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Abstract: The role of biodiversity in improving the primary productivity within terrestrial ecosystems
is well documented. Each species in an ecosystem has a role to play in the overall productivity of
an ecosystem. Grass species nitrogen (N) estimation is essential in rangelands, especially in rugged
terrain such as mountainous regions. It is an indicator of forage quality, which has nutritional
implications for grazing animals. This research sought to improve and test the predictability of grass
N by applying a combination of remotely sensed spectral bands and vegetation indices as input.
Recursive feature selection was used to select the optimal spectral bands and vegetation indices
for predicting grass N. Subsequently, the selected vegetation indices and bands were used as input
into the non-parametric random forest (RF) regression to predict grass N. The prediction of grass
N improved slightly in the vegetation indices model (81%) compared to the bands model (80%),
and the highest prediction was achieved by combining the two (85%). This research ascertains that
including red-edge-based vegetation indices improves the prediction of grass N. S2 MSI remains
the ideal remote sensing tool for estimating grass N because of its strategically positioned red-edge
bands, which are highly correlated with chlorophyll content in plants.

Keywords: nutrients; rangeland; conservation; modeling; earth observation; remote sensing

1. Introduction

It is increasingly clear that biodiversity loss is causing rapid changes in ecological
processes [1]. Thus, globally, biodiversity loss is a major driver of ecosystem change [2].
Moreover, the sustainability and productivity of grassland ecosystems depend primarily on
biodiversity levels [3]. In rangeland plant communities, there is an indication that species
loss will reduce plant production and alter decomposition, thereby affecting the carrying
capacity of grazing animals [4]. The loss of rangeland biodiversity may also impair the
efficiency of rangeland vegetation in capturing essential resources, producing biomass, and
recycling critical nutrients [1]. Consequentially, some species may be lost and reduced in
biomass and diversity, affecting grazing animals’ nutrition. Therefore, it is imperative to
consider the nutritional value of multi- and single-species swards of grasses as research
on predictive dynamic grazing carrying capacity of rangelands becomes pressing in the
face of global change [5,6]. The distribution of grazing mammals in grasslands is primarily
attributed to the occurrence of nutritionally enriched vegetation species [7]. In protected
areas where large grazing mammals are considered, modeling nutrient distribution is
pivotal for biodiversity conservation and determining stocking rates [8].

Ascertaining the relationships between species diversity and nutrient levels will
improve the determination of stocking rates in conservation, especially in the advent
of ecosystem changes. Grass nitrogen (N) is a good indicator of rangeland quality and
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quantity and can provide pivotal information for farmers, land planners, and managers [9].
Estimating vegetation’s biophysical and biochemical variables is essential for improved
carrying capacity models [10]. Despite achieving moderate accuracies (R2 < 0.65), high
spatial resolution sensors are used to predict tree biomass for integration in carrying
capacity models in the heterogenous Savanna biome [10]. By using similar remote sensing
techniques, a substantially higher prediction accuracy was achieved when estimating tree
and grass biomass of the Savanna biome, over 89%, respectively [9]. The insights on the role
of freely available multispectral sensors in predicting grass N of homogenous grassland
are warranted, especially in undulated mountainous landscapes.

In African protected areas, nutrient deposition by large grazing mammals is pivotal for
enhancing carrying capacity [7,11]. Conversely, excessive grazing can reduce mineralization
rates via changes in vegetation dynamics, i.e., species composition, cover, and diversity, thus
affecting forage quality and quantity [12]. Nonetheless, studies have indicated the mutual
effect of grazing on grassland biodiversity and productivity [11]. The distribution and
abundance of large grazing mammals in South African rangelands are strongly influenced
by nutritionally sufficient forages and vegetation dynamics [7]. For example, these animals
prefer to forage on swards enriched in minerals, which is pivotal for their nutrition and
reproduction [13]. Determining habitat conditions, usage [14], and mineral nutrients [13]
has significant implications on stocking rates and carrying capacity.

Remote sensing data are constantly used with field data at multiple scales to estimate
rangeland indicators [15]. Some attempts to estimate grass N were made using hyper-
spectral in situ [16] and ex situ [17] data. Remote sensing satellite imagery could be used
to predict rangeland indicators such as plant species cover, structure, and composition;
in fact, a combination of Landsat (coarser spatial resolution sensor) and rapid-eye (high
spatial resolution sensor) predicted a rangeland’s vegetation and bare ground cover with
an accuracy of over 80% [15], further cementing the role of remote sensing data in pro-
ducing spatially explicit and continuous surface estimates of rangeland indicators. It has
been shown that vegetation indices from high spatial remote sensing data explained the
leaf nitrogen content in South African Savanna rangelands [9]. Furthermore, the research
shows that the prediction accuracies of grass N decrease with increasing phenology when
using high spatial multispectral commercial sensors: rapid-eye [18] and world-view 2 [9].
Conversely, Sentinel-2 (MSI) performed better than rapid-eye in predicting grass N in the
African Savanna biome, albeit with moderate and poor accuracy [19]. Notably, research
shows that red edge is strongly correlated to N. Therefore, Sentinel-2, a freely available
multispectral sensor, has great potential for predicting grass N because of its strategically
positioned red-edge bands. Furthermore, research shows that including red-edge-based
vegetation indices improves the estimation of grass N [9].

The estimations of foliar nitrogen have the potential to provide insight into animal
feeding patterns and distribution [16,19]. Remote sensing sensors with red-edge bands
can benefit the accuracy of mapping vegetation biochemical concentrations because this
spectrum is the point of maximum slope in healthy vegetation [16]. Sentinel-2 MSI (S2) has
become a highly sought-after instrument for vegetation mapping because of free access
to datasets and its superior spectral quality [19,20], especially the inclusion of multiple
red-edge bands, which are better suited for chlorophyll estimations [16]. The launch of
Sentinel-2 with the inclusion of red edge present an opportunity to validate N models
of coarser remote sensing sensors against those with high resolution [9]. Nonetheless,
with random forest (RF) algorithm, both Landsat 8 and Sentinel-2 achieved comparable
superior accuracies in forest mapping [19–21]. The objective of this study was not to test
the performance of machine learning algorithms in modeling grass N even though studies
show that RF is more robust than other modeling techniques and yields better estimates
of biochemical traits using remote sensing data [9,22]. Machine learning techniques are
often used for vegetation mapping via classification [23]; however, the application of
machine learning in grassland modeling could also be beneficial for predicting the im-
pacts of climatic changes. Using band optimization from multiple sensors and machine
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learning, grass biochemical properties were estimated with an accuracy of up to 82% in
alpine grasslands [22]. However, and to the best of our knowledge, this is one of the first
attempts of mapping grass N in this biome, i.e., Mesic mountainous grassland using remote
sensing tools. Therefore, this study sought to: (1) identify the optimal spectral bands for
predicting grass N in vegetatively homogenous Mesic mountain grasslands; (2) model and
establish grass N prediction accuracies based solely on bands, vegetation indicators, and a
combination of the two; and (3) rank the spectral bands and vegetation indices variables
according to the order of importance.

2. Study Area

The study was conducted in the Golden Gate Highlands National Park (GHNP)
in the northeastern Free State province, South Africa (Figure 1). The park comprises
32,758.35 ha and lies between 28◦27′ S–28◦37′ S and 28◦33′ E–28◦42′ E. The park is located
in mountainous grasslands at the foothills of the Drakensberg and forms part of the
Mesic Highveld grassland with marked variation in geology, topography, and rainfall.
The soil types in the park include shallow rocky soils (Glenrosa and Mizpah), deep soil
along drainage lines (Oakleaf), well-developed sand soils (Hutton and Clovelly), and
clayey structured soils (Milkwood and Tambakulu) [24]. The park is characterized by
summer rainfall, temperate summers, and cold winters. The rainfall season stretches from
September to April, with a mean annual rainfall ranging from 800 mm to 2000 mm [25].
The park lies between 1892 m and 2829 m above sea level. It comprises the grassland units:
Eastern Free State sandy grasslands (Gm 4), Basotho montane shrubland (Gm 5), Lesotho
Highveld basalt grassland (Gd 8), and Northern Drakensberg highveld (Gd 5) (Mucina and
Rutherford, 2006).
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Figure 1. A map of the study area.

3. Data Collection and Sampling

Figure 2 shows the flow diagram of the data methodology from the data collection
to the linear regression. Sentinel-2 multispectral satellite images were downloaded and
processed from the JavaScript code editor Google Earth Engine (GEE) (Table 1). Sentinel-2
satellites are ideal for vegetation monitoring as it provides high-resolution images with a
global 5-day revisit frequency. Most importantly, Sentinel-2 has spectral bands comparable
to sensors with high spatial resolution, particularly World-View 2. For this study, S2 MSI
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imagery dates were filtered to obtain multispectral images with mean reflectance between
January and March.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 11 
 

comparable to sensors with high spatial resolution, particularly World-View 2. For this 

study, S2 MSI imagery dates were filtered to obtain multispectral images with mean re-

flectance between January and March. 

 

Figure 2. A flow diagram of the research methods. 

Table 1. Sentinel-2—MSI datasets. 

Band Number Band Name Wavelength Description 

Band 1 B1 443.9 nm/442.3 nm Aerosols 

Band 2 B2 496.6 nm/492.1 nm Blue 

Band 3 B3 560 nm/559 nm Green 

Band 4 B4 664.5 nm/665 nm Red 

Band 5 B5 703.9 nm/703.8 nm Red edge 1 

Band 6 B6 740.2 nm/739.1 nm Red edge 2 

Band 7 B7 782.5 nm/779.7 nm Red edge 3 

Figure 2. A flow diagram of the research methods.

For data sampling, the land type of the map of Golden Gate was used as the first
stratification; vegetation data were collected from February to March, the rainy growing
months for South African montane grasslands. Thus, sampling sites of relatively homoge-
nous grasses were located randomly by creating random points using the sampling tool
in ArcMap 10.7.1. Subsequently, a total of 137 30 × 30 plots of homogenous grasses were
sampled; within each plot, 16 subplots of 1 × 1 m were systematically placed along a
transect at a 10 m interval, species cover and composition were recorded, and visual ariel
cover estimation and species identification were performed, respectively. The dominant
grass species were identified based on the highest cover from averaged subplots per plot;
the shoots were then clipped and stored in a brown paper bag. The grass specimens were
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dried (80 ◦C in 24 h) and thereafter taken to the laboratory for LECO chemical analysis [26]
to retrieve each species’ grass nitrogen (grass N).

Table 1. Sentinel-2—MSI datasets.

Band Number Band Name Wavelength Description

Band 1 B1 443.9 nm/442.3 nm Aerosols
Band 2 B2 496.6 nm/492.1 nm Blue
Band 3 B3 560 nm/559 nm Green
Band 4 B4 664.5 nm/665 nm Red
Band 5 B5 703.9 nm/703.8 nm Red edge 1
Band 6 B6 740.2 nm/739.1 nm Red edge 2
Band 7 B7 782.5 nm/779.7 nm Red edge 3
Band 8 B8 835.1 nm/833 nm Near infrared
Band 9 B8A 864.8 nm/864 nm Red edge 4
Band 10 B9 945 nm/943.2 nm Water vapor
Band 11 B11 1613.7 nm/1610.4 nm Shortwave infrared 1
Band 12 B12 2202.4 nm/2185 nm Shortwave infrared 2

4. Data Analysis

The spectral reflectance of Sentinel-2 band images (Table 1) for the average
January–March period was extracted corresponding to each sampling Garmin 65 s (up to
5 m accuracy) GPS point with grass N plot value. A random forest modeling algorithm
based on three modeling scenarios (bands only; vegetation indices; combination bands and
vegetation indices) was used to identify and predict the grass N concentrations. The choice
of random forest algorithm is influenced by its ability to overcome statistical overfitting
and multicollinearity to which remote sensing data are prone; the random forest (RF) is
a non-parametric statistical technique capable of predicting variables based on different
configurations of datasets [27]. Firstly, the selection of the number and identity of remote
sensing variables required to predict grass N was determined using recursive feature
selection (RFE) implemented from the “caret” package programmed in the R statistical
environment [9]. These selected variables were subsequently used as input into the RF
regression method to model grass N; this was implemented using the “Random Forest”
package (ref) with the R environment software verion 2022.02.0 (R Development Core Team,
2022). There are three main optimized variables: ntree, several regression trees grown based
on a bootstrap sample of observation (the default value is 500 trees); mtry; and the number
of predictors tested at each node (default is the square root of the total number of variables).
The selected random forest feature selection band was used to compute vegetation indices
(Table 2) in GEE. In total, 18 predictor variables were used for data analysis in this study:
10 remote sensing bands (B2:9, 10 and 11) and 8 vegetation indices based on red edge
4 from Sentinel-2 bands (Tables 1 and 2).

Table 2. Vegetation indices used in this study.

Index Used Formulae Reference

MCARIR4 ((NIR − Red edge 4) − 0.2*(NIR-Red edge 4))*(NIR/Red edge 4) [28]
MSAVIR4 0.5*(2*NIR + 1 − SQRT((2*NIR + 1) − 8(NIR − Red edge 4))) [29]
NDVIR4 (NIR − Red edge 4)/(NIR + Red edge 4) [30]
OSAVIR4 (1 + 0.6)*(NIR − Red edge 4)/(NIR − Red edge 4 + 0.16) [31]
RDVIR4 (NIE − Red edge 4)/SQRT(NIR + Red edge 4) [28]
SAVIR4 (2.5*NIR − Red edge 4)/((NIR + Red edge 4) + 2) [32]
SR4 NIR/Red edge 4 [33]
TCARIR4 3*(NIR − Red edge 4) − 0.2*(NIR − Red edge 4)*(NIR/Red edge 4) [34]
TVIR4 0.5*(120*(NIR − Red edge 4) − 200*(NIR − Red edge 4)) [35]
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Model Performance (Validation)

The statistical measure of model precision and robustness, the r-squared (R2) and
root-mean-square error (RMSE), was determined to test the performance; one-on-one rela-
tionships were tested using linear regression between response observed N and predicted N.
The parameters were used to assess the strength of the relationship between the observed
and predicted species richness and diversity:

R2 = 1− RSS
TSS

(1)

where R2 = coefficient of determination, RSS = sum of squares of residuals, and TSS = total
sum of squares:

RMSE =

√
∑N

i=1||y(i)− ŷ(i)||2

N
(2)

where N is the number of data points, y(i) is the i-th measurement, and ŷ(i) is its corre-
sponding prediction,

5. Results

Grass N ranged between 0.45 and 1.71% throughout the park (Table 3). The red-
edge bands were selected, optimally explaining grass N. In the bands-only dataset, red
edge 4 (B8A) was the select band variable for optimally explaining grass N (RMSE = 0.22,
R2 = 0.47). TVIR4 was the selected band variable optimally explaining grass in the red-edge-
based vegetation indices dataset. Similarly, TVIR4 was also the selected band optimally
explaining grass N in the dataset combining bands and vegetation indices (Table 4).

Table 3. Descriptive statistics: grass nitrogen (%).

Datasets N Min Max Mean SD CV (%)

Training 35 0.58 1.638 0.867 0.219 25
Test 15 0.44 1.71 0.93 0.34 36
All combined 50 0.45 1.71 0.89 0.25 29

Table 4. The optimal variable(s) selected for estimation of grass N.

Selected Variables RMSE R-Squared MAE Selected

Bands only

Red 0.2272 0.4223 0.1727
Red Edge 4 0.2154 0.4794 0.1672 *
SWIR 0.2249 0.4274 0.1721

Red Edge 4 Indices

NDVIR4 0.3184 0.00025 0.2347
TVIR4 0.3156 0.0000482 0.2284 *

Band + Vegetation
Indices

Red 0.2655 0.02986 0.205
Red Edge 4 0.2473 0.10306 0.1879
SR4 0.2396 0.14878 0.1842
TVIR4 0.2387 0.15517 0.1813 *

The variable that contributed the most toward explaining was B8A, according to the
random forest variable of importance score (Figure 3) in the bands-only dataset. In the
vegetation indices-only dataset, TCARIR4 and MCARIR4 had the highest score of variable
importance. All red-edge bands featured as contributing the most toward predicting grass
N in a dataset combining bands and vegetation indices; however, the latter contributed the
least (Figure 3).
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The random forest model explained 80% of the grass N in the bands-only model. For
the vegetation indices model, a prediction of 81% was achieved. The highest prediction,
however, was performed in the model combining both S2 and vegetation indices (Figure 4).
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6. Discussion

The correlation coefficients between grass N and remote sensing bands were moderate
and significant, except for the vegetation indices, which were not significant. Indeed,
studies show that leaf N correlates more with spectral bands, especially those in the red edge
position [9]. This may be because multispectral optical remote sensing bands provide more
estimates of vegetation characteristics, whereas microwave methods provide information
on the structural characteristics of vegetation [36]. This study showed a poor correlation
between vegetation indices derived from broad-based sensors and leaf N, attributed to
signal saturation [37], phenology, and seasonality [18]. Leaf N and biomass have been
effectively estimated by red-edge-based vegetation indices using hyperspectral [37] and
multispectral remote sensing [9].

Sentinel-2 multispectral sensor has become a very useful remote sensing tool because
it is freely available and includes the red-edge bands, which are related to chlorophyll in
plants [38]. It is not perplexing, therefore, that the red and red-edge bands are among the
most selected bands in this study because they are related to chlorophyll, which is related
to leaf N [38]. This research shows that Sentinel-2 can provide important information about
vegetation spectra with results comparable to commercial hyperspectral sensors. This study
shows that models predicting leaf N of grasses using higher resolution sensors could be
calibrated and used for data from coarser sensors as they provide similar information on
vegetation characteristics. Furthermore, this research indicates that rangeland monitoring
with sensors with rangeland capability is possible [38]. Indeed, Sentinel-2 performed con-
siderably better in predicting grass N than rapid eye, which has a higher spatial resolution
sensor [19].

Notably, the red edge 4 was the band selected for optimally estimating grass N in
this study; this indicates the vegetation stress observed during our sampling period as it
averages grass phenology. The relationship between red edge position (REP) and foliar
N depends on nitrogen and chlorophyll [38]. Thus, shifts in the red edge position are a
good indicator of changes in foliar N and water stress because changes in the REP is mainly
attributed to the chlorophyll content, which peaks and decreases during the wet and dry
seasons, respectively [38,39]. Our study shows that insights into vegetation senescence are
possible using Sentinel-2. This has a major implication on rangeland management because
this is where plants lose their primary productivity rate, affecting grazing animals and,
as a result, stocking rates and carrying capacity. Hence, using hyperspectral data, leaf N
content can be estimated in the dry season with reasonable accuracy. This study shows that
the multispectral sensors with the REP can achieve similar estimates.

The prediction of grass N improved slightly in the vegetation indices model compared
to the bands model, and the highest prediction was achieved in a model combining the
two. This ascertains that including red-edge vegetation indices improves the estimation
of foliar N [18]. It was found that the prediction accuracies of grass N by remote sensing
variables decrease as they senesce [9]. However, the multiple red-edge bands of Sentinel-2
MSI provide an opportunity to estimate the biochemical concentrations of grass N across
their phenology and during a specific period of their life cycle with improved accuracies.
Notwithstanding, the TVIR4 bands were selected for optimally predicting grass N in this
study. However, TCARIR4 and MCARIR4 had the most important variable. In univariate
modeling techniques, the above vegetation indices performed poorly in predicting foliar
N [18]. Our study highlights the importance of exploiting machine learning techniques
in exploring the spectrum of vegetation indices derived from multiple red-edge bands
of S2 MSI.

7. Conclusions

Our study sought to investigate the N concentration of grass species across the land-
scape; the study was limited in that the grass samples were not collected monthly and
averaged. Furthermore, this study shows the efficiency of red-edge-based vegetation in-
dices derived from Sentinel-2 MSI. These bands from satellites with a coarser resolution are
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seldom computed. Hence, grass N was better predicted by combining remote sensing data
from the multispectral Sentinel-2 and red-edge-based vegetation indices (R2 = 0.85). The
S2 MSI remains the ideal remote sensing tool for estimating foliar N as it incorporates the
strategically positioned red-edge bands. Furthermore, red-edge-based vegetation indices
have been reported to provide better estimates in other studies compared to traditional
vegetation indices. The parametrization and optimization of remote sensing is essential for
improving estimates of the biochemical and biophysical characteristics of vegetation. In
mountainous areas, the inclusion of topographic data could be a boon for future research.
Our research result can be used to estimate other vegetation types such as trees, shrubs,
and crops, with high accuracy through optimization of input remote sensing variables.
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