6–10] which best formalize and simulate generic
distributed systems, and to study efficient algorithms for some primitive tasks. Such an
analytical investigation aims at providing a rigorous and universal methodology to study
the collaborative strategies for mobile multi-agent systems [10–13], model peculiar real-
world scenarios [14–16], prove and analyze the correctness of algorithmic solutions [17,18],
and investigate their computational complexity [19–23].

Several theoretical models have been introduced for these purposes: agents, also
called robots, act under several assumptions about their capabilities and about a particular
scenario. Models of great importance are the ones where robots are autonomous, i.e., they
work without central control, and operate through a sequence of look–compute–move cycles
in which each robot (i) takes the snapshot of the system (look), (ii) executes a deterministic
algorithm (compute), and (iii) travels to the computed destination (move) [9,22–24].
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Different model assumptions are considered, affecting the computational power of
robots [19,21–23]. Generally, robots are assumed to be point-like, anonymous (without
any distinct identifiers yielding the ability to distinguish one robot from another), and
oblivious (without any persistent memory). In order to consider more powerful and realistic
models, the luminous robot [11,20–22,25–27] has been introduced: robots equipped with a
persistent light assuming different colors. Since such a light color is preserved from one
look–compute–move cycle to the next one, it can be used as a persistent constant memory
and a means of communication as well.

Another step towards realistic models is to work, not with point-like (punctiform model)
robots, but fat robots [13,28,29], where all robots are supposed to be solid discs with a certain
radius. Moreover, robots can be transparent [13,19,30], enabling complete visibility of the
system, or opaque [11,26,31].

Depending on the nature of the problem, robots can move either on the Euclidean
plane, or on a graph [22,23] which can either be known in advance or not. Concerning robot
activation policy, three modes are proposed in the literature: fully synchronous (FSYNCH),
where all robots execute their cycle synchronously, semi-synchronous (SSYNCH), where
robots in a subset execute their cycle synchronously whereas the others remain idle, and
asynchronous (ASYNCH), where each robot acts asynchronously.

Several research efforts focus on very basic classes of geometric pattern formation
problems to be solved within such distributed environments [10,11,32,33]. In the Gathering
problem, robots are required to meet in a certain location. Solutions to this problem are
provided in [34] for ASYNCH robots with limited visibility, in [29] for a few fat ASYNCH

robots, and in [28] for fat FSYNCH robots with limited visibility. In [14,15], Gathering
is tackled for robots that move on a ring, coping with two fault models: with a mobile
malicious agent [15] and with a stationary faulty node (black hole) [14].

The Circle Formation problem requires robots to displace upon a common circle.
In [13], this problem is solved for asynchronous fat transparent robots moving freely on the
plane, while in [31] asynchronous opaque robots moving on an infinite grid are considered.

In the Uniform Circle Formation (UCF) problem [26,30,35–37], robots are required to
move to the vertices of a common regular polygon whose number of vertices—which can or
cannot be known in advance—is exactly the number of robots in the system. This problem
has received a lot of attention (see, e.g., [36] for a survey) for both theoretical and practical
reasons. From a practical point of view, a regular layout may present several advantages for
a distributed system. E.g., in a network of mobile agents, it may be convenient to regularly
displace them to facilitate communications, visibility and computations. Every agent is
equidistant from its neighbors and has the same view of the system: this guarantees a
fair communication, where there are no evident differences in the energy spent in sending
messages. Moreover, this uniform pattern allows to implement distributed algorithms
which guarantee a fair load balancing among agents.

So far, swarms of transparent robots have been mainly considered in the UCF investi-
gation. However, such a full visibility feature might not turn out to be realistic. Accordingly,
obstructed visibility can represent a constraint making the model more interesting and re-
alistic, although more difficult to manage. In such an opaque model, if three robots are
collinear, the middle robot obstructs the vision of the other two. So, whenever collinearities
occur, some robots may have a wrong perception of the actual global number of agents
in the system and, more generally, of the configuration of the whole system itself. In this
realm, the first natural problem to be tackled is Complete Visibility, where robots are
required to displace on the plane so that each robot is visible to all others. Since robot
opaqueness turns out to be a critical issue, some additional capabilities for robots might
be considered. In particular, solutions in the literature are proposed for luminous robots.
Such a well-studied functionality turns out to be a natural minimal enhancement to solve
several tasks (see, e.g., [19–23,25]). In [38], a O(log N) time algorithm is given, solving
Complete Visibility by using O(1) colors in the ASYNCH mode. Moreover, the problem
is solved with a constant amount of time and colors both for the SSYNCH mode [39] and
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for the ASYNCH one [40]. In [16], a fault-tolerant algorithm for Complete Visibility is
exhibited. Overall, a strategy for reaching a configuration where every robot can see the
entire swarm can be used as a sub-routine in all those problems where robots need to count
themselves (as in UCF, [26]).

Related Works and Main Contributions

This paper investigates the UCF problem for a swarm of opaque and luminous robots.
Such a problem has been investigated and solved under different combinations of system
assumptions in order to point out the minimal sets of features for its solution. In [35,37],
the problem is solved for fat robots, but (partially) oriented. Specifically, the authors of
[37] cope with transparent and fat robots, which agree on one axis of their coordinate
systems, operating in the SSYNCH mode. The algorithm in [35] solves the UCF problem for
a swarm of fat, opaque, but oriented (they share a common coordinate system) robots in
the ASYNCH mode. In [30], the authors provide a solution for transparent, disoriented, and
non-rigid robots, in the ASYNCH mode. The work in [26] exhibits an algorithm solving the
UCF problem for swarms of opaque luminous robots only in the FSYNCH mode, featuring
six cycles and a constant number of colors. In all the above-cited works, robots solve the
problem without colliding.

The current paper considers robots sharing the same features as [26], and aims to
improve and complete its algorithmic investigation. Specifically, all three synchronization
modes are examined here; as a matter of fact, this paper provides three algorithmic solutions
to solve the UCF problem by opaque luminous robots in the FSYNCH, SSYNCH, and ASYNCH

modes. In particular, the algorithm for the FSYNCH mode improves the one in [26] in
that it uses only three instead of six cycles and a constant number of colors. The SSYNCH

mode is solved within constant time (epochs) and a constant number of colors. Finally,
the algorithmic strategies are adapted in order to obtain a solution for the ASYNCH mode,
working in linear time (epochs) in the worst case and with a constant number of colors.

2. Preliminaries

This section aims to formally introduce the distributed system (e.g., model features,
robot synchronization and computation) under consideration. Such formal preliminaries
are preparatory for the definition of the UCF problem, which will be given at the end of
this section. Informally, the UCF problem requires a swarm of n robots with very specific
features to move on the plane and form a regular n-gon, so that each robot lies on a vertex
of the polygon. After the formation of such a pattern, no robot will move.

2.1. Robot Features

Consider a finite set (swarm) of punctiform computational agents, called robots, which
forms a distributed system located in the Euclidean plane R2. These robots are as follows:

(i) Anonymous and indistinguishable: they do not share any own identifier;
(ii) Autonomous: there is no central coordinator;
(iii) Homogeneous: they execute the same deterministic algorithm;
(iv) Mobile: they can freely move on the plane, provided they never collide;
(v) Undisturbed: they cannot be stopped by any adversary before reaching the computed

destination (rigid model).

The robots are equipped with sensory capabilities to spot the positions of other robots.
The following limitations on robots are assumed:

(i) They do not know how many they are;
(ii) They are disoriented: no agreement among the individual coordinate systems, nor on

unit distance and chirality (roughly speaking, agreement on clockwise direction);
(iii) They are opaque (not transparent): collinearities cause obstructed visibility.

Indeed, these latter three inabilities introduce complications in the algorithm design.
E.g., due to opacity (iii) and lack of knowledge of the number of robots (i), each robot may
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not be able to know whether or not some robots are hidden at any given time. Moreover,
the disorientation (ii) might cause robot collisions which may compromise system integrity.
To deal with these adversities, robots are equipped with a light displaying a certain number of
different colors they can communicate through (see, e.g., [19–23,25]). Such a light is the only
means robots have to exchange information and represent a constant memory they can use
to store some information. Except for the lights, they do not have other persistent memory.

2.2. Configuration

LetR be the finite set of all robots in the swarm, | R | being unknown to each robot.
Let Colors be the finite set of colors the light of each robot can assume to communicate.

Given a fixed coordinate system ω on R2, the configuration of r ∈ R at time t is defined
as the pair φt

ω(r) = (post
ω(r), lightt(r)), where post

ω(r) are the coordinates in R2 where r is
located at time t according to ω, and lightt(r) is the color in Colors of the light of r in that
instant. For the sake of simplicity, the lighter notation φt(s) will be used whenever there is
no ambiguity about the used coordinate system.

2.3. Visibility

For any pair of robots r, s ∈ R, r sees s (formally, r ./ s) if and only if (i) either r = s
or (ii) there does not exist a third robot sitting on the line segment joining r and s. Let
Vist(r) = {s ∈ R | r ./ s at time t} be the set of all the robots visible by r at time t. It is
clear that r has a complete visibility of the whole swarmR at time t whenever Vist(r) = R.

2.4. Snapshot

Let A be the deterministic algorithm that each robot r has to execute according to
its own local coordinate system ωr, unit distance, and chirality. If r ./ s at time t, then r
senses only its position post

ωr (s), and its light lightt(s), and no other information on s. The
snapshot of r at time t is defined as the set snapshott

r = {φt
ωr (s) | s ∈ Vist(r)}.

2.5. Cycle

Each robot r operates in look–compute–move atomic cycles. Each cycle at time t consists
of these steps:

• Look: the robot r takes the instantaneous snapshot snapshott
r according to its coordi-

nate system ωr.
• Compute: r runs the deterministic algorithm A which, by having snapshott

r as sole
input, computes the destination point of r and the (possibly) new color for the light
of r. Formally, A(snapshott

r) = φt′
ωr (r), where t′ > t will be the time the current cycle

ends.
• Move: r sets its new color and, then, moves straight towards the destination point

computed above, without being stopped (rigidity assumption). If r stays still, it
performs a null movement.

2.6. Collision

The model investigated in this paper does not tolerate either multiplicity (no robot can
occupy the same location of another robot at the same time) or overlapping trajectories, so
that A has to guarantee that, for any given moving robot, its trajectory (even null) has no
points in common with the trajectory of any other moving robot. Formally, an overlapping
trajectory between r and s occurs when (i) r is moving from a to a′, (ii) s is traveling from
b to b′, and (iii) ¯aa′ and ¯bb′ have points in common. Both multiplicity and overlapping
trajectories are considered as collisions.

2.7. Synchronization

Concerning robot activation and synchronization, different modes are studied in the
literature:



Appl. Sci. 2023, 13, 7991 5 of 28

• In the fully synchronous mode (FSYNCH), time is logically subdivided into global rounds,
and all robots are activated at each round. Since look–compute–move cycles are executed
atomically, all robots terminate their cycle by the next round. Moreover, all robots start
and finish each cycle step (look, compute, move) at the same instant.

• The semi-synchronous mode (SSYNCH) coincides with the FSYNCH mode, except that not
all robots are necessarily activated at each round. However, every robot is activated
an infinite number of times (fairness condition).

• In the asynchronous mode (ASYNCH), the robots are activated independently from each
other, and each robot executes its look–compute–move cycle within an unpredictable
but finite amount of time. In this mode, the snapshot taken by a robot during its
look phase—used to compute its final destination—may not represent the real system
configuration when the robot starts moving.

For the SSYNCH and the ASYNCH modes, an appropriate way to measure time is
addressed by the notion of an epoch. An epoch is the amount of time within which each
robot will be activated at least once. The fairness condition ensures each epoch lasts a finite
time.

2.8. Computation

Let Ct = {φt(r) | r ∈ R} be the system configuration at time t, given a fixed coordinate
system on R2. A system configuration is said to be valid if there is no multiplicity. Let C be
the set of all the valid system configurations. Let C0 ∈ C denote the initial configuration of
the system, where all robots inR have lights off.

In the FSYNCH and SSYNCH modes, let ` ⊆ C2 be the relation such that C′ ` C′′

if and only if the configuration C′′ is reachable from C′ by executing a round, where all
the activated robots simultaneously accomplish their look–compute–move cycle, without
colliding. A computation on R is a sequence of valid configurations C0, . . . , Ct, Ct+1, . . .
such that the following applies:

(i) C0 is the initial configuration;
(ii) Ct ` Ct+1 for every t ≥ 0.

Such a computation reaches a terminal configuration Ctend whenever Ctend = Ct for any
t > tend.

Even if in the ASYNCH mode a computation on R cannot be described by a fixed
discrete time scale, the system is said to reach a terminal configuration if it achieves a system
configuration that will never change in the future.

2.9. The UCF Problem

Let a FSYNCH, SSYNCH, and ASYNCH swarm of n robots be in any given initial valid
configuration C0. The UCF problem asks the swarm to move from C0 to a valid terminal
configuration in which robots lay on the vertices of a regular n-gon.

3. Some Notions and Results

Consider a swarm of n robots and assume all of them sit on their smallest enclosing
circle (SEC). Two distinct robots p, q on the SEC delimit two arcs

_
pq (clockwise and coun-

terclockwise); p and q are adjacent whenever there is at least one of the two arcs
_
pq upon

which no other robot sits. Clearly, in a robot swarm forming a regular n-gon, each pair p, q
of adjacent robots forms an angle 2π

n with the center O of the SEC, formally p̂Oq = 2π
n .

Such an angle will be called the base angle of the n-gon.
Let Colors be the set of the possible colors, where each color is represented by a

string. Along the paper, the following name convention will be used: any given robot
whose light color is a string with prefix pivot or angle is called a pivot or an angle robot,
respectively. Pivot and angle robots will be set to fix the base angle, and some strategic
segments within the SEC; the other robots will use these strategic segments to reach their
own target positions. According to this, the following definitions are now given:
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Definition 1. For 2 ≤ k ≤ n, let (r1, r2, . . . , rk) be a k-tuple of distinct robots on the SEC (centered
on O). Such a tuple is called a regular k-tuple if it satisfies the following conditions:

• ̂riOri+1 = 2π
n for every 1 ≤ i < k;

• ri is a pivot or angle robot for every 1 ≤ i ≤ k;
• For odd k, just the central robot rd k

2 e
can be a pivot;

• For even k > 2, just the two central robots r k
2
, r k

2+1 can be pivots simultaneously.

The strategies to move the robots on the vertices of a regular n-gon (inscribed in the
SEC) start by setting particular regular {2, 3, 4, 5}-tuples. These tuples will not move for
the whole computation, while the other robots will move to complete the regular n-gon.

From now on, unless otherwise stated, given two points a, b on the SEC, the arc
_
ab

refers to the minor arc joining a and b on the SEC.

Definition 2. Let r1 and r2 be two robots on the SEC, and let d1 and d2 be the opposite endpoints
of the diameters passing through r1 and r2, respectively. The overlap arcs for r1 and r2 are the arcs
_

r1d2 and
_

r2d1 (see Figure 1).

r1 r2

d1
d2

θ
θ

overlap arc

Figure 1. The overlap arcs for r1 and r2 are the arcs
_

r1d2 and
_

r2d1.

Clearly, if r1 and r2 sit on the endpoints of the same diameter, their overlap arcs have
null length.

Theorem 1. Let n be the number of robots lying on the SEC.

• For odd n, there exists a diameter passing through a robot and dividing the SEC into two
halves, each having n−1

2 robots.
• For even n, there exists a diameter dividing the SEC into two halves such that (i) either the

diameter passes through just one robot and the half-SECs have n
2 and n

2 − 1 robots, or (ii) the
diameter passes through two (opposite) robots and the half-SECs have n

2 − 1 robots each.

Proof. Consider an odd n, and reason by induction on n. For n = 1, the property follows
straightforwardly. Now, assume the property holds true for an odd n > 1, and let us prove
the property for n + 2. Let us rule out two robots, say r1 and r2, having minimal overlap

arcs
_
a and

_

a′ , so that n robots are left on the SEC. So, by the induction hypothesis, there
exists a diameter D passing through a robot and dividing the SEC into two halves, each

having n−1
2 robots. Notice that, by Definition 2, no robot can sit on

_
a and

_

a′ , and since D
passes through a robot, it clearly cannot leave r1 and r2 on the same half-SEC. Whence, the
result follows. For even n, the proof is similar.

One method to find specific properties of the SEC configuration is to consider the
strings composed of the adjacent angles formed by robots.

Definition 3. Given a handedness direction (clockwise or counterclockwise), consider an arc H
of the SEC, and the list r1 . . . rm of m robots on H, so that ri and r(i+1) are adjacent for every



Appl. Sci. 2023, 13, 7991 7 of 28

1 ≤ i < m (following the given direction). Let e (e′) be the endpoint of H which is adjacent to r1
(rm). Let αi be the angle defined as

αi =


êOr1 if i = 0
r̂iOr(i+1) if i ∈ {1, . . . , m− 1}
r̂mOe′ if i = m

where O is the center of the SEC.
The angle-string related to the arc H is the sequence (α0)α1 . . . αm−1(αm) where α0 or αm is

omitted if it is a null angle (i.e., if r1 or rm lies on e or e′).

Note that the definition of angle-string generalizes also to the case when H coincides
with the whole SEC, provided that a starting (and ending) endpoint e is fixed. Given
a valid lexicographical conversion, SEC angle-strings (i.e., related to the whole SEC) or
arc angle-strings (i.e., related to specific arcs) play a crucial role in locating strategic segments
(diameters or chords) within the SEC.

Except for the rotational symmetry case with more than two sectors, the presented
algorithms aim to split the SEC into two half-SECs through a specific diameter, called the
main diameter. The main diameter is unequivocally defined by specific geometric properties
of the configuration. To maintain it throughout the whole computation of the algorithm,
specific robots elect themselves as pivots, move in specific positions, and light themselves
with a proper pivot color. These pivots unequivocally define the main diameter even after
the break of the initial geometric properties.

In the next sections, a precise explanation of the selection of the main diameter will be
stated. After the election of the main diameter, one regular tuple, say τ, or two opposite
regular tuples, say τ, τ′, are formed to fix the main diameter until the end of the algorithm.
In fact, if

_
c is the arc of the SEC covered by τ, the main diameter is the diameter passing in

the middle point of
_
c .

Let d be the elected main diameter, in a configuration where all the robots lay on
the SEC. Let b be one of the nearest robots to d but not laying on d, and let `(b, d) be the
distance from b to d. Moreover, let ν be one of the closest vertices of the regular polygon
not belonging to d that has to be formed by the robot swarm.

Definition 4. Let d′ and d′′ be the two opposite chords parallel to a main diameter d, at distance
min{`(b,d),`(ν,d)}

2 from d. The segments d′ and d′′ are called the safe diameters of d (see Figure 2).

d′

d′′

p

ν

b

d

Figure 2. Safe diameters d′ and d′′ for the main diameter d.

For rotational symmetries with more than two sectors, safe chords will be considered
instead of safe diameters:

Definition 5. Let (a1, p1, a2) and (a3, p2, a4) be two adjacent regular 3-tuples (i.e., without any
other 3-tuple on the arcs

_
a2a3 or

_
a1a4), and suppose that p1 and p2 are not the two endpoints of the

same diameter. The chord joining p1 and p2 is called the safe chord (see Figure 3).



Appl. Sci. 2023, 13, 7991 8 of 28

Pivots and angle robots are made to move to set either the main diameter or safe
chords which divide the SEC into sectors with the same amplitude and on which robots are
evenly distributed. This setting can be achieved in just one round (in the FSYNCH mode),
provided robots share a common clockwise direction in the sector they sit on:

Definition 6. Two or more robots are said to be oriented whenever they agree on a common
clockwise direction.

a3a2

a4a1

safe chord p2p1

Figure 3. Safe chord between regular 3-tuples.

Angle-strings are also used to fix a global or local handedness orientation to the
system. In particular, from each robot, two angle-strings start, clockwise and counterclock-
wise. Given a proper string conversion, groups of robots can be elected according to the
lexicographical order of the 2n angle-strings, n being the number of the robots.

Theorem 2. Given three oriented robots and three distinct robot-free points on the same arc of
the SEC, it is always possible for the three robots to reach these points in a single round and
avoid collisions.

Proof. Let e1 and e2 be the endpoints of the arc. By joining e1 with e2, the arc can be
regarded as a circle. Such a circle consists of the three consecutive arcs delimited by the
three points to be reached by the three robots. The following three cases can occur:

• The three robots sit on the same arc: The two external robots reach the two endpoints of
the arc they sit on, traveling without collision. This enables the third robot to reach
the third point without any collision as well.

• Two robots sit on one arc, and the other in another arc: As the previous case, for the two
robots in the same arc. The third robot can reach the third point safely.

• One robot per each arc: By traveling according to the common orientation, robots move
to their final destinations without collisions.

4. Preliminary Steps

This section shows some well-known preliminary actions to be taken by the swarm,
which are summarized in the following:

1. To form a regular n-gon, any robot in a swarm of n robots needs to know n. This
may be achieved by first solving the Complete Visibility problem, where all robots
are asked from any given valid initial system configuration to reach a terminal con-
figuration where each robot is visible to all others. At this point, n can be clearly
computed at a glance. However, n cannot be stored by robots, since they are equipped
with constant memory. Hence n will be somehow readily fixed in the topology of the
swarm. A possible solution to Complete Visibility moves robots to the vertices of
their convex hull. To this end, the algorithms in [39,40] can be used in order to solve
Complete Visibility on FSYNCH, SSYNCH and ASYNCH modes using a constant
amount of time and colors.



Appl. Sci. 2023, 13, 7991 9 of 28

2. Next, each robot takes its snapshot (look), computes the smallest enclosing circle (SEC)
e.g., by Welzl’s algorithm [41] (compute), and eventually moves radially towards the
SEC (move). Clearly, such movements cannot collide, since each trajectory is radial to
the same center. It might be the case that two robots (and, of course, no more than
two) sit on the same radial trajectory. However, by computing distances from the
two possible final destinations, they can easily choose to move in opposite directions
and reach the two diametrically opposite locations. At the end of this preliminary
phase, all robots lie on the SEC upon which the final regular n-gon will be formed. It
is important to note that this SEC will not change along the whole execution of the
algorithms. This step can be achieved in just one round/epoch, without any specific
color light (i.e., they can maintain their current color).

3. Let CH be the swarm configuration at this point, where all robots are vertices of a
convex hull inscribed within their SEC. If CH is a perfect convex hull [42], all robots lie on
the edges of the associated regular n

2 -gon (called supporting polygon, SP), two robots
per edge. In this case, the regular n-gon can be easily set by making robots slide
along the edges of the SP until they reach the vertices of the target n-gon. Given a
perfect convex hull, the SP is unique and does not change while robots are sliding
on its edges (this guarantees the correctness of this strategy also in the SSYNCH and
ASYNCH modes). So, each activated robot takes its snapshot (look), checks whether
the system configuration forms a perfect convex hull and computes the SP (compute),
eventually slides along the edge until it reaches the correct vertex of the regular
n-gon (move). Notice that two robots on the same edge head in opposite directions,
and therefore no collision occurs. Note that a biangular configuration (a set of n ≥ 2
robots forms a biangular configuration if robots lie on a circle C centered on O, and
two non zero angles α, β exist such that for every pair r and p of robots adjacent on C,
it holds that r̂Op ∈ {α, β} and α and β alternate clockwise [42]) and a regular polygon
pattern are special cases of perfect convex hull. Also in [30], the perfect convex hull
and the biangular configuration are dealt with as special cases at the beginning of
their algorithm.
This possible preliminary step takes just one round/epoch, without changing the
current color of the robots.

After the previous three preliminary steps, two different scenarios can occur: either
the configuration is already a regular polygon or CH is not a perfect convex hull. In the first
scenario, the algorithm ends. For the second scenario, the three strategies to form a regular
polygon for the FSYNCH, SSYNCH, and ASYNCH modes are now outlined.

5. The Algorithm for the Fully Synchronous Mode

Let CH be the swarm configuration at this point; without loss of generality, robot lights
are assumed to have the same color.

5.1. Summary of the Algorithm

The strategy of the algorithm aims at finding and adopting regular tuples in CH as
follows:

• Selects unambiguously some robots to be the pivots of the future regular tuples
(see Definition 1).

• Makes some robots move to form regular tuples with the selected pivots. Indeed,
these movements are not necessary if the regular tuples are already formed. Once the
regular tuples are settled, the involved robots will not move anymore, thus fixing once
and for all the base angle 2π

n of the regular n-gon to be formed.
• Makes the other robots compute their destination points (on the basis of the regular

tuples) and move to form the regular polygon.

Moreover, the algorithm must deal with the following issues:
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• Robots have constant memory (color lights). So, some information, such as the
cardinality of the system, cannot be stored.

• Obstructed visibility can cause deadlocks and collisions in certain system config-
urations. To avoid them, robots will lie and move safely onto specific segments,
namely safe diameters and chords (see Definitions 4 and 5). No robot will cross these
safe segments.

• In the FSYNCH mode, an algorithm is efficient if it can fully exploit parallelism (roughly
speaking, if it makes the most of the robots move simultaneously during the same
round, hence leading to quick executions). Thus, the algorithm has to avoid situations
yielding strictly sequential dynamics.

The next subsections show how the algorithm works, cycle by cycle.

5.2. Cycle 1: Pivot Selection and Angle Setting

From CH , the algorithm starts setting the regular tuples. The algorithmic dynamic
depends on the degree of symmetry of CH . Three cases must be considered: asymmetry,
symmetry with exactly one axis, and rotational symmetry.

Asymmetry. Consider the case of asymmetry, i.e., no symmetry axis exists in CH .
However, there exists at least one diameter passing through a robot and dividing the SEC
into two halves, upon which robots distribute according to Theorem 1. The robot swarm
must agree on one such diameter, say D, which will be the main diameter. To find D, robots
agree on starting from a commonly designated robot x and following a common orientation
on the SEC. The following lemma is needed to perform this task:

Lemma 1. Starting from the configuration CH and in case of asymmetry, all robots on the SEC are
able to unambiguously agree on a robot x.

Proof. Let r be any given robot on the SEC. It considers all possible 2n SEC angle-strings,
and unambiguously chooses one of them, e.g., the lexicographically smallest string, which
starts from just one robot, given the asymmetry of CH . So, the robot x is the elected robot
for any r.

So, let x and w be the robot and the lexicographically smallest angle-string chosen
according to Lemma 1. This enables the algorithm to elect a starting robot (i.e., x) and an
orientation on the SEC (i.e., the direction given by w), by which the main diameter D search
can be carried on: each robot starts checking whether the diameter through x satisfies
Theorem 1 and, if this is not the case, it tries with the next robot along the orientation settled
by w. Clearly, this process makes the whole swarm converge on the claimed main diameter
D. Let p be the position of the robot that determines D. The strategy distinguishes between
having an odd or even number n of robots in the swarm.

EVEN n. By Theorem 1, one or two robots may sit at the endpoints of D. In both cases,
the robot at position p assumes the color pivot. Moreover, in the second case, the opposite
robot on D assumes the color angle. The explanation continues discussing the first situation,
since the second may be easily derived. By Theorem 1, one of the half-SEC, say H+, has one
more robot than the other, say H−. So, a robot in H+ needs to move to the empty endpoint
a3 (opposite to p) of D and assume the color angle. At the same time, two other positions
a1 and a2 (regular polygon vertices) must be reached by two robots. These two positions
correspond to the polygon vertices at the immediate left and right of p. The three robots sat
at positions a1, p, a2 form the regular 3-tuple (see Figure 4).
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p

a3

a2a1

Figure 4. Pivot and angles for the asymmetrical case (even n).

So, globally, three robots must be moved: two from H+ and one from H−, so that both
the half-SECs contain the same number of robots at the end of this round. The orientation
provided by x and w is used to determine which robots in H+ and H− must move to the
vertices of the polygon: for instance, the last robots by such an orientation can be selected.
Then, Theorem 2 ensures that the three vertices will be safely reached by the robots.
Summing up, each robot r performs the following:

• Look–Compute: r unambiguously spots the pivot position p on the main diameter.
Furthermore, it computes the positions a1, a2, a3 and the robots intended for these
positions.

• Move: If r is in the pivot position p, then it does not move and sets its color as pivot.
If r is intended for the position a1, a2, or a3, it sets its color as angle and moves there.
Otherwise, r does nothing.

ODD n. A single robot lies on the main diameter D, specifically at one of its endpoints,
say p. Such a robot assumes the color pivot, and the formation of the regular 3-tuple
around p takes place as above. Opposite to p, the regular polygon edge perpendicular
to D must be formed. So, two robots will reach the endpoints a3 and a4 of such an edge,
assuming the color angle (see Figure 5). Note that, in each half-SEC, exactly two robots
move to their vertex destinations. Again, (a trivial adaptation of) Theorem 2 ensures safe
robot travel.

p

a2a1

a3 a4

2π
n

Figure 5. Pivot and angles for the asymmetrical case (odd n).

Summing up, each robot r performs the following:

• Look–Compute: r unambiguously spots the pivot position p on the main diameter.
Furthermore, it computes the positions a1, a2, a3, a4 and the robots intended for these
positions.

• Move: If r is in the pivot position p, then it does not move and sets its color as pivot. If
r is intended for the position a1, a2, a3, or a4, it sets its color as angle and moves there.
Otherwise, r does nothing.
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Symmetry with exactly one axis. Let l be the only axis of symmetry in CH . Note that
two or more symmetry axes yield a rotational symmetry, that is considered in the next case.
The diameter of the SEC lying on l will be the main diameter. Three cases are considered:
odd n, even n with two axis robots (i.e., robots on the symmetry axis), and even n with no
axis robots.

ODD n. In this case, l passes through a robot, which will be the pivot p, and splits the
opposite edge of the polygon. So, l divides the SEC into two symmetrical halves, each with
n−1

2 robots (p excluded).
Now, the algorithm aims to create the regular 3-tuple around p, as well as to set

two robots at the endpoints of the regular n-gon edge opposite to p. Therefore, two
robots in each half-SEC must be moved. Even in this case, Theorem 2 ensures no crossing
trajectories. However, to apply Theorem 2, an orientation is necessary; in this case, it can be
trivially settled in each half-SEC as being the direction from the pivot to the other endpoint
of the diameter laying on the axis l (namely, the main diameter). To determine which robots
in each half-SEC must move to the vertices of the polygon, the algorithm can choose, e.g.,
the last robots according to such an orientation.

As in the asymmetrical case discussed above, let a1 and a2 be the positions of the
two polygon vertices around p, while a3 and a4 are the positions of the two vertices of the
polygon edge opposite to p (see Figure 6).

p

a1 a2

a3 a4

Figure 6. Regular tuple setting for symmetry case with one axis, odd n.

Summing up, each robot r performs the following:

• Look–Compute: r computes the axis of symmetry l (and hence the main diameter)
and the positions a1, a2, a3, a4 of the polygon vertices.

• Move: If r is on l, it sets its color as pivot and stays still. If r is intended for the position
a1, a2, a3, or a4, it sets its color as angle and moves there. Otherwise, r does nothing.

EVEN n WITH TWO AXIS ROBOTS. In this case, l passes through two opposite robots,
which will be the two pivots p1 and p2. The diameter on l is the main diameter, as above.
The axis l divides the SEC into two symmetrical halves, each with n−2

2 robots (p1 and p2
excluded). First of all, one of the two pivots must be selected, around which to form the
regular 3-tuple. To this end, let e1 and e2 be the two endpoints of the diameter which is
perpendicular to the axis l. Each robot computes the angle-strings w′ and w′′ obtained,
respectively, by traveling from p1 to e1 and from p2 to e2. Notice that w′ and w′′ remain
the same even if e1 and e2 are switched, due to the symmetry axis l. It is easy to see that
w′ = w′′ implies a rotational symmetry, which will be dealt with later. So, the algorithm
can establish the lexicographically smallest string between w′ and w′′, say w′, and choose
p1, from which w′ starts, as the pivot around which to form the regular 3-tuple. As usual,
let a1 and a2 be the positions of polygon vertices around p1 (see Figure 7).
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p1
a1 a2

p2

Figure 7. Regular tuple setting for symmetry case with one axis, even n and two robots on the
symmetry axis.

It is notable that the strings w′ and w′′ enable all robots to agree on a common upper
and lower side of the main diameter (and of the SEC).

Summing up, each robot r performs the following:

• Look–Compute: r computes the axis of symmetry l (and hence the main diameter
with the robots p1 and p2) and the positions a1 and a2 around which they will form
the regular 3-tuple.

• Move: If r belongs to l, it sets its color as pivot and does not move. If r is intended
for the position a1 or a2, it sets its color as angle and moves there. Otherwise, r does
nothing.

EVEN n WITH NO AXIS ROBOTS. In this case, l splits the SEC without passing through
any robot. Let d be the main diameter laying on l, and let d′ be the diameter perpendicular
to d. As in the previous case, by computing the arc angle-strings delimited by the endpoints
of d and the endpoints of d′, robots can determine the upper (and lower) side of the SEC. So,
in the upper side, robots form a regular 4-tuple, centered on l, in the positions a1, p1, p2, a2,
while in the lower side two robots reach the two endpoints a3, a4 of the polygon edge
opposite to the 4-tuple and split by l (see Figure 8).

p1 p2

a1 a2

a3 a4

Figure 8. Regular tuple setting for symmetry case with one axis, even n and no robots on the
symmetry axis.

It is evident that, in all this robot displacing, at most three robots per each half-SEC
are involved. Moreover, although the whole robot swarm does not share a common
orientation, each half-SEC is oriented. Furthermore, due to symmetry, the orientations
in the two half-SECs are opposite. So, by Theorem 2, no collisions among moving robots
arise.

Summing up, each robot r performs the following:

• Look–Compute: r computes the axis of symmetry l (and hence the main diameter)
and the positions a1, p1, p2, a2, and a3, a4 of the vertices nearest to l in the regular n-gon.
In particular, p1 p2 and a3a4 will be the two opposite edges split by l.
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• Move: If r is intended for the position p1 or p2, it sets its color as pivot and moves there.
If r is intended for the position a1, a2, a3, or a4, it sets its color as angle and moves there.
Otherwise, r does nothing.

Rotational symmetry. Let r0, . . . , rn−1 be the sequence of adjacent robots on the SEC
starting from an arbitrary robot, following a fixed orientation. If the related SEC angle-
string α0 · · · αn−1 can be factored into k identical factors up to rotation, then the convex
hull on the SEC can be divided into k identical sectors, each being the 2π

k -rotation of the
previous one.

Let Pi = {rj | j ≡ i mod n
k } with 0 ≤ i < n

k be the class of symmetry which contains
k robots sharing the same relative position in the k different sectors. Clearly, from all
the robots in the same class Pi, the same two SEC angle-strings, say wi and wi

R, start in
opposite directions. The algorithmic strategy now follows two different paths according to
a particular property of the n

k classes of symmetry, and, in particular, of their angle-strings.
In fact, two scenarios can occur:

• One main class of symmetry: it is possible to unambiguously spot a unique P from which
the lexicographically minimal angle-string starts.

• Two main classes of symmetry: it is possible to unambiguously spot just two classes
Pu, Pv from which the lexicographically minimal angle-string starts.

Notice that if more than two classes of symmetry share the same angle-string, then
sectors contain sub-sectors in turn.

ONE MAIN CLASS OF SYMMETRY. In this case, it is possible to unambiguously choose a
class of symmetry P (called the main class of symmetry), by suitably adapting the technique
in the proof of Lemma 1. The k robots in P will be the pivots. In the case of rotational
symmetry with two sectors, the diameter joining the two pivots will be the main diameter.
For more than two sectors, the chords joining pivots in two consecutive sectors will be the
safe chords, according to Definition 5.

Around each pivot, two angle robots must be set to form a regular 3-tuple. Thus, for
each arc H delimited by consecutive pivots, two angle positions a, a′ must be covered by
two robots chosen within H. To unambiguously spot these two robots on H, the algorithm
can elect the two robots closest to a or a′. In the case of equidistance, one robot can be
unambiguously elected by considering the distance from the closest pivot.

Specifically, in order to set k regular 3-tuples in this configuration, each robot r performs
the following:

• Look–Compute: r computes the main class of symmetry P = {p0, . . . , pk−1} and the
positions {aj1 , aj2 | j ∈ {0, . . . , k− 1}} of the vertices adjacent to the vertices in P, in
the target regular n-gon. It chooses the robots intended for the angle positions.

• Move: If r belongs to P, it sets its color as pivot. If r is a robot intended for an angle
position, it sets its color as angle and moves to its destination vertex. Otherwise, r
does nothing.

The final robot displacement is shown in Figures 9 and 10.
TWO MAIN CLASSES OF SYMMETRY. This case occurs when there are two classes of

symmetry of robots, say Pu = {u0, . . . , uk−1} and Pv = {v0, . . . , vk−1}, that share the same
minimal angle-string (here, ui and vi belong to the same rotation sector i, as shown in
Figure 11).

In particular, it is not possible to select a unique class Pi of robots where the minimal
angle-string starts from.

The robots in Pu ∪ Pv will play the role of placeholders for the pivot setting. However, it
is necessary to define a common method to pair consecutive placeholders. Formally, robots
must consider the pairs of placeholders as (ui, vi) or (vi, u(i+1)mod k) for each 0 ≤ i < k.
The algorithm can unambiguously choose how to pair these placeholders according, for
example, to the smaller central angle between consecutive placeholders (i.e., between
the angles uiÔvi and viÔu(i+1)mod k, where O is the center of the SEC). In case of equal
amplitude, they are paired using the lexicographical order on the two angle-strings between
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the placeholders. In fact, each placeholder forms two different angle-strings with its
consecutive placeholders (otherwise the sectors contain sub-sectors in turn).

p0
a02a01

p1

a12

a11

p2

a22

a21

Figure 9. Pivots and angle robots for rotational symmetry with three sectors. Dashed lines are the
safe chords.

p0

p1

a01 a02

a11 a12

Figure 10. Pivots and angle robots for rotational symmetry with two sectors. Dashed lines are the
safe diameters.

β

β

β

β

u0

u1

u2

u3

v0

v1

v2

v3

Figure 11. Rotational case where the same minimal angle-string (αααβ)4 starts from both
Pu = {u0, u1, u2, u3} (counterclockwise) and Pv = {v0, v1, v2, v3} (clockwise).

Assuming without loss of generality that the pairs are in the form (ui, vi), the following
axes can be defined:

Definition 7. Let {(ui, vi) | i = 0, . . . , k − 1} be the pairs of placeholders. Given a pair
ρ = (ui, vi) of placeholders, the following axes are defined:

• The internal axis of ρ is the symmetry axis passing in the middle point of the arc
_

uivi;
• The external axes of ρ is the symmetry axes passing in the middle point of the arc

_
uiv(i−1)mod k

or
_

viu(i+1)mod k.
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Indeed, for odd k, the same axis is both internal and external, for different pairs of
placeholders. It is important to note that no robot lies on these axes, otherwise it would be
the case of one main class of symmetry.

Each rotational sector contains q = n
k robots and uiÔu(i+1)mod k = 2π

k (obviously,
viÔv(i+1)mod k = 2π

k ). The internal and external axes of the placeholders divide the SEC
into 2k slices, each with the same number of robots.

In this cycle, each robot r acts as follows:

• Look–Compute: r spots the two main classes of robots from which the same minimal
angle-string starts, and the k placeholder pairs. Then r spots the placeholder pair
(u, v) it is closest to, the internal axis l and external axes h, h′ with respect to (u, v),
and hence the slice is lying on (for example, the slice cut by h and l). It computes
the two pivots positions p (in its slice) and p′ (in the opposite slice with respect to h)
such that p and p′ are symmetrical to h, and pÔp′ measures the base angle 2π

n . Then it
computes the point a in its slice which will form the base angle with p.

• Move: If r is in the placeholder position, then it does not move and sets its color
as placeholder. If r is the nearest robot to some points p or a within the same slice
(unambiguously chosen with respect to the axis of symmetry in case of equidistance),
then it sets its color as pivot or angle, and it heads to the proper position without
colliding. Otherwise, r does nothing.

Figures 12 and 13 display the configurations described above.
During this round, each slice does not change the number of robots and the axes

passing in the middle of the pivots are maintained: hence, they continue to be equally
distributed within the slices.

v0 u0

v1u1

p0

a0a′0

p′0

p1

a1 a′1

p′1

internal axis

external axis

sa f e diameter

sa f e diameter

Figure 12. Regular 4-tuples setting in a 2-rotational symmetry. Main and safe diameters parallel to
the external axis are shown.

p0

a0

u0v0

p′0
a′0

p1

a1

u1
v1

p′1
a′1 p2

a2

u2

v2

p′2
a′2

sa f e symmetry chord

internal axis

external axis

Figure 13. Regular 4-tuples setting in a 3-rotational symmetry. The internal axis and an external axis
are shown for the pair of placeholders (u2, v2).
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5.3. Cycle 2: Rappelling Down on the Safe Diameters or Safe Chords

Let C2 be the configuration at this point, where all robots lie on the SEC. C2 presents
one, two, or more regular tuples which split the SEC into sectors of equal amplitude and
define the safe diameters or safe chords through the positions of pivots and angle robots.
In this cycle, the other robots safely rappel down on their safe segment, according to the
following strategies, which are distinguished according to the number and type of regular
tuples:

One or two regular 3-tuples, or 4-tuples. In this case, C2 derives from an initial case
of asymmetry, symmetry with one axis, and rotational symmetry with two sectors. Let d be
the main diameter, which is uniquely determined by the presence of one or two opposite
regular tuples, say τ and possibly τ′: d is the diameter passing through the middle point of
the arc covered by τ. Let d′ and d′′ be their safe diameters.

In this cycle, each robot r performs the following:

• Look–Compute: If r is pivot or angle, it does nothing. Otherwise, r computes the safe
diameters d′ and d′′, its target vertex position t on its half-SEC, and the point t⊥, which
is the projection of t on the safe diameter nearest to r.

• Move: r sets its color as internal and travels to t⊥.

Three or more regular 3-tuples. Here, C2 derives from an initial case of rotational
symmetry with just one main class of symmetry. In this cycle, each robot r performs the
following:

• Look–Compute: If r is pivot or angle, it does nothing. Otherwise, r computes the
nearest safe chord c, its target vertex position t on its sector, and the point t⊥, which is
the projection of t on c.

• Move: r sets its color as internal and travels to t⊥.

Three or more regular 4-tuples. Here, the case with k ≥ 3 regular 4-tuples is considered.
The configuration C2 derives from an initial case of rotational symmetry with two main
classes of symmetry. Let (a′(j−1)mod k, p′(j−1)mod k, pj, aj) and (a′j, p′j, p(j+1)mod k, a(j+1)mod k)

be two adjacent regular 4-tuples which delimit the sector j, for each j ∈ {0, . . . , k− 1}. The
chord gjg′j is defined as the safe symmetry chord of the sector j (see Figure 13), where the
following applies:

• gj is the middle point on the SEC between p′(j−1)mod k and pj;

• g′j is the middle point on the SEC between p′j and p(j+1)mod k.

In this cycle, each robot r performs the following:

• Look–Compute: if r is neither a pivot nor an angle, then it computes the safe symmetry
chord gg′ of its sector. Then it computes t⊥, which is the projection of its target vertex
t on gg′.

• Move: if r is neither a pivot nor an angle, then it sets its color as internal and moves to
its t⊥. Otherwise r does nothing.

The algorithm yields safe robot movements, as stated in the following:

Lemma 2. The movements in Cycle 2 of robots towards safe diameters and (symmetry) chords
yields collision-free trajectories.

Proof. Each robot lies either on the half-SEC or on the arc of a rotational symmetry con-
taining its future target vertex. Clearly, this guarantees that it does not have to cross its safe
diameter or safe (symmetry) chord. So, collisions may only occur within each sector/half-
disk. However, the algorithm avoids collisions at all, as it is now going to be explained.
Let d be a safe (symmetry) chord or a safe diameter, and consider the convex arc c cut
off by d. Consider now the set of h robots laying on c. During their look–compute phase,
these robots compute their own destination on the basis of their position within robot
displacement on c. For instance, let r and s be two robots on c. The robot r looks at the robot
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displacement on c and realizes it is the i-th robot starting from its closest endpoint of d. The
robot s instead realizes it is the j-th robot starting from the same endpoint (without loss of
generality). Let ti and tj be the destination points of r and s, respectively. Indeed, if i < j,
then ti must be closer than tj to the endpoint, otherwise the opposite holds. Starting from
a common endpoint, let (t1, . . . , th) be an ordering on the destination points of the robots
on c, which induces a corresponding ordering (t1⊥ , . . . , th⊥) on the projection points on d.
This ensures collision-free trajectories.

To help intuition, Figure 14 depicts rappelling down on a safe diameter. It is not hard
to see that no problem occurs whenever different robots start enumeration along c from
different safe diameter endpoints.

d′ d′′a1 a2

p

a′1a′2
p′

r1

r2

r3

t1
t1⊥

t2t2⊥

t3

t3⊥

Figure 14. Collision-free traveling towards projections onto the safe diameter (Cycle 2), and back to
final destinations on the SEC (Cycle 3).

5.4. Cycle 3: Reaching the SEC

At the end of the previous round, each robot which is neither pivot nor angle colored
lies on a safe diameter or on a safe (symmetry) chord. The algorithmic strategy was to
move the robot to a position where enough information from the system configuration is
available to compute its final destination on the SEC. So, in this cycle, each robot r performs
the following:

• Look–Compute: If r is pivot or angle colored, it does nothing. Otherwise, r is within
the SEC on a safe (symmetry) chord or a safe diameter, and sees at least three robots
on the SEC which are pivot or angle colored. Thus, r can reconstruct the SEC. So, r
computes: the SEC upon which it has to travel, the safe (symmetry) chord or safe
diameter it currently lies on, its destination arc H, and the projection point t of r on H.

• Move: r sets its color as sec and travels to t.

At the end of this round, the final regular n-gon is attained.

5.5. Pseudo-Code

The pseudo-code of the FSYNCH algorithm is presented in Algorithm 1.
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Algorithm 1 FSYNCH algorithm.

Input: A valid configuration C0 of the swarmR of n robots
1: Preliminary Steps:
2: C1 ← Complete Visibility on C0 by [39];
3: CH ← R on the SEC of C1;
4: if CH is a perfect convex hull then
5: CR ← Regular Polygon by [42];
6: return CR;
7: end if
8: Cycle 1:
9: switch CH do

10: case asymmetry
11: unambiguously fix the main diameter splittingR in two halves;
12: if Even n then
13: set pivot and angles according to Figure 4;
14: else
15: set pivot and angles according to Figure 5;
16: end if
17: case symmetry with exactly one axis
18: unambiguously fix the main diameter;
19: switch CH do
20: case odd n
21: set pivot and angles according to Figure 6;
22: case even n ∧ two robots on the axis
23: set pivots and angles according to Figure 7;
24: case even n ∧ no robots on the axis
25: set pivots and angles according to Figure 8;
26: case rotational symmetry
27: if ∃! main class of symmetry then
28: P← the unique main class of symmetry;
29: make robots in P set their light as pivot;
30: set the regular 3-tuples as in Figure 9, or Figure 10;
31: else
32: Pu, Pv ← the 2 main classes of symmetry;
33: make robots in Pu ∪ Pv set their light as placeholder;
34: set regular 4-tuples as in Figure 12 or Figure 13;
35: end if
36: C2 ← Output of Cycle 1;
37: Cycle 2:
38: I ← robots not forming the regular tuples;
39: if C2 has 3 or more regular tuples then
40: spot the safe (symmetry) chords;
41: make robots in I move onto safe (symmetry) chords, setting their light as internal;
42: else
43: spot the safe diameters;
44: make robots in I move onto safe diameters, setting their light as internal;
45: end if
46: C3 ← Output of Cycle 2;
47: Cycle 3:
48: I ← internal robots;
49: make robots in I reach their destination on the SEC, setting their light as sec;
50: CR ← Output of Cycle 3;
51: return CR;
Output: CR forming a regular n-gon.

6. The Algorithm for the Semi-Synchronous Mode

This section introduces and explains an algorithm for solving the UCF problem in the
SSYNCH mode, pointing out the differences with the FSYNCH algorithm presented in the
previous section. Let CH be the configuration where all the n robots sit on their SEC with
the same color. Again, the dynamic of the algorithm depends on the symmetry degree of
CH.

One of the main differences with respect to the FSYNCH algorithm is the need for an
initial epoch where some initial information about the original configuration (symmetry
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degree, symmetry axis position) must be encoded by robot positions and colors. In par-
ticular, in this epoch, just some pivots and the placeholders will be set. In fact, pivots
and placeholders (note that placeholders are needed when pivots have to reach their final
destination) fix the safe segments and the sectors where all other robots must travel. More-
over, all pivots will assume a specific color pivotx where x is the suffix encoding the initial
symmetry degree. Due to the SSYNCH dynamic, this extra epoch ensures subsets of robots
follow the proper path of the algorithm, determined by the initial configuration.

Asymmetry. For this case, the strategy used in the FSYNCH mode is adapted to achieve
the regular n-gon within the SSYNCH mode. In the first epoch, one or two pivots must be
set, at the endpoints of the main diameter d (which is chosen with the same strategy as in
the FSYNCH mode). If n is odd, the robot on d colors itself as pivot. If n is even, two pivots
will be placed on the endpoints of d, with two different colors pivot and pivot_down, to fix
the upper and lower part of the SEC. Notice that the asymmetrical configuration allows
robots to agree on these two directions.

In the second epoch, the regular tuples are set, but now more angle robots in each
half-SEC are required. These longer tuples will allow robots on the SEC to compute the
base angle and the safe diameters where they have to rappel down. In fact, internal robots
can hide the pivots on the main diameter from the remaining robots on the SEC, preventing
the computation of their target positions on the safe diameters. So, for the odd case, robots
complete the regular 3-tuple (angle, pivot, angle) around the pivot, whereas they set the
regular 4-tuple (angle, angle, angle, angle) on the opposite side of d (centered on it). For the
even case, robots complete the regular 3-tuple (angle, pivot, angle) around the upper pivot,
and the regular 5-tuple (angle, angle, pivot_down, angle, angle) on the lower side of the SEC
(centered on d). Notice that, in this epoch, no more than three robots per half-SEC move to
angle positions, so that Theorem 2 can be still applied.

In the third epoch, the remaining robots (i.e., not belonging to any regular tuples)
update their color to internal and move to their safe diameter, following the same strategy
as in the FSYNCH mode. Possibly, if an activated robot sits on a vertex of the target n-gon
and it is neither a pivot nor an angle robot, it is assumed to color itself as sec and stay still.
At the beginning of the fourth epoch, all robots are on their own safe diameter, except
those on the SEC with light color pivot, pivot_down angle, sec. Each internal robot sees at least
three lighted robots on the SEC. So, it computes its target vertex on the SEC and reaches it
by traveling perpendicularly to the main diameter.

Symmetry with exactly one axis. In this case, pivot lights pivot_s1, pivot_s2, and
pivot_s3 are set depending on the odd or even number of robots and on the number of
robots (zero, one, or two) laying on the symmetry axis at the beginning of this epoch.
Precisely, case a—pivot_s1 is used to light the pivots in a configuration with an odd number
of robots and one robot on the symmetry axis, case b—pivot_s2 is used for an even number
of robots and no robots on the symmetry axis, and case c—pivot_s3 is used for an even
number of robots and two robots on the symmetry axis.

As in the FSYNCH mode, robots can agree on an upper and a lower part of the main
diameter, and so of the SEC, by considering the half-SEC angle-strings.

As stated before, more angle robots in each half-SEC must be fixed, so that at least
three robots on the SEC are always visible to the robots which have to travel towards the
safe diameters. Note that only pivots on the axis can be hidden from the robots on the SEC,
whereas pivot_s2 and angle robots are always visible to them.

So, in this first epoch, for cases a and c, the robots on the symmetry axis immediately
assume the color pivot_s1 and pivot_s3, respectively, and stay still. For case b, just two robots
are elected such that they are symmetrical to the axis, one for each half-SEC, and set their
lights with the color placeholder. To elect the placeholders, the closest robot (per each half-
SEC) to the upper endpoint of the main diameter can be chosen. The two placeholders
fix the initial axis of symmetry (in fact, given two points on a circle there exists just one
symmetry axis dividing them) which is necessary in the second epoch where the pivots set
themselves properly.
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Now, the second epoch comes: two regular tuples centered around the two opposite
endpoints of the main diameter are set, by moving some robots on the n-gon vertices.
Placeholders stay still.

So, in case a, a regular 3-tuple (angle, pivot_s1, angle) is formed in the upper part of the
SEC, and a regular 4-tuple (angle, angle, angle, angle) in the lower part. For case b, a regular
4-tuple (angle, pivot_s2, pivot_s2, angle) is formed in the upper part of the SEC (by moving
both angles and pivots), and a regular 2-tuple (angle, angle) in the lower part. For case c, a
regular 3-tuple (angle, pivot_s3, angle) is formed in the upper part of the SEC, and a regular
5-tuple (angle, angle, pivot_s3, angle, angle) in the lower part. It is important to note that in all
these cases, no more than three robots per half-SEC move to reach their final destinations.
Hence, by Theorem 2, no collisions exist.

In the third epoch, as in the FSYNCH mode, robots not forming the regular tuples
can set safe diameters and move onto them on the orthogonal projections of the n-gon
vertices, updating their color as internal. It is worth mentioning that during this epoch, in
all three cases a, b, and c at least three pivot or angle robots are always visible, so that the
SEC can be safely reconstructed.

At this point, in the fourth epoch, internal robots return to the SEC by leaving perpen-
dicularly from safe diameters.

Rotational symmetry. This case presents four different sub-cases which are dealt with
distinctly. In particular, specific colors for the pivots pivot_r1, pivot_r2, pivot_r3, and pivot_r4
will be adopted to signal the initial geometric pattern along the whole computation. A first
strategy discriminant is given by the existence of a unique main class of symmetry or two main
classes of symmetry.

ONE MAIN CLASS OF SYMMETRY. In the first epoch, only those robots which will
act as pivots light them with a specific color to store needed information about the initial
rotational pattern.

Let k be the number of rotational symmetry sectors. For k > 2, the following epochs
basically take place as in the FSYNCH mode. During the second epoch, k regular 3-tuples
(angle, pivot_r1, angle) are set; in the third epoch, robots drop down to the safe chords; in
the fourth epoch, all internal robots return to the SEC at polygon vertex positions.

For k = 2, the first epoch is used to properly color the two pivots, elected as in the
FSYNCH mode. A peculiar approach is now explained for the next three epochs which
deflects from the usual strategy in the setting of the safe diameters. Let w be the angle-string
between the two pivots. Two cases can occur: (i) w = wR and (ii) w 6= wR.

For w = wR both sectors can be divided into two halves having the same number of
robots. In this pattern, the robots at the endpoints of the main diameter d color themselves as
pivot_r2 (first epoch). Moreover, the angle robots will complete the regular 3-tuples around
the endpoints of d, as usual (second epoch). Being a palindrome, w does not allow robots
to set an upper endpoint of d. For this reason, a different strategy is needed to guarantee
robots can see at least three robots on the SEC, and to move at most three robots per sector
to set the regular tuples (i.e., apply Theorem 2). Hence, the diameter perpendicular to d
is elected as the new main diameter d′. If some robots are lying on d′, they are in their
final position, w being a palindrome. Otherwise, d′ splits two opposite polygon edges. The
algorithm continues by setting the safe diameters parallel to d′ and following the strategy
for the asymmetry case (i.e., by making robots rappel down on the new safe diameters in
the third epoch and by making them go back to the SEC in the fourth epoch).

In case (ii) w 6= wR, the strategy for the (i) case can be properly adapted. A regular
3-tuple (angle, pivot_r3, angle) is set at each endpoint of the main diameter d (first and
second epoch). Let d′ be the perpendicular diameter to d. Note that also d′ (like d) splits the
SEC into two half-SECs with the same number of robots. By counting themselves, robots
can understand if the endpoints of d′ are vertices of the target n-gon. As a consequence, at
most one robot per half-SEC must move from or to the related endpoint of d′, according to
the position of the vertices. These movements can be achieved during the second epoch,
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together with the angle robots. This, in turn, assures Theorem 2 can be properly applied.
Now, the third and fourth epoch follow as the case (i).

TWO MAIN CLASSES OF SYMMETRY. In the first epoch, each activated robot checks if it
is a placeholder and, if so, it sets its light as placeholder, and no robot moves.

In the second epoch, each activated robot sees all the placeholders have been set, so
it is time to move robots on the SEC to set the pivots (with the color pivot_r4) and angles.
Each robot can spot its own slice (as in the FSYNCH algorithm). If the positions for pivot_r4
or angle of the slice are not occupied yet, one or two robots belonging to the slice can be
selected unambiguously to move safely in those positions and complete the regular 4-tuple
(angle, pivot_r4, pivot_r4, angle) for the whole sector. The other robots do nothing.

In the third epoch, each activated robot, which is neither pivot_r4 nor angle, acts like
this: it spots its sector and the safe diameter (two sectors case) or the safe symmetry chord
(more than two sectors case), it computes its index within the robots on the sector (by
counting robots on the SEC and on the safe segments) and the projection of its target
position on the safe segment. It rappels down on this projection, changing its color in
internal.

In the fourth epoch, each activated robot with internal color spots the SEC and its
sector, it sets its color as sec, and it travels towards the SEC perpendicularly to the safe
segment.

7. The Algorithm for the Asynchronous Mode

In the ASYNCH mode, severe issues may arise whenever robots are activated while
other robots are moving to their destinations. In fact, robot snapshots may not be sufficient
to reconstruct some fundamental aspects of the system (e.g., SEC, main diameters, safe
diameters and chords), crucial for their correct motion. This is basically due to the fact
that (i) moving robots can be obstructed by other robots, (ii) moving robots can obstruct other
robots, and (iii) a static snapshot does not reveal the motion of the robots. For (i), the
algorithm guarantees obstructed moving robots cause neither collisions nor ambiguous
snapshots. For (ii) and (iii), new light colors of type moving are lighted up as soon as a robot
starts moving. Specifically, let r be a robot that must set its light with c as color (note that
c can be equal to the current color of the robot) and reach a new position q according to
the SSYNCH algorithm. In the ASYNCH strategy, r set its color as moving_c before starting
moving (at the beginning of the move phase). Once on q, r stops itself and so completes
its cycle (still remaining with the color moving_c). At the next activation, r simply updates
its color from moving_c to c. If a robot r′ sees at least a moving-colored robot and r′ is not
lighted with a moving color, r′ skips its turn and does nothing. This technique allows an
asynchronous swarm to simulate a SSYNCH scheme. Therefore, the SSYNCH algorithm can
be adapted through the following features, depending on the phases of the algorithm, to
solve the UCF problem in the ASYNCH mode:

• In the first phase, pivots and angles (after having set placeholders if necessary) must
be set, according to the same precedence logic as in the SSYNCH mode. More precisely,
if an activated robot r figures out that regular tuples are incomplete and it does not
see moving robots (i.e., robots with some moving light colors), r establishes whether
or not it has to become a pivot or angle robot. In the affirmative, if r already lies
on a pivot or angle position, r assumes the proper color as in the SSYNCH mode;
otherwise, r updates its color as moving_pivot_down, moving_pivot_s2, moving_pivot_r4
or moving_angle (note that these colors are intended for the only pivots and angle
robots which have to move) depending on its final destination, and r moves there.
Once re-activated, a robot with the color moving_x simply changes its color into x
∈ {pivot_down, pivot_s2, pivot_r4, angle}, and stands still. Otherwise, if the robot does
not have to reach a pivot or angle position, or it sees some robots with color light of
type moving, then it stays still.

• The second phase starts after the regular tuple setting. Robots enter the SEC on di-
ameters and chords only if they see no other robot with the color moving_internal.
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Activated robots that sit on n-gon vertices and are neither pivots nor angles, assume
the color sec and stay still. When entering the SEC, a robot assumes the color mov-
ing_internal. Once re-activated, a moving_internal colored robot simply switches its
color into internal and stays still.

• In the third phase, the internal robots go back to the SEC traveling perpendicularly
with respect to the safe segment they lie on. An internal robot r starts to move only
if it sees only robots with lights on (with colors pivot, pivot_down, pivot_r1, pivot_r2,
pivot_r3, pivot_r4, pivot_s1, pivot_s2, pivot_s3, angle, sec, internal). If this is the case, r
determines its n-gon vertex position and moves there while assuming the color mov-
ing_sec. Otherwise, it stays still. This strategy guarantees the internal robot to correctly
compute the SEC, the safe segment where it lies, and so the target n-gon. Once on the
SEC, r will turn its color from moving_sec to sec.

8. Algorithms Analysis

The presented algorithms solve the UCF problem in the FSYNCH, SSYNCH, and ASYNCH

synchronization modes. Table 1 summarizes their main steps and strategies.
It is evident that the three algorithms are deterministic: in fact, there are neither non-

deterministic choices nor probabilistic actions. Starting from a valid initial configuration C0,
the computation generated by the execution of the algorithms terminates in a configuration
where all the n robots in the swarm form a regular n-gon. No deadlock may occur, since at
any instant there is at least one robot that can execute a cycle. The algorithms are clearly
distributed since every robot executes the same deterministic algorithm on the basis of its
own current snapshot. Moreover, no central agent leads and coordinates the robot swarm.

The FSYNCH and SSYNCH algorithms take full advantage of the parallelism in the
system. In particular, by restricting to the original part (i.e., from configuration CH),
(i) concurrent movements do not create collisions, and (ii) obstructed visibility does not
cause delays or deadlocks: each robot on the safe diameter, or (symmetry) chord sees at
least three robots on the SEC with lights on. Such a parallel speed-up cannot be guaranteed
for the ASYNCH algorithm, which in the worst case can take an amount of time linear in n.

Concerning the running time, the Complete Visibility is achieved in O(1) time
by [39] (FSYNCH and SSYNCH) and [40] (ASYNCH). The other two preliminary steps (moving
robots on the SEC and the perfect convex hull case solution) require one round (epoch)
each for the FSYNCH (SSYNCH and ASYNCH) mode. Next, the algorithm for the FSYNCH

and SSYNCH modes uses three rounds and four epochs, respectively, in the original part.
Instead, the ASYNCH original part requires a O(n) number of epochs in the worst case.

Concerning the number of colors, a constant number of colors is used to solve
Complete Visibility in all the modes [39,40]. For the other two preliminary steps,
no mode uses additional light colors. For the original parts, five colors (pivot, angle, internal,
placeholder, sec) are used by the FSYNCH algorithm, thirteen colors (pivot, pivot_{down, s1,
s2, s3, r1, r2, r3, r4}, placeholder, angle, internal, sec) are used for the SSYNCH algorithm,
and nineteen colors (pivot, pivot_{down, s1, s2, s3, r1, r2, r3, r4}, moving_{angle, pivot_down,
pivot_s2, pivot_r4, internal, sec}, placeholder, angle, internal, sec) are used for the ASYNCH

algorithm.



Appl. Sci. 2023, 13, 7991 24 of 28

Table 1. Phases of the algorithms to solve UCF for the different modes, according to the initial
configuration symmetry (asymmetry AS, symmetry with one axis SY, rotational symmetry RS).

Algorithm Phases
Each phase is fulfilled synchronously,

in one round
FSYNCH

PHASE 1: Regular tuples
Pivots and angle robots
form the regular tuples

Who? Robots elected as pivots or angle robots
What? They set their colors as pivot or angle

and form the regular tuples
around the endpoints of:

• the main diameter (AS, SY, RS with 2 sectors)
• the safe chords (RS with more than 2 sectors)

PHASE 2: Towards safe segments
Robots (not forming a regular tuple)

rappel down on safe diameters or safe chords

Who? Robots not forming a regular tuple
What? They set their colors as internal

and rappel down on safe diameters or safe chords

PHASE 3: Reaching the SEC
The internal robots reach their target vertex

traveling perpendicularly to their safe segment

Who? The internal robots
What? They travel perpendicularly to their safe segment

towards the SEC

Algorithm Phases
Each phase is fulfilled synchronously,

in groups, in one epoch
SSYNCH

PHASE 1: Configuration fixing
Pivots and placeholders fix the original configuration

and the safe segments

Who? Robots elected as pivots or placeholders
What? They set their colors properly

according to the role and the configuration

PHASE 2: Regular tuple completion
Angle robots move to complete

the “long” regular tuples

Who? Robots elected as angle robots
What? They set their color as angle and move

to complete the regular tuples

PHASE 3: Towards safe segments
Robots (not forming a regular tuple)

rappel down on safe diameters or safe chords

Who? Robots not forming a regular tuple
What? They set their colors as internal

and rappel down on safe diameters or safe chords.
In a specific case of RS, the safe diameters

are perpendicular to the original main diameter

PHASE 4: Reaching the SEC
The internal robots reach their target vertex

traveling perpendicularly to their safe segment

Who? The internal robots
What? They travel perpendicularly to their safe segment

towards the SEC

Algorithm Phases
Each phase is fulfilled asynchronously,

in O(n) epochs in the worst case
ASYNCH

Same phases as in SSYNCH
Same strategy as in SSYNCH

but using color moving_
to synchronize robot movements

9. Conclusions and Research Outlooks

This paper presents three algorithms which solve the UCF problem for opaque lumi-
nous robot swarms. The first algorithm solves the problem for FSYNCH swarms of robots,
by using a constant number of look–compute–move cycles as well as a constant number
of colors. In particular, compared to the previous result in [26], here the number of cycles is
reduced from six to three. In addition, the other two algorithms solve UCF for the SSYNCH

and ASYNCH modes. For the former mode, an algorithm featuring a constant number of
epochs is proposed; for the latter one, a linear amount of epochs is required in the worst
case. In both modes, a constant number of colors is used.

Several directions for future research may be explored. E.g., the constant number of
colors in the presented solutions is obtained by summing the constant number of colors
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needed to solve Complete Visibility [39,40] in the preliminary phase, plus the constant
number of colors required by the rest of the original approaches in this paper. A better
integration between these two phases would certainly lower the number of colors. Indeed,
it would be interesting to establish the minimal number of colors needed to solve the UCF
problem in the different synchronization modes. More generally, concerning the actual
relevance of using lights to solve UCF, one may easily notice that a solution without light
would imply a solution without light for Complete Visibility as well. To the best of our
knowledge, this latter task is still to be investigated.

It is evident that the ASYNCH algorithm derives from a proper adaptation of the
SSYNCH algorithm, where robots exploit colors as “traffic lights” to set precedence in
the movements and simulate an SSYNCH scheme. A similar approach is used in [21] in
Theorem 3.1, where the authors construct an ASYNCH simulator for any SSYNCH algorithm,
thus proving that, assuming the presence of lights, the computational power of the SSYNCH

model is equal to the computational power of the ASYNCH model. However, the result
in [21] considers a swarm model which is different from the model studied here: in fact,
such robots are transparent, guaranteeing complete visibility to the swarm. An interesting
and remarkable future work would be to investigate the computational relation between
the presented model in the SSYNCH and in the ASYNCH modes.

Another line of research is the study and analysis of solutions of the UCF problem for
other models of robot swarms. For instance, it might be worth investigating the realistic
case of fat opaque robots. In [13], a solution is proposed for fat transparent robots. A first
attempt can be performed by combining results and technique in [13] with the approach
presented in this paper. Robots under non-rigid systems can be also investigated.

Moreover, it may be interesting to pinpoint connections with Formal Language Theory.
In the literature, and in the present paper as well, some interesting formal language aspects
show up and might deserve further and more systematic investigations. For instance, as
observed, recognizing certain types of symmetries in the robot swarm displacement reduces
to verifying certain properties enjoyed by angle-strings. This is equivalent to accepting
certain languages, such as the palindrome language, mirror language, copy language, etc.

Therefore, well-established results on the hardness of language acceptance can carry
over to distributed system investigation, stating the possibility to solve certain problems or
not, or the minimal amount of computational resources agents must possess to correctly
operate. In particular, considering the realm of luminous robots, the communication system
provided by a constant number of colors is easily seen to be modeled by a finite-state
automaton. This observation might suggest, e.g., that minimizing the number of colors can
be related to minimizing the number of states in finite-state automata. More generally, finite-
state automata can be examined by so many points of view: descriptional complexity [43–47],
studying the size (number of states) of automata, descriptive complexity [48], studying
automaton representation by logic frameworks, and quantum computing [49–51], studying
the impact of the quantum paradigm on finite-state machine size reduction. All these and
other viewpoints might bring interesting insights and new tools and research problems in
distributed system investigation.
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