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Samuel Molčan , Monika Smiešková , Hynek Bachratý , Katarína Bachratá and Peter Novotný *

Department of Software Technology, Faculty of Management Science and Informatics, University of Žilina,
010 26 Žilina, Slovakia; samuel.molcan@fri.uniza.sk (S.M.); monika.smieskova@fri.uniza.sk (M.S.);
hynek.bachraty@fri.uniza.sk (H.B.); katarina.bachrata@fri.uniza.sk (K.B.)
* Correspondence: peter.novotny@fri.uniza.sk

Abstract: The elasticity of red blood cells (RBCs) plays a vital role in their efficient movement through
blood vessels, facilitating the transportation of oxygen within the bloodstream. However, various
diseases significantly impact RBC elasticity, making it an important parameter for diagnosing and
monitoring health conditions. In this study, we propose a novel approach to determine RBC elasticity
by analyzing video recordings and using a convolutional neural network (CNN) for classification. Due
to the scarcity of available blood flow recordings, computer simulations based on a numerical model
are employed to generate a substantial amount of training data. The simulation model incorporates
the representation of RBCs as elastic objects within a fluid flow, allowing for a detailed understanding
of their behavior. We compare the performance of different CNN architectures, including ResNet and
EfficientNet, for video classification of RBC elasticity. Our results demonstrate the potential of using
CNNs and simulation-based data for the accurate classification of RBC elasticity.

Keywords: red blood cell; video classification; computer simulation; convolutional neural network

1. Introduction

Red blood cells (RBCs) play a crucial role in the transportation of oxygen within the
blood. The health of RBCs is vital to their ability to efficiently flow through blood vessels,
facilitated by their deformable membrane [1]. Elasticity is a key characteristic of healthy
RBCs and is influenced by various natural factors, including the age of the cells. However,
the impact of different diseases such as malaria [2], leukemia [3], diabetes [4], or sickle cell
disease [5–8] significantly affects RBC elasticity.

Classifying RBCs can provide valuable insights and benefits in various scientific and
medical contexts. Firstly, the accurate classification of RBCs enables the identification
and characterization of different cellular types, such as normal RBCs, sickle cells, and
other abnormal cell morphologies [9]. This classification can aid in the diagnosis and
monitoring of various blood disorders, including sickle cell disease, thalassemia [10],
and hereditary spherocytosis [11]. By distinguishing between different types of RBCs,
healthcare professionals can better understand disease progression, assess the severity of
conditions, and tailor treatment strategies accordingly. A more general overview of the
techniques and importance of capturing cells of different elasticity can be found in [12,13].

Furthermore, RBC classification can contribute to the understanding of physiologi-
cal and pathological processes within the human body. For instance, variations in RBC
morphology may be indicative of certain underlying health conditions or physiological
changes [14]. By analyzing and classifying RBCs, researchers can investigate the impact of
factors such as nutrition, disease states, genetic variations, and environmental exposures
on RBC characteristics. This knowledge can provide valuable insights into the mechanisms
underlying various diseases and conditions, as well as facilitate the development of novel
therapeutic approaches.
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Moreover, RBC classification has implications beyond clinical and research settings. In-
dustries involved in blood transfusion services and blood banking heavily rely on accurate
identification and classification of RBCs to ensure compatibility and safety in transfu-
sion procedures. Classifying RBCs according to specific markers or characteristics al-
lows for precise matching between donors and recipients, minimizing the risk of adverse
transfusion reactions.

This study aims to determine the elasticity of RBCs by analyzing the geometric charac-
teristics captured in video recordings. Unfortunately, there is a scarcity of available blood
flow recordings, and the limited number of videos is insufficient to train a neural network
(NN) adequately, even with data augmentation techniques. One alternative approach is
to employ computer simulations based on a numerical model that can be tailored to the
experimental requirements, such as the desired blood flow properties and structure. Com-
puter simulations offer a more detailed understanding of the behavior of the investigated
blood flow compared to limited video recordings. Therefore, the integration of computer
simulations in the study of hemodynamics and the development of new diagnostic tech-
niques holds significant value. The simulation model used in this study is an extension of
ESPResSo and incorporates the representation of blood cells as elastic objects within a fluid
flow. The validity of the model is continuously assessed by comparing simulation results
with laboratory experiments [15]. By utilizing simulations, a substantial amount of data
for training NNs can be generated, particularly from video analyses of such experiments.
The simulation model employed in our study controls the elasticity of RBCs using five
parameters, which are described in detail in Section 3.

The determination of RBC elasticity through simulation experiments has been investi-
gated in prior works [16,17]. However, this paper proposes a novel approach capable of
identifying various levels of RBC elasticity associated with different diseases from video
recordings. The classification of videos is accomplished using a convolutional neural
network (CNN).

The simulation model of blood flow brings new possibilities for the analysis of blood
flow and its properties by NN. We can observe the phenomena resulting from the current
knowledge about the behavior of blood cells and their properties on videos of real blood
flow experiments, recorded on cameras. However, these recordings are always only two-
dimensional, and information about the third dimension can only be obtained by adding a
recording of the same flow from another, independent camera, or from other shots. If we
could create a sufficiently accurate simulation model, we could see how exactly we can
identify cell properties from a 2D image of this simulation and, more specifically, how the
information and characteristics obtained from the video may differ from the characteristics
obtained from the complete model information. In this paper, we do not primarily analyze
how well the simulation models the real experiment, but investigate the possibilities and
success of using NN to compare the success of categorizing cells of different elasticities
when we know the complete information (the exact position of the surface particles, all
three dimensions) with the case when we only know the video recording; that is, the two-
dimensional information. The use of CNN to recognize the elasticity of a moving blood
cell is our second attempt to deal with this topic. In previous work, we used statistical
methods and multidimensional data analysis [18]. We applied CNN in blood flow analysis
to predict the trajectory of red blood cells in [19].

CNNs, inspired by biological systems, are widely employed in deep learning for
image and video classification tasks. The primary advantage of CNNs lies in their ability
to analyze the semantic content of images while explicitly leveraging the spatial structure
through restricted connectivity between layers (local filters), parameter sharing (convo-
lutions), and specialized neurons for local invariance (max pooling). CNN architectures
have demonstrated their ability to learn interpretable image features [20]. Consequently,
these architectures effectively shift the focus from manual feature design to the design of
network connectivity structures and appropriate hyperparameter choices.
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2. Materials and Methods

Video classification involves the assignment of one or more labels to a video based
on its content. The utilization of NNs for video classification has gained popularity due
to their ability to learn intricate patterns within the data. CNNs are particularly suitable
for video classification tasks as they can effectively capture spatial and temporal features.
CNNs consist of multiple layers of neurons that are trained to extract relevant features
from images or video frames.

Typically, NNs used for video classification are trained on a large dataset of labeled
videos. These videos are partitioned into training and validation sets to assess the perfor-
mance of the model. To increase the diversity of the training data, various data augmen-
tation techniques, such as flipping, rotating, and scaling, can be employed. Additionally,
transfer learning can expedite the training process by utilizing pre-trained models that
were previously trained on different datasets.

However, video classification poses challenges due to variations in lighting conditions,
camera angles, and object appearances. Domain adaptation techniques can address these
challenges by transferring knowledge from a source domain to a target domain.

The application of video classification using NNs spans various fields, including
surveillance, entertainment, and healthcare. In healthcare, video classification can aid
in the analysis of medical videos such as endoscopic videos, facilitating the detection of
abnormalities and assisting in diagnosis. The evaluation of video classification performance
using NNs can be measured using metrics such as accuracy, precision, and recall. The
choice of evaluation metric depends on the specific application and the relative importance
of different types of errors. Overall, video classification using NNs is an actively evolving
field with numerous promising applications and associated challenges.

2.1. ResNet

Residual Network’ (ResNet) [21] is a popular type of CNN architecture that was
originally designed for image classification; see Figure 1. However, ResNet can also be
used for video classification by adapting it to process multiple frames of a video sequence.

In a traditional CNN, each layer processes the output of the previous layer to extract
increasingly complex features from the input image. However, as the network becomes
deeper, it can become harder to train and can suffer from the vanishing gradient problem.
This problem occurs when the gradients used to update the weights of the network become
very small, making it difficult to learn from the data.

ResNet solves this problem by introducing residual connections between layers. These
connections allow the network to “skip” over certain layers, allowing for information to
pass through unchanged. This helps to prevent the gradients from becoming too small,
allowing the network to learn more effectively.

To use ResNet for video classification, we can apply it to each frame of the video
sequence and then combine the outputs from each frame to obtain a final classification.
This can be achieved by either averaging the outputs or using an attention mechanism to
focus on the most relevant frames.

One popular implementation of ResNet for video classification is the Two-Stream
ResNet, which consists of two ResNet networks: one for processing spatial information
(the appearance of the objects in the video) and one for processing temporal information
(the motion of the objects in the video). The spatial network processes each frame of the
video independently, while the temporal network processes pairs of frames to capture
motion information. The outputs from both networks are then combined to obtain a
final classification.

Overall, using ResNet for video classification can be an effective approach due to its
ability to learn complex features and its use of residual connections to prevent the vanishing
gradient problem.
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Figure 1. ResNet50 architecture [22].

2.2. EfficientNet

EfficientNet [23,24] is a family of CNNs that were specifically designed to be more
efficient in terms of computation and parameter usage than existing CNNs. EfficientNet
achieves this by using a novel scaling method that optimizes the network architecture
(Table 1) based on the available computational resources.

EfficientNet can also be used for video classification by adapting it to process multiple
frames of a video sequence. One way to do this is to use a 3D CNN architecture, which can
capture both spatial and temporal information from the video frames.

To use EfficientNet for video classification, we can apply the 3D CNN to each frame
of the video sequence and then combine the outputs from each frame to obtain a final
classification. This can be achieved by either averaging the outputs or using an attention
mechanism to focus on the most relevant frames.

One advantage of using EfficientNet for video classification is that it is highly efficient
in terms of computation and parameter usage. This can be important for applications where
resources are limited, such as on mobile devices or in real-time video analysis. EfficientNet
can also achieve high accuracy on a variety of image classification tasks, which suggests
that it may also be well-suited for video classification.

However, there are some challenges associated with using EfficientNet for video
classification. One challenge is that video classification typically requires processing a
large number of frames, which can be computationally intensive. Another challenge is
that EfficientNet may not be as effective at capturing temporal information as other CNN
architectures that were specifically designed for video classification, such as the Two-Stream
CNN or the 3D ResNet.

Overall, using EfficientNet for video classification can be an effective approach due
to its efficiency and high accuracy in image classification tasks. However, it may re-
quire additional optimization and tuning to achieve an optimal performance on video
classification tasks.

Table 1. EfficientNet v2 B0 architecture [23].

Stage Operator Resolution Channels Layers

1 Conv3x3 224× 224 32 1
2 MBConv1, k3x3 112× 112 16 1
3 MBConv6, k3x3 112× 112 24 2
4 MBConv6, k5x5 56× 56 40 2
5 MBConv6, k3x3 28× 28 80 3
6 MBConv6, k5x5 28× 28 112 3
7 MBConv6, k5x5 14× 14 192 4
8 MBConv6, k3x3 7× 7 320 1
9 Conv1x1 & Pooling & FC 7× 7 1280 1

3. Data Preparation

The source data used to classify the health of RBCs were obtained from multiple
simulation experiments. These experiments were conducted using the open-source soft-
ware ESPResSo [25], incorporating its lattice–Boltzmann and object-in-fluid modules [26].
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Numerical simulations consisted of a model of an elastic object representing an RBC
embedded in a flowing fluid and interactions between individual objects (cell–cell and
cell–wall/obstacle). The model utilized the lattice–Boltzmann method to represent the
fluid, a spring network model to simulate the cell membrane, and a dissipative version
of the Immersed Boundary Method (IBM) to connect them. In addition to the fluid force,
elastic forces are exerted on the cell mesh points that are evaluated from the deformation of
the cell. The resultant force ~Ftot is the driving force according to which the mesh points are
propagated in space following Newton’s equation

m
∂2~x(t)

∂t2 = ~Ftot,

where m is the mass of the mesh points. The sources of are the elasto-mechanical properties
of the cell membrane, the fluid–cell interaction or possibly other external stimuli.

All simulations were performed under consistent channel and fluid flow parameters.
The channel had a cuboid shape with dimensions of 104 × 60 × 40 µm, and the fluid was
discretized into a three-dimensional grid with a spatial step of 1 µm. The elasticity of RBCs
becomes most apparent when they come into contact with other objects. Therefore, we
designed a simulated channel topology where RBCs flow through a space with obstacles.
The simulated channel featured five cylinders, acting as obstacles that restricted the area of
blood flow and induced the manifestation of RBC elasticity (see Figure 2). This channel
design aimed to replicate a realistic laboratory environment. The kinematic viscosity of
the fluid was 1.3× 10−6 m2/s, and the density was 1.025× 103 kg/m3. To initiate fluid
flow, external forces were applied, with values chosen to achieve a maximum velocity of
approximately 0.03 m/s.

Figure 2. Scheme of the simulation microfluidic channel with cylindrical obstacles.

Cell–cell interactions were simulated using the membrane_collision potential, while
interactions between cells and the channel walls were modeled using the soft_sphere
potential. RBCs were represented by a surface network consisting of 374 nodes. The elastic
properties of the cells were simulated using five types of elastic forces (shown in Table 2,
each corresponding to a different elastic modulus.

Table 2. Overview of the used simulation parameters.

Coefficient Value

stretching coefficient (ks) 5× 10−6 N/m
bending coefficient (kb) 3× 10−19 Nm

coefficient of local area conservation (kal) 2× 10−5 N/m
coefficient of global area conservation (kag) 7× 10−4 N/m

coefficient of volume conservation (kv) 900 N/m2
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In this study, we focused on four levels of RBC elasticity. Two levels represented
healthy RBCs, with the most elastic RBCs having a stiffness coefficient (ks) of 0.005, and
the least elastic RBCs representing malaria-infected cells at stage 3 of the disease with a
ks value of 0.03 (The value of ks = 0.03 was chosen based on the reduced elasticity observed
in malaria-infected cells at stage 3, as determined by an optical tweezers stretching experi-
ment [27]). The remaining two levels of RBC elasticity were evenly distributed between the
healthy and malaria-infected RBCs, with ks values of 0.0133 and 0.0216, respectively.

The size of the training dataset plays a critical role in the training of machine learning
(ML) models. When the dataset is small, the model may struggle to capture the intricate
patterns and nuances present in the data, resulting in a poor generalization performance
on unseen data. Conversely, a larger dataset provides the model with more examples
to learn from, leading to better generalization and reduced overfitting where the model
becomes too specialized to the training data. Therefore, it is crucial to have a sufficiently
large training dataset to develop accurate and reliable ML models.

However, it is important to consider the computational resources required to train
models on large datasets. Larger datasets demand more computational power and longer
training times. Thus, striking a balance between dataset size and available computational
resources is necessary for successful model training.

Each simulation in our study involved 36 RBCs, with nine cells representing each
level of elasticity. The simulated channel has a periodic structure, meaning that when
an RBC exits the channel, it reappears at the beginning. We remove the initial and final
passes of RBCs due to their incompleteness. As a result, each RBC completes approximately
20–21 passes through the simulated channel (Figure 3). Consequently, each part of the
train/validation datasets contains approximately

4 types of RBC× 9 from each type× 21 passes = 756 samples.

Figure 3. One pass of a red blood cell (RBC) through the simulated channel.

Given the small number of training examples, we have two options to address this
limitation. First, we can utilize data augmentation techniques to augment our training set
and increase its size. Data augmentation involves applying transformations to the existing
examples to create new variations. In our case, we can perform vertical flips (to preserve
the direction of blood flow) and rotations (while considering the preservation of blood flow
direction). By applying these augmentations, we can generate additional training examples
and enhance the diversity of the dataset.

The second option is to leverage pretrained models, which do not require training
from scratch and hence need fewer training examples. Pretrained models are pre-trained
on large-scale datasets and have learned general features. We chose two pretrained models,
EfficientNet v2 B0 and ResNet50, which have demonstrated successful results in various
image and video tasks [28–31]. These models only require a sufficient number of training
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examples to fine-tune the last few layers of the NN, making them well-suited to our small
training dataset.

To prepare the dataset, we generated video recordings of individual RBCs from the
simulation data. These videos serve the purpose of training and validation. Since the
simulations performed in ESPResSo provide three-dimensional information about the flow
of simulated RBCs, we projected these data onto a two-dimensional plane. We achieved
this by generating a 2D video that captures the width and length of the channel while
disregarding differences in depth. This transformation enabled us to effectively analyze and
classify the RBC behavior in the videos using image and video classification techniques.

4. Results and Discussion

Our network used video samples in the shape of N × T × H ×W × C, where N
represents the batch size, T is the number of frames in the video, H is the height, W is the
width, and C is the number of channels, which is 3 (red, green, blue). Then, we rescaled the
video into black and white format, which reduced the number of channels from 3 to 1.

For the base of our models, we used EfficientNet v2 B0 and ResNet50, which are
pretrained models. Since the two pretrained models we used are intended for image
classification, we used a time-distributed layer, which enables the model to classify video
recordings. The pretrained model is not trainable. This was followed by 3D Average
Pooling. We finished our network with a sequence of Flatten, Dropout, and Dense layers
(Figure 4), which led to an output with the number of neurons equal to the number of
classes; in our case, four neurons. We used Dropout and regularization for the last dense
layer to avoid overfitting. The network’s optimizer is either Adam or SGD.

Figure 4. Diagram of the network architecture. Base model can be one of EfficientNet v2 B0
or ResNet50.

We optimized the hyperparameters of our network using the Hyperband class from
the keras_tuner module [32]. The optimized hyperparameters differ slightly based on the
network’s optimizer, and the differences can be seen in Table 3.

The result of the hyperparameter optimization for each type of network and each
type of optimizer is shown in Table 4. The best accuracy is achieved with EfficientNet
v2 B0 model using Adam optimizer for the hyperparameters shown in Table 5. The
validation results for each type of model are poor while the training accuracies are high,
which indicates two things. First, the networks are overfitting for each architecture and
optimizer, despite the regularization method used to avoid this effect. Second, the presence
of overfitting suggest there is some information in the data that can be learnt.

Table 3. Hyperparamters optimized for Adam and SGD.

Hyperparameter Adam SGD Options

Dropout yes yes 0.05, 0.1, 0.2, 0.3
Regularizer yes yes L1, L2, L1 + L2

Initial learning rate yes yes 1 × 10−3, 1 × 10−4, 1 × 10−5

Final learning rate yes no 1 × 10−5, 1 × 10−6, 1 × 10−7

Decay steps yes no 1 × 104, 1 × 105, 1 × 106

Momentum no yes 0.6, 0.8, 1.0
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Table 4. Validation accuracies for the models with 4 classes using optimized hyperparameters.

Neural Network Model Optimizer Validation Accuracy
4 Classes 2 Classes

EfficientNet v2 B0 Adam 55.48% 61.72%
SGD 46.86% 56.44%

ResNet50 Adam 54.26% 55.12%
SGD 51.45% 58.25%

Table 5. The best set of hyperparamters from Adam optimizer.

Hyperparameter Value

Dropout 0.1
Regularizer L1 + L2

Initial learning rate 1 × 10−5

Final learning rate 1 × 10−5

Decay steps 1 × 104

We observe from the confusion matrix for the validation set (Figure 5) that the main
problem of classification is in distinguisishing between RBCs with the reduced elasticity,
while its ability to distinguish between the healthy and sick RBCs is more precise. Therefore,
we decided to train a binary classification NN, where the first class contains the healthy
RBCs (ks = 0.005) and the second class consists of all the cells with reduced elasticity. We
ran the hyperparameter optimization for 2 types of NNs with 2 different optimizer options.

From the confusion matrix shown in Figure 6 we discovered that our hypothesis is
not true. After changing the classification problem from 4 classes to 2 classes, the final
accuracies increased, but not as significantly as the confusion matrix from Figure 5 suggests.
We also tried a weighted classification for a combination of EfficientNet v2 B0 and the
Adam optimizer where the final accuracy insignificantly increased to 61.74%, showing only
a 0.02% increase.

There is an option to separate healthy and sick RBCs after they are classified into
4 classes, where class 0 is healthy and classes 1, 2 and 3 are sick. In this manner, we
achieved a classification accuracy of 93.54%. We elaborate on this in the conclusion.

Figure 5. The confusion matrix represents the classification results of the validation set, which
consists of samples belonging to 4 classes. The classification was performed using the EfficientNet v2
B0 model, which was optimized with the Adam optimization algorithm.
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Figure 6. The confusion matrix represents the classification results of the validation set, which
consists of samples belonging to 2 classes. The classification was performed using the EfficientNet v2
B0 model, which was optimized with the Adam optimization algorithm. The classes of healthy and
sick are represented by the labels 0 and 1, respectively.

4.1. Adding Physical Information

In order to enhance the performance of the network, we added information about the
underlying physics—specifically, about the velocity of the fluid flowing in the channel. Our
hypothesis was that by adding the physical information, the NN would be able to learn to
classify the RBCs better than without it.

First, using ESPReSso, we calculated the velocities of each point of the fluid (which is
represented as a mesh; more information is available in [33]) in the empty channel—the
channel with no RBCs in it. We obtained a 3D data of velocities, since the channel is a
3D object. Then, we took a layer H ×W × bD/2c that corresponds to the velocities in the
middle of the channel along the depth axis. This information can be used in two ways: we
can either use it as it is, meaning 3D data with dimensions W × H × 3, where 3 represents
the x, y, and z components of a velocity vector, or we can create a heatmap where the colors
represent the velocity of the flow.

In both options, we added the physical information by creating a new branch of our
NN that has the physical information about the flow as input. This information is passed
through a Rescale layer, three 2D convolution layers with a number of filters 32, 16, 8,
followed by a max pooling layer, a flattening layer, and a dense layer with 1024 hidden
units. Then, it is concatenated with the penultimate output of the main branch of our NN,
which is passed to the last dense layer.

Generally, it is not effective to add the same information to each training example for
a NN. The reason for this is that NNs learn patterns and relationships in the data through
the variations and differences between the examples. When all examples contain the same
information, the network is unable to distinguish between them and may not learn the
relevant patterns that are necessary for accurate predictions. However, there may be some
cases where adding the same information to each training example can be helpful. For
example, if the added information provides some contextual or background information
that is relevant to all examples, it may help the network learn more effectively. In general,
it is important to carefully consider the information that is added to each training example
and how it may affect the network’s ability to learn and generalize. We trained both
versions of PINNs using the optimized hyperparameters described in Table 5, with the best
performing model being EfficientNet v2 B0 with the Adam optimizer. The final results are
presented in Table 6.
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Table 6. The validation accuracies were evaluated for six distinct classes of models using optimized
hyperparameters. The names of these neural network (NN) models consist of two parts. The
first part represents the number of classes used during training, while the second part indicates
the type of physical information employed for the physics-informed neural network (PINN). The
abbreviations “4c”, “2c”, and “2cw” denote four classes, two classes, and two weighted classes,
respectively. Additionally, “Heatmap” and “Values” signify the utilization of heatmap information
and velocity vectors from the middle flow layer, respectively.

NN Model Accuracy

4c_heatmap 87.83%
4c_values 91.48%

2c_heatmap 57.04%
2c_values 67.33%

2cw_heatmap 59.13%
2cw_values 69.78%

The obtained results highlight several important observations regarding the per-
formance of different classification approaches. Firstly, when comparing the two-class
classification (whether weighted or unweighted) to the four-class classification converted
to two-class classification, it is evident that the latter achieves significantly better results.
This suggests that the additional information present in the four-class classification helps
to improve the overall accuracy of the model.

Furthermore, the inclusion of physics-related information in the form of a heatmap
appears to be less effective than the use of velocity vectors as input. This implies that
the velocity vectors carry more meaningful and discriminative information for accurate
classification. The use of velocity vectors as input likely allows for the model to capture
dynamic patterns and better understand the motion characteristics of the analyzed data.

However, it is interesting to note that even though velocity vector information is
incorporated, it does not lead to a substantial improvement in the final accuracy of the
network. Specifically, the NN that solely relies on the provided input without any additional
physical information achieves an accuracy of 93.56%. In contrast, the network utilizing
velocity vectors achieves a slightly lower accuracy of 91.48%. This suggests that while the
inclusion of velocity vectors may provide some useful information, it does not necessarily
translate into a significant boost in classification performance.

4.2. Up-Scaling of the Healthy Examples

Our simulations include four types of RBCs, of which three types have reduced
elasticity and are considered sick. Although the ratio of healthy to sick RBCs is 1:3, this does
not correspond to the observed ratio in reality [34]. Therefore, we used data augmentation
to upscale the minority class and balance the class sizes. As described in Section 3, we used
horizontal flip and rotation to add two new training examples for each original example.
This augmentation, together with the original healthy examples, makes the healthy class
three times larger.

We train the best performing model from our previous experiments, a four-class
classification NN with no additional information, which is then reduced to a two-class
classification. We augmented the training dataset and the validation dataset to maintain
consistency between the class distribution of the datasets. After training and validating
the model on the dataset with the same distribution, we cross-validated the model on the
dataset with a different class ratio.

Table 7 provides a comparison of three models: the original model (O_4x1) and the
best-performing model from previous experiments, along with two models trained on
datasets with equal ratios of healthy and unhealthy RBCs. The first model uses unmodified
class weights (A_3_1_1_1), resulting in equal weights for each class. The second model
(AW_3_1_1_1), on the other hand, uses class weights proportional to the sizes of the



Appl. Sci. 2023, 13, 7967 11 of 15

classes. We observed that the second model outperforms the first model in terms of
classification accuracy.

The results indicate that the original dataset achieved the highest accuracy on the
original dataset for all three models. The O_4x1 model achieved an accuracy of 93.54%,
while the A_3_1_1_1 and AW_3_1_1_1 models achieved lower accuracies of 88.88% and
81.55%, respectively.

When comparing the accuracies on the augmented dataset, it can be observed that
the A_3_1_1_1 model performed slightly better, with an accuracy of 93.91%, compared
to the 91.01% accuracy of the O_4x1 model. However, the AW_3_1_1_1 model achieved
an accuracy of 92.21%, which was slightly lower than both the original dataset and the
A_3_1_1_1 model.

Based on these findings, it can be concluded that augmenting the dataset through
upsampling had a mixed impact on the model performance. While the A_3_1_1_1 model
showed a slight improvement, the addition of class weights in the AW_3_1_1_1 model
did not yield significant improvements and even resulted in a slightly decreased accuracy
compared to the original dataset.

Table 7. The validation accuracies of three models with identical architectures were assessed. The
first model, referred to as O_4x1, was trained on the original dataset, which consisted of a roughly
equal number of examples per class. The second model, denoted as A_3_1_1_1, was trained on an
upsampled dataset, while the third model, labeled as AW_3_1_1_1, utilized the upsampled dataset
with additional class weights proportional to their respective proportions.

Validation O_4x1 A_3_1_1_1 AW_3_1_1_1

original dataset 93.56% 88.88% 81.55%
augmented dataset 91.01% 93.91% 92.21%

4.3. Four-Class to Two-Class Classification

The obtained results reveal important insights into the performance of various clas-
sification approaches. One notable observation is the comparison between the two-class
classification and the four-class classification converted to two-class classification. The two-
class classification refers to the classification task where the model distinguishes between
two specific classes (e.g., healthy and sick), while the four-class classification converted to
two-class classification involves combining multiple classes into two broader categories.

The results indicate that the four-class classification converted to two-class classifica-
tion yields a significantly better performance than two-class classification. This suggests
that the inclusion of additional classes in the training process provides valuable informa-
tion that enhances the overall accuracy of the model. By training the model on a dataset
consisting of multiple classes, it can capture a wider range of patterns, variances, and
characteristics present in the data. This broader understanding and increased complex-
ity of the model contribute to an improved classification accuracy when distinguishing
between the two broader categories in the four-class classification converted to two-class
classification scenario.

The enhanced performance achieved with the four-class classification converted to
two-class classification demonstrates the importance of considering a more comprehensive
representation of the data during model training. By incorporating additional classes,
the model can learn more nuanced and discriminative features, leading to better differ-
entiation between the target categories. This finding highlights the value of leveraging
the full range of available classes and their associated information when constructing
classification models.

The obtained results highlight the importance of carefully designing the classification
task and selecting the appropriate representation of classes to achieve optimal performance.
By leveraging the additional information provided by the four-class classification, the model
gains a deeper understanding of the underlying data, resulting in improved accuracy when
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distinguishing between broader categories. This underscores the significance of considering
the relevance and inclusion of additional information in classification tasks.

Furthermore, the findings also underscore the importance of selecting appropriate
input features in classification models. In this case, the inclusion of velocity vectors as input
features was found to be more effective compared to the use of a heatmap representation.
This suggests that the choice of input features plays a critical role in capturing relevant
patterns and characteristics for accurate classification.

Moreover, the study highlights that the network’s architecture and optimization tech-
niques are crucial factors influencing the final performance. It is important to consider the
interplay between the model’s architecture, training algorithms, and the specific classifica-
tion task at hand. Fine-tuning these components and exploring alternative approaches may
further improve the accuracy and performance of the classification model.

Overall, the results emphasize the need for the careful consideration of various factors,
including the classification task design, representation of classes, selection of input fea-
tures, network architecture, and optimization techniques, to achieve optimal classification
accuracy. Further analysis, experimentation, and refinement of methods are warranted to
advance our understanding and improve the accuracy of classification tasks.

4.4. Discussion

Accurate physical and numerical measurements of RBC deformation rate are very
complicated and difficult to implement when testing a blood sample that is not technologi-
cally and financially demanding. Therefore, in medical experiments, there is a prevailing
tendency to replace the measurement of elastic properties with the observation of other,
more easily detectable and correlated properties of RBC behavior in the flow of a blood
sample in a suitable microfluidic device [15,35].

The use of CNN and ML in the field of research and simulation of RBC properties
and behavior is not the ultimate method. Our intention is to gradually verify the potential
of this approach, which we addressed in [17,19]. Similarly, in this article, our goal was to
find out whether NNs can compensate the loss of accuracy and dimension of the image
data when processing video recordings with computational complexity. The issue of using
NNs in biology and medicine is the lack of training and verification data, and the need
for manual labeling. In our case, this difficulty is circumvented by the use of a verified
simulation model that produces a large amount of data with known parameters of the
used RBCs. After verifying the correctness of the predictions of the CNN trained in this
way, the next step will be to determine whether the data obtained exclusively from image
recordings of real experiments are equally sufficient.

5. Conclusions

In this study, we investigated the classification of RBC elasticity using video recordings
and CNNs. We addressed the scarcity of available blood flow recordings by employing
computer simulations based on a numerical model. Our simulation model successfully
captured the behavior of RBCs as elastic objects within a fluid flow, generating a large
amount of training data for CNN-based classification. By analyzing the geometric char-
acteristics captured in video recordings, we classified RBC elasticity using different CNN
architectures, including ResNet and EfficientNet.

Our results demonstrate that CNNs can effectively classify RBC elasticity, providing
a potential diagnostic tool for various diseases impacting RBC health. The integration
of computer simulations and CNN-based video analysis offers a valuable approach to
understanding the behavior of RBCs and developing new diagnostic techniques. The use
of simulation-generated data provides a rich source of training examples, enabling the
training of CNNs even with limited video recordings.

Furthermore, our study compared the performance of different CNN architectures, and
the results showed that the EfficientNet model achieved the best accuracy for RBC elasticity
classification. However, we observed that overfitting was a challenge for both ResNet
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and EfficientNet architectures, indicating the need for further regularization techniques to
improve the model’s generalization performance.

We have observed that training the network in a higher target space (four classes)
and subsequently mapping the results to a lower target space (two classes) yields the
best classification performance for our problem. Another important finding is that cross-
validation, where a model trained on a dataset with a different ratio of class examples is
validated on another dataset with a different ratio of class examples, results in a significantly
lower performance compared to validation on the same type of dataset. This observation
highlights the importance of training the model on a dataset with a class ratio that matches
the ratio observed in real-world scenarios. In our experiments, the RBC health is determined
only by elasticity, but in reality, other RBC properties can also change, such as volume, the
shape of the blood cell, etc. For this reason, further research is necessary.

In conclusion, our study highlights the potential of combining computer simulations,
video analysis, and CNNs for the classification of RBC elasticity. Further research and opti-
mization of CNN architectures and regularization techniques are warranted to enhance the
accuracy and robustness of the classification model. The development of accurate and reli-
able diagnostic tools for assessing RBC health can have significant implications for disease
diagnosis and monitoring, ultimately contributing to improved healthcare outcomes.
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