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Abstract: The scoliosis report is a diagnosis made by the clinician looking at X-ray images of the
spine. However, with numerous images, writing the report can be time-consuming and error-prone.
Therefore, this paper proposes an automatic generation model of the end-to-end scoliosis Lenke
classification report. The model automatically generates a short diagnostic text to explain the results
of the classifiers’ Lenke classification diagnosis of scoliosis. Instead of reproducing the original
diagnostic report, the original diagnostic report is described as a short sentence with diagnostic
significance. In the model, the CBAM attention module is added to the residual’s path of ResNet-50
to extract key regional features of the image, and the improved Long Term and Short Term Memory
Network (M-LSTM) fusion attention mechanism with additional gated operations is used as the
decoder to generate more relevant description statements. The model was verified on the scoliosis
dataset from Guizhou Orthopaedic Hospital, and the generated diagnostic text obtained good scores
on BLEU and CIDEr evaluation indexes, and also satisfactory scores on the evaluation criteria of five
professional clinicians. Therefore, the diagnostic text generated by this method had good performance
in accuracy and semantic expression.

Keywords: Lenke typing report generation; dual attention mechanisms; spatial attention; context attention

1. Introduction

In recent years, the generation method of image description [1], based on deep learning,
has made great progress in the field of natural images, but in the field of medical images
there is still a lack of effective methods that can automatically analyze diseases in medical
images and generate diagnostic text. The reason is that the automatically generated disease
diagnosis text should not only conform to the grammatical rules of natural language,
that is, the formal cohesion should be good, but should also ensure semantic coherence.
Therefore, understanding and describing complex medical radiology images in accurate
natural language and automatically generating diagnostic reports remains challenging [2].

At present, medical image caption models based on deep learning [3] are all obtained
by fine-tuning based on an encoder–decoder structure or by using models pre-trained on
natural images [4] to train public medical image datasets. Although the encoder–decoder
structure has been continuously improved to achieve good performance in the description
of medical images, the diagnostic reports generated by them still contain numerous repeated
words [5], the generated descriptive sentences are incoherent, and the disease information
described is inconsistent with the original disease. In order to solve this problem, the idea
of attention mechanisms was used as a reference, and attention mechanisms were added to
the traditional codec structure. According to the hidden state of the RNN, the attention
mechanism dynamically selects the local feature vector of the image related to the generated
word to guide the generation of the word at the current moment. The method based on
attention mechanisms can make full use of image feature information and improve the
effect of description generation [6].
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However, the traditional medical image description generation method based on
attention mechanisms only integrates the word and visual information of the current
moment when predicting the target word, ignoring the role of context information in
generating the target word, resulting in no coherence and differences between the generated
description and the reference description. Therefore, this shows that when generating target
words, the model should not only focus on the current visual information but also the
previous visual information to ensure visual coherence and conform to human habits. In
addition, in traditional medical image description methods, they try to generate complete
and complex diagnostic texts based on radiological reports [7]. However, in terms of
radiological images, attempts to copy highly uniform radiological diagnostic reports will
lead to inconsistent diagnostic descriptions in the output, which cannot be used as a true
explanation of diseases in the images. Even in the most cutting-edge work in the field [7],
the resulting text is nowhere near as good as that of a professional physician and cannot
replace a physician in the automated diagnosis of images.

Aiming at the problems in the traditional methods of image description generation
above, this paper proposes a method of generating a scoliosis Lenke classification report
based on the dual attention of space and context. Instead of trying to reproduce the
entire scoliosis Lenke classification and diagnosis report [8], we only generated the most
important sentences. We tried to train a model that generated a simplified but meaningful
description as a diagnostic report that could be certified by a clinician and can be used
as a reasonable justification for a physician’s decision. This method changes the way
that the original diagnosis report is used as the training label in the traditional medical
image description generation model. Based on the visual features of the spine images,
they were innovatively hand-marked into a new set of short sentences as a label for model
training. The corresponding label sentences for each image had the same sentence structure,
for example: “This spine, with or without curvature in the proximal thoracic, with or
without curvature in the main thoracic, with or without curvature in the lumbar regions,
belongs to the Lenke-N type” or “asymptomatic cases”. In addition, the traditional coding–
decoding structure has been improved [9–11]. In the residual path of ResNet50 [12], a
convolution block attention mechanism focusing on effective features in the space and
channels was added to serve as a feature encoder to deepen the extraction of key features
of the spine. Using the improved long short-term memory network M-LSTM [13] as a
decoder, additional gating operations were introduced in front of LSTM [14], so that the
input and state of the network were computed in multiple rounds of interaction before the
internal calculation of the network, and the context attention mechanism was integrated so
that the language modeling ability of the interactive representation between the input and
the context became richer. Finally, the model was verified on the proprietary spinal X-ray
dataset from Guizhou Orthopaedic Hospital, and the generated diagnostic description
obtained satisfactory scores in BLUE, CIDEr and other indicators. The generated diagnostic
text was compared with the original diagnostic report, including all key descriptions in the
original diagnostic report. This shows that our model can automatically generate simple,
high-quality Lenke classification reports for scoliosis.

2. Related Work

Medical image description generation has great practical significance, which attracts
many researchers to carry out targeted exploration. At present, medical image description
models based on deep learning methods are all based on an encoder–decoder structure
(as shown in Figure 1), and deep CNN and RNN are utilized in the encoder–decoder
structure of these models [15]. In fact, CNN extracts significant features from the input
medical images in the form of fixed-length vectors. RNN or its variant networks, such
as long short-term memory (LSTM) and gated reentry unit (GRU), are used as language
models [16] to translate fixed-length vectors obtained from CNN into semantically and
syntactically correct disease diagnosis texts.
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Shin et al. [17] applied the coding–decoder structure for the first time to the task of
generating medical diagnostic reports for chest X-rays, and the sentences generated by this
method were mainly descriptions of disease classification and detection. At the coding end,
they selected network-network [18] and Google network [19] CNN to extract image features
and classify them, and obtained 17 disease labels corresponding to MESH statements. These
terms were the most commonly used sentences to describe chest diseases without obtaining
repeated results from other MESH terms. Although Shin et al. [17] obtained a better
performance on Google, only short sentences of five words were generated to describe
classified diseases, rather than a fluent and coherent report. Wu et al. [20] modified the basic
framework of Vinyals et al. [16] to generate a description of retinopathy. They used a pre-
trained CNN as an encoder, using exit and integration techniques to encode 37,000 fundus
images, resulting in feature coding vectors that were fed into the LSTM and decoded into a
caption. The method of Wu et al. [20] only generated the description of abnormal features
in the images, and the description of disease information was not detailed enough.

The subtitle generation model of ultrasound images by Zeng et al. [21] was divided
into two modules, an encoder module and a language generation module, and the two
modules needed to be trained separately. They used a region detection model, Faster-
RCNN [22], as an encoder to extract disease features and were able to locate diseased areas
in ultrasound medical images. Finally, the language generation module generated the
description of the critical area of the lesion and could generate the prediction box to locate
the lesion area. Compared with other models, this model had the advantages of a short
training time and fewer parameters, but the disadvantage was that the prediction error rate
of language and words was high in the generated description statements. The decoding
phase of the above methods could not obtain enough useful information, and finally the
decoding of the sentence could not reach its ideal effect.

Therefore, many researchers have begun to add attention mechanisms to the coding–
decoding structure. For example, Zhang et al. [23] proposed the MDNet model, which
innovatively added attention mechanisms to the description task of medical images. The
attention module they used was able to increase the model’s ability to extract features, suc-
cessfully enabling direct mapping from bladder cancer images to diagnostic reports. They
used ResNet as an encoder to extract image features and extended it to skip connections to
solve the problem of disappearing gradients during training. The image description model
they proposed achieved a relatively advanced performance, but the generated diagnostic
report only contained the description words of five bladder features, not a complete bladder
radiology film diagnostic report. Jing et al. [24] proposed an image description model with
a co-attention mechanism that divided images into regions of the same size, extracted visual
features from the last convolutional layer of VGG-19 [25], and calculated the weighted
sum of semantic features and visual features, respectively. The visual context vector and
semantic context vector were obtained, respectively, and then the final feature vector was
obtained by concatenation. The decoding part adopted the hierarchical structure LSTM,
composed of sentence LSTM and word LSTM. While their hierarchical LSTM achieved



Appl. Sci. 2023, 13, 7981 4 of 16

good performance, the reports they generated contained repeated words, and the absence
of contextual consistency in their hierarchical model could be the cause of the repetition.
To further address this problem, Wang et al. [7] proposed an approach similar to Jing
et al. [24], but they encoded input images using ResNet-50 and generated image titles
using RNN-based LSTM, but their LSTM was flat, instead of the layered one used in [24].
However, from their experiments on the chest X-ray dataset, the descriptive results were
worse than the OpenI results of Jing et al. [24], which may be because the decoding effect
of flat LSTM was not as good as that of layered LSTM.

3. Materials and Methods
3.1. Datasets

We used 13,200 positive X-ray images of scoliosis from patients with scoliosis in Guizhou
Orthopedics Hospital, including 2820 Lenke-1, 1820 Lenke-2, 980 Lenke-3, 1260 Lenke-4,
2820 Lenke-5, and 2500 Lenke-6, 1000 asymptomatic sheets, and corresponding diagnostic
reports. The diagnostic report was then used for training after statement processing. Specifi-
cally, we used 60% of the dataset for training (7920 images), 20% for validation (2140 images),
and 20% for testing (2140 images). Details of the dataset are shown in Table 1, and examples
of spinal X-ray images are shown in Figure 2.

Table 1. Experimental dataset details.

Dataset Total Lenke-1 Lenke-2 Lenke-3 Lenke-4 Lenke-5 Lenke-6

train 7920 1800 1320 560 840 1800 1600
test 2140 520 300 200 200 520 400
val 2140 500 200 220 220 500 500
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3.2. Overall Framework

This paper proposes an automatic generation model for end-to-end Lenke classification
reports for scoliosis. The model uses ResNet-50 [11], which integrates the CBAM channel
and spatial attention mechanism, as the feature encoder. Image features extracted by
the ResNet50 network are re-calibrated into maps and weighted for different feature
channels after compression, excitation, and spatial attention operations in the CBAM
module. Therefore, the network is able to extract better-correlated features from spinal
images for encoding. The improved long and short-term memory network M-LSTM fusion
attention mechanism is used as the decoder. After the input of the coding vector, the
features requiring active attention in the corresponding image region are dynamically
selected according to the corresponding feature weights, and the image region with a high
correlation with the current word is focused on. The key parts of the image are selectively
focused by selecting a subset of the feature vector, and more reasonable description words
are generated. The overall framework of the model is shown in Figure 3.
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processed by CBAM attention module, and then transmitted to M-LSTM combined with attention
focusing image key parts, and finally prediction results are outputted.

The input to the model is image I, and the sentence sequence corresponding to
I:LT = {l1, l2, l3 · · · lt}. First, image input I is convolved by ResNet50 feature encoder to
extract image feature f i. Then, the CBAM module added in the residual path is used for
compression, excitation and spatial attention operation, and different weight αi is assigned
to the characteristic channels one by one, Finally, the output f ′i = fi × αi is obtained by
operation Scale, and f ′i is input to the M-LSTM decoder as a new feature encoding vector.
The mapping process is h−1 = w f f ′i + b f . w f is the weight parameter that ResNet50
network needs to train, and b f is the offset value. h−1 is the initial value input in the M-
LSTM decoder. LT is another input word vector of the model. It is encoded by the label
word S of the training image through one hot encoding mode to obtain a word encoding
vector m with a fixed length of 15 and multiplied by the word embedding matrix wem f
to obtain:

LT = wem f ×m (1)

ht = ExtLSTM(ht−1, LT) (2)

pt = So f tmax(wc × ht + bc) (3)

In Equations (2) and (3), ht is the final output value of M-LSTM. wc and bc are the
weight parameter and bias parameter of Softmax classifier, respectively, and pt is the output
of image description statement of Softmax classifier.

In the training process of the model, input image is I, output S = {s1, s2, s3 · · · st},
which corresponds to the description sentence I, and the probability of describing output
S is Equation (4). The logarithm of its likelihood function is taken to obtain logarithmic
likelihood function Equation (5):

P(S | I; θ) =
N

∏
t=0

P(Si | S0, S1, · · · , St−1, I; θ) (4)

log P(S | I; θ) =
N

∑
t=0

logP(Si | S0, S1, · · · , St−1, I; θ) (5)
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The training objective of the model is to maximize the logarithmic likelihood sum of
all training samples, where θ is the parameter that the model needs to be trained, and the
solution of θ can be converted into the solution of an optimal problem:

θ? = argmax
θ

∑
(I,S)

logp(S | I; θ) + λθ (6)

where the first term is the model loss function, and the second term is the regularization
loss. In the training process, changes and optimization are constantly adopted to maximize
the probability of image description corresponding to the input image data.

3.3. Feature Extraction

ResNet solves the degradation problem of deep networks through residual learning
and can extract image features better. ResNet directly connects and combines the output
of convolutional layers with different depths, which deepens the convolutional neural
network and controls the complexity of the network at the same time. It also adds a residual
unit through a short-circuit mechanism, which opens a channel next to the network so
that the input can reach the output directly. The object of optimization is changed from
the original fitting output F(x) to the sum of output and residual path input x: H(x) = F(x)
+ x. Such a structure prevents the residual network from losing the feature information
extracted from the previous layer due to too much depth in the process of model training.
Therefore, with the deepening of the ResNet network, its learning ability will become
stronger, and its ability to extract image features will be greatly improved compared with
the traditional convolutional neural network. In addition, ResNet’s downsampling channel
uses convolution, which changes the original fully connected layer. ResNet network models
are Bottlenecks filled with residual modules, but ResNET-50, ResNET-101, and Resnet-152
differ only in the number of Stage4 Bottleneck2 modules.

In this paper, ResNet-50 [12] was selected for image feature extraction. While main-
taining the depth and complexity of the network, ResNet-50 avoids the problem of the
traditional convolutional neural network possibly causing gradient disappearance and
degradation due to excessive depth, and it has faster convergence speed and is easier to
learn. Figure 4 shows the network structure of ResNet-50.
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3.4. CBAM Attention

Although Resnet50 extracts multiscale features to ensure the diversity of features, it
cannot focus on the importance of features. Adding the SE module after the Resnet50
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module can allow a better focus on the effective characteristics of sampling. CBAM is an
attentional mechanism module combining space and channel. Compared with SENet [26],
CBAM achieves better performance in image feature extraction. In deep learning, due to
the difference in weight value between each channel, the product of each weight value
and the value of the original channel is the characteristic value really required by deep
learning. Based on SENet, the CBAM module considers the importance of pixels in different
positions of each channel, obtains the importance of feature maps in channel and space
by learning, and changes the weight value of different features to extract a more effective
feature map. Suppose the input feature maps of the module in the middle of the network
are F ∈ RC×H×W , C, H, and W are the number, height and width of input feature graph
channels, respectively, and the output of feature graph F′ is obtained through the operation
of the one-dimensional channel attention mechanism MC= RC×1×1, as shown in Equation
(7). After the two-dimensional space attention mechanism Ms= R1×H×W , the feature graph
output F′′ is obtained, as shown in Equation (8), where ⊗ is the feature graph multiplied
element by element.

F′ = MC(F ) ⊗ F (7)

F′′ = Ms
(

F′ ) ⊗ F′ (8)

In Formula (7), the channel attention pays attention to the meaningful learning features
in the feature graph. By using maximum pooling and average pooling, the feature graph is
compressed in the spatial dimension to obtain two different spatial background description
factors, FC

max and Fc
avg. The shared network of multi-layer sensing units is used to calculate

the background description factors to obtain the channel attention feature graph, as shown
in Formulas (9) and (10), with W0 ∈ RC/r×c, b, Relu as the activation function after W0.

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)) (9)

Mc(F) = σ
(

W1

(
W0

(
Fc

avg

))
+ W1

(
W0

(
FC

max

))
(10)

In Formulas (10) and (11), the spatial attention pays more attention to the location
information in the feature graph. Maximum pooling and average pooling are adopted
to obtain two different feature description factors, Fs

max ∈ R1×H×W and Fs
avg ∈ R1×H×W ,

in the channel dimension. The calculation process is as shown in Formulas (12) and (13).
Finally, the two features are combined and the convolution operation is used to obtain the
spatial attention feature figure Ms(F) ∈ RH×W .

3.5. Decoder M-LSTM

Long-term and short-term memory networks can effectively improve the long-term
dependence problem common in recurrent neural networks, but the network model still
has some problems, such as weak generalization ability, weak language modeling ability,
and poor performance in the face of context decorrelation. By introducing additional gating
operations, the MOGRIFIER-LSTM [13] model enables multiple rounds of interactive
calculation between input and hidden state before input to LSTM, which enables richer
interactive representation between input and context and enhances the context modeling
ability of the model. The specific process of interactive calculation between input and
hidden states is shown in Figure 5.

As can be seen from the figure above, multiple rounds of interactive calculation
were carried out between input x and hidden state h before input to LSTM, where x−1 is
input x and h0 is hidden state hprev. The order of interactive calculation is r, which is a
hyperparameter. When r = 0, the network does not carry out additional gating operation,
and the calculation method is as follows:

xi = 2σ
(

Qihi−1
prev

)
� xi−2, f oroddi ∈ [1, · · · , r] (11)
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hi
prev = 2σ

(
Rixi−1

)
� hi−2

prev , f oroddi ∈ [1, · · · , r] (12)
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The input and hidden state obtained through multiple rounds of iterative interaction
fusion are inputted into LSTM. The calculation method is as follows:

f = σ
(

W f xx + W f hhprev + b f
)

(13)

i = σ
(

Wixx + Wihhprev + bi
)

(14)

h = o� tanh(c) (15)

c = f � cprev + i� j (16)

h = o� tanh(c) (17)

where σ is sigmoid activation function, w is weight matrix, and b is bias.

3.6. M-LSTM with Contextual Attention

The image description model with the introduction of the attention mechanism will
generate each word of the description statement according to the significant part of the
image that is currently concerned, so that the decoder can selectively focus on some parts
of the image by selecting a subset of feature vectors and pay attention to different image
regions at different moments of decoding to generate more reasonable words. What
is calculated by the attention mechanism is the context vector that captures the visual
information of a particular area. The calculation method is as follows:

eti = fatt(ai, ht−1) (18)

αti =
exp(eti)

∑L
k=1 exp(etk)

where αi is the region to be calculated, ht−1 is the information of the previous time t− 1,
fatt is the multi-layer perceptron scoring function of the two pieces of information of the
coupled calculation area i and time t, and αti is the weight, which measures the degree of
attention of the image area i at moment t.

p
(
st,i = 1

∣∣sj<t, a
)
= αt,i (19)

ẑt = ∑
i

st,iai

where st,i is the binary variable introduced, which takes the value of 1 when region i is
selected, and 0 otherwise. In order to use maximum likelihood estimation, we need to
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marginalize the implicit variable and then take the lower bound of the logarithmic edge
likelihood as the objective function Ls:

Ls = ∑
s

p(s|a)logp(y|s, a) ≤ log∑
s

p(s|a)p(y|s, a) = logp(y|a) (20)

where y is a description statement generated for image a. To find the gradient of the
objective function:

∂Ls

∂W
= ∑

s
p(s|a)

[
∂logp(y|s, a)

∂W
+ logp(y|s, a)

∂logp(s|a)
∂W

]
(21)

Approximate with N Monte Carlo sampling method:

∂Ls

∂W
≈ 1

N

N

∑
n=1

∂logp
(

y
∣∣∣∼s n

, a
)

∂W
+ logp

(
y
∣∣∣∼s n

, a
)∂logp

(∼
s

n∣∣∣a)
∂W

 (22)

The moving average method is used to reduce the variance of the Monte Carlo method’s
estimated gradient. In the TH batch gradient descent, the moving average is estimated to be
the cumulative sum of the previous logarithmic likelihood with exponential decay:

bk = 0.9× bk−1 + 0.1× logp
(

y
∣∣∣∼s k, a

)
(23)

To further reduce the variance, the entropy of multivariate Bernoulli distribution is
introduced to improve the robustness of the algorithm:

∂Ls

∂W
≈ 1

N

N

∑
n=1

∂logp
(

y
∣∣∣∼s n

, a
)

∂W
+ λr

(
logp

(
y
∣∣∣∼s n

, a
)
− b
)∂logp

(∼
s

n∣∣∣a)
∂W

+ λe

∂H
[∼

s
n]

∂W

 (24)

4. Experiments
4.1. Evaluation Criteria

In the test stage, BLEU [27] and CIDEr [28] were used in this experiment. BLEU
measures the accuracy of the machine-generated description by using an n-gram to count
the coverage between the generated description and the reference description. The greater
the coverage, the more accurate the generated description. CIDEr performs TF-IDF weight-
ing for each n-gram between sentences and calculates the cosine similarity between their
TF-IDF weight vectors to measure the consistency between the reference description and
generated description and evaluate the consistency and richness of the image description.

4.2. Experimental Details

The platform used in the experiment was the GIGABYTE Technology RTX4090 24G
with two graphics cards, and the deep learning framework was PyTorch. The loss function
of the model adopted the cross-entropy loss function, and Adam was used as the algorithm
optimizer to better train the model and improve the quality of the model. CUDA and
cuDNN were used in training to accelerate the learning of GPU models and improve the
training speed. Table 2 describes the hardware and software configurations.

Table 2. Hardware configuration table.

GPU Video Storge Frame Programming Language

GIGABYTE
Technology RTX4090 24G pytorch Python
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In the dataset used in the experiment, there was a lot of noise in the pictures which
would disturb and affect the experimental results. Therefore, it was necessary to preprocess
the data before the experiment to reduce the impact of the original data on the experimental
results and obtain real and reliable results. The specific preprocessing method was as
follows: the input image was clipped, and the size of the training image in the dataset was
adjusted to the input size and dimension of the ResNet50 network (224 × 224 × 3); the
diagnostic report statement corresponding to the image of the dataset was preprocessed; the
characters, not letters or numbers, in the description statement were screened and removed;
the words were divided by the space; and the words obtained after word segmentation
were extracted and made into a vocabulary. The words that appeared fewer than five times
were used as the <<UNK>> Mark and substitute, creating word-to-index and index-to-
word mappings. To avoid the impact of excessively long description statements on the
model, the maximum length of the description statements was set to 15 words.

In addition, before model training, it is necessary to determine the setting of the
hyperparameter during training. The hyperparameter does not need to be driven by data,
but needs to be adjusted manually before or during training. The learning rate of model
training needs to be adjusted manually, and a too high or too low learning rate will lead to
model optimization failure. In this paper, the model was trained by pre-setting different
learning rates (Lr), and the evaluation results are shown in Figure 6. According to the
experimental results, the learning rate with the highest score on the evaluation index was
selected as the super parameter setting for the subsequent model training to better train
the model.
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4.3. BLEU and CIDEr Score

In order to verify the effect of the proposed model on image description generation,
three comparative experiments were undertaken in this part. Comparison experiment 1:
The model presented in this paper was compared with baseline models such as Multimodal
RNN, DeepVS, and Google NIC [28]. Each model was trained and tested on our spine
X-ray dataset, and the test and comparison results are shown in Table 3.

Judging from the results, the model proposed in this paper was compared with
Multimodel RNN, DeepVS, Google NIC, and Soft-Attention and Hard-Attention models
using attention mechanisms that have a great improvement on the BLEU index to evaluate
the smoothness and accuracy of generated sentences, and the CIDEr index to reflect the
diversity of image description generation.

Comparison experiment 2: This model was compared with the models mentioned
in the related work in Section 2 of this paper in our spinal X-ray image dataset. The
comparison results are shown in Table 4.
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Table 3. Comparison of the evaluation results of this model and the baseline model on the spinal
X-ray image dataset.

Baseline Model Datasets BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr

MultimodalRNN Spine
X-Ray 0.670 0.490 0.350 0.250 0.760

DeepVS Spine
X-Ray 0.625 0.450 0.321 0.230 0.660

Google NIC Spine
X-Ray 0.665 0.461 0.329 0.246 0.813

Soft-Attention Spine
X-Ray 0.707 0.492 0.344 0.243 0.802

Hard-Attention Spine
X-Ray 0.718 0.504 0.357 0.250 0.780

Ours Spine
X-Ray 0.763 0.592 0.445 0.360 0.847

Table 4. The evaluation results of this model are compared with those of other models in related
work on spinal X-ray image datasets.

Methods of Related Work Datasets BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr

Reference [17] Spine X-Ray 0.695 0.390 0.384 0.291 0.812

Reference [20] Spine X-Ray 0.789 0.483 0.365 0.259 0.451

Reference [21] Spine X-Ray 0.673 0.489 0.355 0259 0.766

Reference [23] Spine X-Ray 0.467 0.361 0.298 0.257 0.808

Ours Spine X-Ray 0.763 0.592 0.445 0.360 0.847

The comparison results on the spinal X-ray image dataset show that compared with
the four models, the proposed model had considerable improvement in all evaluation
indexes of BLEU-2, BLEU-3, BLEU-4, and CIDER, except the BLEU-1 index.

Comparison experiment 3: In order to demonstrate the effect of simplified explanatory
sentences, we showed the BLEU and CIDER scores of the trained model under the original
diagnosis report and the simplified sentence report, respectively. The scores of BLEU
and CIDEr are shown in Table 5. Non-scoliosis samples were not included in the test
set because non-scoliosis images would automatically be described as empty sentences,
perfectly repeating the original label, which would inflate the score.

Table 5. BLEU scores and CIDEr score for the spine in the test set, comparing models trained to
reproduce the original report sentences vs. our simplified explanatory sentences.

N-Grams Original Reports Simplified Sentences

1-g 0.670 0.763
2-g 0.490 0.592
3-g 0.350 0.445
4-g 0.250 0.360

CIDEr 0.750 0.847

It can be seen from the table that the diagnostic text generated by the model trained
with the simplified diagnostic report had much higher scores in both the BLEU1-4 index
and the CIDEr index than that generated by the model trained with the original report,
which confirms that simplifying complex diagnostic reports can improve the model’s
ability to reproduce sentences and obtain more accurate spinal image description. During
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the training, the evaluation index changed with each iteration of the model, as shown in
Figure 7. It can be seen from the figure that with each iteration of the model, the evaluation
index constantly improved, and the model effect became better and better.
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Figure 7. (a) BLEU-1 evaluation index change trend graph with iteration; (b) CIDEr evaluation index
change trend graph with iteration.

4.4. Description Results

To evaluate the descriptive ability of our model to generate sentences, 200 spinal
X-ray images of different Lenke classifications were randomly selected from the test set for
validation. The description of this model in the spinal X-ray image is shown in Figure 8.
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It can be seen from the description results that the model in this paper has a good
ability to describe the curvature characteristics of scoliosis. Different Lenke classification
images can be identified, and the bending position, bending direction, and category of
the image can be described in the description process. The sentences described had
consistent sentence structures, as expected. In addition, we calculated the percentage of
sentences containing spinal curvature positions and key feature descriptions in the models
trained on the original diagnosis report and the models trained on the processed sentences,
respectively, as shown in Table 6. It can be seen from the table that the model trained by the
simplified sentence could generate a more accurate description of the disease characteristic
information than the model trained by the original report.

Table 6. The percentage of explanatory sentences that contain an appropriate description of the
location andcharacter of the spinal curvature.

Original Reports Simplified Sentences

73% 95%

Finally, in order to verify whether the spinal X-ray image description model could
really pay attention to the semantics of key features in spinal images, attention mechanism
visualization was adopted for the feature extraction process of the model, and it was
generated into the corresponding thermal map output. The thermal map results are shown
in Figure 9. It can be seen that the model was able to focus on the position of the curvature
of the spine in the description, resulting in a more accurate and detailed description.
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4.5. Doctor’s Score

We selected 30 cases from the test set, which included a randomly selected Lenke
classification image of scoliosis, randomly distributed from Lenke-1 to Lenke-6. For each
Lenke classification, we used the model to generate the corresponding diagnostic text
and gave it to five clinicians at Guizhou Orthopedics Hospital. We asked the doctors to
compare our diagnostic text with the original diagnostic report and score the accuracy of the
description of the key features of the spine and the accuracy of the Lenke classification of the
spine. This was rated on a scale of 1 to 10, with 1 representing a completely unsatisfactory
explanation and 10 representing a perfect explanation. Table 7 shows the average scores of
the scoring results given by clinicians. As can be seen from the scoring results, the scores
were mainly distributed between 8 and 9, so the diagnostic text generated by this model
could be recognized by professional doctors.
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Table 7. The scores given by a group of 5 doctors for different explanations for a diagnosis of spinal
curvature, and the average score given by them.

Doctor Score

Doctor1 8.8
Doctor2 8.3
Doctor3 8.5
Doctor4 9.1
Doctor5 8.6
Average 8.66

5. Discussion

To date, many researchers have made many attempts to generate descriptive texts
from natural and medical images, but these methods have all used existing diagnostic
report data as training labels, aiming to generate the same diagnostic text as the original
report. However, the sentences in the original report were too complex, and the logic of the
sentences was mostly affected by the subjective factors of clinicians. It is impossible for a
computer to understand and reproduce the original report written by a human mind, so
the diagnostic text generated by their model was not very effective.

In terms of spinal medical images, most of the current work is based on the disease
detection and classification of spinal medical image datasets, and there has been no related
research on the generation of spinal disease diagnosis reports. Therefore, this paper con-
ducted a study on the automatic generation of a scoliosis diagnosis report. Different from
the previous description methods, we created a new set of hand-marked sentences accord-
ing to the visual features of spinal images under the guidance of professional radiologists
as the labels for model training, and marked up the original diagnosis report into simple
and consistent sentences with the same structure, using these sentences as a training model.
Therefore, in the validation of the test sets, the model in this paper could output short but
critical feature descriptions of the diagnostic text. In the model, the convolutional attention
mechanism CBAM we added was different from the channel attention mechanism in tradi-
tional methods or the global attention mechanism. This attention mechanism could focus
on channel and spatial features. Therefore, features with better correlation in spinal images
could be extracted, and the description sentences generated could pay more attention to the
information about spinal curvature. In addition, the attention mechanism was also added
in the text decoding stage. The attention mechanism allowed the decoder to focus on the
image region, with a high correlation with the words of the current moment, and it could
predict the words of the current moment according to the words of the previous moment,
instead of directly focusing on the whole image. Finally, the region features related to the
current moment were used to generate words. This method was also the reason why the
sentences generated by this model had good effects both in accuracy and in the score of
evaluation indicators.

This method is not limited to models and datasets; it can also be applied to other
medical image analysis tasks. However, there are limitations to this approach, as the
preparation of short statement labels is cumbersome and a certain medical knowledge of
scoliosis is required in the process of condensing traditional original diagnosis reports.
Therefore, applying the simplified method of sentence labeling to the generation of other
medical image diagnosis reports also requires a certain medical knowledge reserve or the
guidance of professional doctors.

6. Conclusions

At present, before scoliosis surgery in hospitals, the diagnosis is made by the doctor
observing the patient’s spinal X-ray. The results of different doctors’ observations may
be biased, and the accuracy of the diagnosis report usually depends on the doctor’s
experience. Therefore, this paper proposes an end-to-end Lenke classification report
automatic generation model for scoliosis that innovatively processes the original diagnosis
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report into standardized simple sentences for training. In the model, image features are
extracted by a deep residual network of fusion channels and spatial attention mechanisms.
The improved M-LSTM long and short memory networks are integrated with the attention
mechanism to decode the diagnostic text. Finally, in order to verify the effect of the model,
the test was carried out on the scoliosis test set. From the perspective of the generated
descriptive sentences, it can describe the curvature information of the spine in the spinal
X-ray map through standardized and concise sentences and give the Lenke classification
results of the spine. The generated descriptive sentences have achieved good scores on
the BLEU and CIDEr indexes. In order to further prove the diagnostic significance of the
generated diagnostic text, we gave the diagnostic text to five professional clinical doctors
for scoring, and the average score was 8.66, which proved that the diagnostic text generated
by our model can assist doctors in diagnosis.
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