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Abstract: In response to problems concerning the low autonomous localization accuracy of mobile
robots in unknown environments and large cumulative errors due to long time running, a spatial
location representation method incorporating boundary information (SLRB) is proposed, inspired by
the mammalian spatial cognitive mechanism. In modeling the firing characteristics of boundary cells
to environmental boundary information, we construct vector relationships between the mobile robot
and environmental boundaries with direction-aware information and distance-aware information.
The self-motion information (direction and velocity) is used as the input to the lateral anti-Hebbian
network (LAHN) to generate grid cells. In addition, the boundary cell response values are used
to update the grid cell distribution law and to suppress the error response of the place cells, thus
reducing the localization error of the mobile robot. Meanwhile, when the mobile robot reaches the
boundary cell excitation zone, the activated boundary cells are used to correct the accumulated errors
that occur due to long running times, which thus improves the localization accuracy of the system.
The main contributions of this paper are as follows: 1. We propose a novel method for constructing
boundary cell models. 2. An approach is presented that maps the response values of boundary cells
to the input layer of LAHN (Location-Adaptive Hierarchical Network), where grid cells are generated
through LAHN learning rules, and the distribution pattern of grid cells is adjusted using the response
values of boundary cells. 3. We correct the cumulative error caused by long-term operation of place
cells through the activation of boundary cells, ensuring that only one place cell responds to the current
location at each individual moment, thereby improving the positioning accuracy of the system.

Keywords: boundary cells; grid cells; place cells; environmental characterization; brain-
inspired computing

1. Introduction

Environmental cognition is a fundamental skill for mammalian foraging and survival.
Physiological studies have indicated that mammals, when freely moving in unfamiliar
environments, are capable of maintaining relative spatial relationships to nests or food
through specific cognitive mechanisms. This provides them with positional information for
navigation in unfamiliar environments and enables real-time updates based on changes
in external environmental cues, thus endowing them with strong perceptual abilities
in unknown surroundings [1–4]. However, existing mobile robot technologies fail to
utilize distance information between themselves and obstacles or walls to update their
current position when facing unexpected obstacles or barriers. Therefore, investigating
and replicating the environmental cognition mechanisms observed in mammals holds
significant importance in enhancing the environmental cognition capabilities of mobile
robots and advancing our understanding of biological environmental cognition [5–7].

In 1971, O’Keefe et al. found, in the rat hippocampus, a cell with a selective firing to
spatial locations. This cell undergoes firing activity only when the rat is in a spatially specific
environmental location [8]. This cell is called a place cell and its corresponding spatial firing
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area is called the place field [9,10]. In 2005, Hafting et al. identified another type of cell in
the entorhinal cortex of rats that produces periodic firing to specific regions of space grid
cells and whose hexagonal firing fields spread throughout the spatial environment with
the movement of the rat [11]. Related studies have shown that when rats move freely in a
two-dimensional space, grid cells in the entorhinal cortex undergo repetitive firing behavior
at specific locations; furthermore, it was noted that their firing activity is highly stable
and, as rats continue to explore the environment, the generated grid cells cover the entire
environment and complete the spatial representation of the environment [12–14]. Barry et al.
proposed an oscillatory interference (OI) to model the hexagonal firing structure of the grid
cell. In the model, the self-motion information (direction and speed) of the mobile robot
was used as the input of grid cells to update and maintain the grid field [15]. However, the
verification of the model remained in the simulation stage and did not realize effective map
construction in the real environment. In [16], the rat simultaneous location and mapping
(RatSLAM) model, which was based on a rodent model, was investigated. This model
centralizes path integration information and external visual scene information into the pose
cell and is able to perform navigation and map construction tasks. However, this model
does not incorporate the physiological characteristics of the hippocampal structures in the
rat brain, which thus leads to a lack of accuracy and a low stability with respect to this
model [17]. To address the problems of the insufficient physiological characteristics of the
RatSLAM method, Oliver et al. proposed a grid cell to place cell competitive neural network
models in a Hebb learning algorithm, based on the phenomenon of lateral inhibition in the
rat hippocampus, which conforms to the physiological characteristics of the hippocampal
navigation cells and can realize the information transfer and can also map from grid cells to
place cells [18]. Yu Naigong et al. similarly used the Hebb learning algorithm in the work
of constructing environmental cognitive maps by imitating the hippocampal cognitive
mechanism in the rat brain. They also implemented the environmental cognitive map
construction through a real physical platform and obtained better experimental results [19].
O’Keefe et al. found that the size of the place cell firing field changes somewhat when the
rat moves to the environmental boundary; to explain this phenomenon in their experiments,
O’Keefe et al. predicted the existence of a cell in the rat brain that responds to boundary
information with a firing response and is able to use this response to correct for position
errors in the position of the place cell [20]. In 2008, researchers discovered a new cell
type in the rat internal olfactory cortex that fires when the animal approaches a wall
or is separated by other obstacles; this new cell type was accordingly named boundary
cells [21,22]. In order to investigate the effect of boundary cells on the distribution and
localization accuracy of grid cells, Hardcastle et al. replaced the circular environment
with a hexagonal environment that was rich in environmental boundary information.
Furthermore, the grid cell distribution was rearranged, and the localization accuracy was
improved [23].

Based on this, a spatial location representation method (SLRB) incorporating boundary
information was proposed, inspired by the mammalian spatial cognitive mechanism, which
obtains the boundary cell response values through the mutual excitation and inhibition of
direction-aware information, as well as the distance-aware information between the mobile
robot and the environment boundary. This method obtains the boundary cell response
values by mutual excitation and through the suppression of direction and distance-sensing
information between the mobile robot and the environment boundary. The method then
maps the boundary cell response values and the self-motion information of the mobile
robot to the input layer of LAHN, and then the output layer of LAHN is mapped to the grid
cell response values. The grid cell response values are used as the main input source of the
place cells and the response values of the place cells are obtained through the competitive
Hebb learning network. At the same time, when the mobile robot runs to the boundary cell
excitation zone through the activated boundary cells to correct the location information of
the place cells, the mobile robot then learns and remembers the location points in a specific
space, as well as constructs a spatial location representation map that can accurately express
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the current spatial characteristics. A block diagram of the overall system structure is shown
in Figure 1.
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Figure 1. Block diagram of the overall system structure.

The main innovations of this paper are as follows:

(1) Inspired by the mammalian spatial cognitive mechanism, a new boundary cell model
is proposed to establish boundary cell activity states in multiple scenarios by the
mutual excitation and the inhibition of the direction-aware and distance-aware infor-
mation that is acquired by mobile robots. The boundary cell model proposed in this
paper can encode the boundary information in the environment and supplement the
lack of environmental boundary perceptual information with path integration.

(2) The physiological phenomena indicate that the environmental boundary information
can be used as the supplementary information of grid cells. The method in this
paper maps the boundary cell response values to the input layer of LAHN, generates
grid cells by LAHN learning rules, and uses the boundary cell response values to
correct the grid cell distribution pattern, such that the grid cell firing response and
distribution that is activated by the method are more consistent with the physiological
characteristics.

(3) According to the problem that the mobile robot runs for a long time in an unknown
environment, when the mobile robot reaches the boundary cell excitation zone, the
accumulated error caused by the long running time of the position cell is corrected
by the activated boundary cells, such that only one place cell responds to the current
position at each time in order to improve the location accuracy of the system.

2. Spatial Navigation Cell Model
2.1. Boundary Cell Modeling

The boundary cells, which mainly exist in the entorhinal cortex, presubiculum, and
parasubiculum tract of the rat hippocampus, are spatial navigation cells that respond to
boundary information and can reflect the relative positions of rats at different distances
and angles from the environmental boundary by encoding boundary information in the
environment; these cells can be used to complement path integration information [24–26].
In this paper, the boundary cells are modeled by the mutual excitation and inhibition of
direction-aware and distance-aware information of the mobile robot, and the construction
process is shown below.

Step 1: The mobile robot explores in an unknown environment (its exploration
schematic diagram is shown in Figure 2). The surrounding shaded part is the wall, the
circular runner is the mobile robot, and the single black arrow is its movement direction.
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The boundary response constant is set to divide the exploration area into the boundary cell
activity inhibition zone, the attenuation zone, and the growth zone. The region division
rules are as follows:

S(t) =


Sinh , i f R(t) > b
Sexcar , i f b/2 < R(t) ≤ b
Sexcgr , i f R(t) ≤ b/2

(1)

where S(t) denotes the region in which the mobile robot is located at the time t, b repre-
sents the boundary response constant, Sexcar and Sexcgr denotes the mobile robot is in the
boundary cell inhibition zone, the attenuation zone, and the growth zone, respectively.
Furthermore, the boundary cell activity attenuation zone and growth zone are subsets of
the boundary cell excitation zone.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 20 
 

direction-aware and distance-aware information of the mobile robot, and the construction 
process is shown below. 

Step 1: The mobile robot explores in an unknown environment (its exploration sche-
matic diagram is shown in Figure 2). The surrounding shaded part is the wall, the circular 
runner is the mobile robot, and the single black arrow is its movement direction. The 
boundary response constant is set to divide the exploration area into the boundary cell 
activity inhibition zone, the attenuation zone, and the growth zone. The region division 
rules are as follows: 

,   ( )
( ) ,   / 2 ( )

,   ( ) / 2

inh

excar

excgr

S if R t b
S t S if b R t b

S if R t b

 >
= < ≤
 ≤

 (1)

where ( )S t  denotes the region in which the mobile robot is located at the time t, b repre-
sents the boundary response constant, excarS  and excgrS  denotes the mobile robot is in the 
boundary cell inhibition zone, the attenuation zone, and the growth zone, respectively. 
Furthermore, the boundary cell activity attenuation zone and growth zone are subsets of 
the boundary cell excitation zone. 

 
Figure 2. Schematic diagram of the mobile robot exploration in the environment. 

Step 2: The mobile robot scenes are divided into six scenarios in the environment, as 
shown in Figure 3. Scenarios A and C depict the mobile robot moving towards and away 
from a wall, respectively. Scenarios B and D represent movements away from and towards 
a corner, respectively. Scenarios E and F illustrate movements away from and towards a 
curved wall, respectively. Where the shaded parts are walls and where the mobile robot 
updates the perceptual information during its movement: 

( 1) ( ) ( )st t t Tθ θ θ+ = +  (2)

1 2[ ( ), ( )] [min( ( ), ( ) ( )), min( ( ), 50)]r n rR t t r t r t r td d t=   (3)

( ) ( )arctan ( 1)( arctan )
( ) ( )r rd

R
d

t R t
t t

α γ γ π= − − −  (4)

where θ is the direction-aware information of the mobile robot, sθ  is the angular veloc-
ity-aware information of the mobile robot, and T is the sampling period. In this paper, it 
is set as 0.01 s, which represents the data collected by the mobile robot updated every 0.01 
s, R is the distance-aware information of the mobile robot to the nearest environmental 
boundary, rd  is the distance-aware information between the current position and the 
environmental boundary directly in front of the mobile robot, r  is the vertical distance 
between the mobile robot and the environmental boundary, and n is the number of envi-
ronmental boundaries currently detected by the mobile robot. α   is the angle 

Boundary Cell Activity Growth Zone

Boundary Cell Activity Attenuation Zone

Boundary Cell Inhibition Zone

α

θ

R

R b>

/ 2b R b< < }

rd

/ 2R b<

Boundary Cell 
Excitatory Zone  

Figure 2. Schematic diagram of the mobile robot exploration in the environment.

Step 2: The mobile robot scenes are divided into six scenarios in the environment, as
shown in Figure 3. Scenarios A and C depict the mobile robot moving towards and away
from a wall, respectively. Scenarios B and D represent movements away from and towards
a corner, respectively. Scenarios E and F illustrate movements away from and towards a
curved wall, respectively. Where the shaded parts are walls and where the mobile robot
updates the perceptual information during its movement:

θ(t + 1) = θ(t) + θs(t)T (2)

[R(t), dr(t)] = [min(r1(t), r2(t) · · · rn(t)), min(dr(t), 50)] (3)

α = γarctan
R(t)
dr(t)

− (γ − 1)(π − arctan
R(t)
dr(t)

) (4)

where θ is the direction-aware information of the mobile robot, θs is the angular velocity-
aware information of the mobile robot, and T is the sampling period. In this paper, it is set
as 0.01 s, which represents the data collected by the mobile robot updated every 0.01 s, R is
the distance-aware information of the mobile robot to the nearest environmental boundary,
dr is the distance-aware information between the current position and the environmental
boundary directly in front of the mobile robot, r is the vertical distance between the mobile
robot and the environmental boundary, and n is the number of environmental boundaries
currently detected by the mobile robot. α is the angle information between the mobile robot
and the nearest surrounding environmental boundary, γ is the regulatory factor of the
angle information, and γ takes the value of 1 only when the robot’s direction of motion is
perpendicular to the wall—otherwise it takes the value of 0.
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When the mobile robot moves away from the wall, the boundary cells go through
two processes, the activity growth zone and the attenuation zone. When they then reach
the boundary cell inhibition zone their activity attenuates to zero. The rules for updating
the activity state of boundary cell neurons are as follows:

h(t + 1) =


h(t) + τ

b−dr(t)
b , i f S(t) = Sexcgr

0, i f S(t) = Sinh[
h(t)− τ

b−dr(t)
b

]
+

, i f S(t) = Sexcar

(5)

where h(t) is the current time boundary cell activity value, h(t + 1) is the next time bound-
ary cell activity value, and τ is the activity factor (which is used to regulate the rate of
change in boundary cell neuron activity and the value of 0.8 is taken for this factor in this
paper). [•]+ indicates that the output value is non-negative.

Step 3: When the mobile robot runs into the boundary cell excitation zone, the bound-
ary cell distance excitation value bborder(t) is updated with the distance-aware information
between the current position of the mobile robot and the environmental boundary.

bborder(t) = exp

(
−h(t)(R(t)− dr(t))

2

2σ2
rad (dr(t))

)
(6)

where σrad(•) is the boundary cell distance sensitivity function and the relationship between
the sensitivity of the boundary cell to the environmental boundary. Moreover, the vertical
distance from the mobile robot to the environmental boundary is expressed as per the
following:

σrad (dr(t)) = δ0 ∗ (dr(t)/β + 1) (7)

where δ0 is the boundary cell sensitivity enhancement constant, which is adapted to the
complexity of the environmental boundary and which is set to 1.2 in this paper. β is
the boundary cell distance perception correction factor, which avoids the boundary cell
response value being too large due to the small distance information that is detected in the
small environmental scenarios and which is taken as 0.8 in this paper.
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Subsequently, the boundary cell angular excitation value rborder(t) is updated based
on the angular-aware information between the mobile robot and environmental boundary:

rborder(t) = exp

(
−h(t)(θ(t)− α(t))2

2σ2
ang

)
(8)

where σang is the adjustment parameter for the angular excitation value of the boundary
cell, which is used to regulate the effect of angle on the excitation value of the border cell,
and is taken as 0.5 in this paper.

Step 4: The boundary cell response value is updated by the boundary cell distance
excitation value and angular excitation value, and the boundary cell fire response f (R, θ, t)
in the spatial environment is shown as per the following:

f (R, θ, t) =
bborder(t)× rborder(t)√

2πσ2
rad (dr(t))

√
2πσ2

ang

(9)

The rats explored freely in the experimental environment and the strain response
was different from the environmental scene information, which were collected at different
times. The six different boundary cell activation response maps in Figure 4 correspond
one by one to the six different experimental scenarios in Figure 3, with the pentagram
position as the starting point in Figure 4. As shown in Figure 4a, during the process of a
rat running towards a wall, it gradually transitions from the boundary cell inhibition zone
to the boundary cell activation zone, resulting in an increase in the number of activated
boundary cells. Particularly when entering the boundary cell growth zone, the number of
boundary cells rapidly rises. In the boundary cell decay zone, the number of boundary cells
decreases accordingly. When reaching the boundary cell inhibition zone, the boundary cells
will not be activated. In Figure 4b, the rat is currently moving away from the environmental
boundary and the boundary cell activation frequency thus gradually decreases (i.e., the
number of boundary cell activation increases slowly). The current movement posture of the
rat in Figure 4c corresponds to Figure 3d, thereby showing a tendency to move away from
the environmental corners and showing a gradual decrease in the boundary cell activation
frequency. The transient movement posture of the rat shown in Figure 4d is similar to that
in Figure 4c, but unlike Figure 4c, the rat is away from the corner of the environment at
this time, and the binding force of the environment unilaterally on the movement of the rat
decreases rapidly as the distance of the rat away from the boundary increases; as such, the
number of boundary cell activations temporarily enters a low-rate growth phase. Similarly,
the same is shown in Figure 4e,f, which show the boundary cell activation response maps
of the rats in different scenarios, where the response maps are acquired by movement in
a circular experimental environment, thereby corresponding to rats that are near and far
from the environmental boundary in Figure 3e,f, respectively.
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2.2. Grid Cell Update Model Based on Boundary Information

LAHN is designed as an unsupervised neural network that can obtain the best features
from the input information [27]. The superiority of this network is also reflected in the fact
that when the input information is limited by the external environment, the network itself
can still update the output in real time by adjusting the lateral connections to adapt to the
environmental changes [28]. When considering the influence of environmental boundary
information on the distribution pattern of grid cells during the movement of the rat, LAHN
is introduced in this paper to model the grid cell update mechanism. The self-motion
information and boundary cell response values acquired by the encoder are mapped to the
input layer of LAHN during the exploration of the environment by the mobile robot, while
the excitation level and inhibition level of the grid cells are updated in real time with the
movement of the mobile robot. The update rules of this are as follows:

d
(

χinh
j

)
dt

= −χexc
j

[
f (R, θ) + vw

[
cos(θs)
sin(θs)

]]
+ χinh

j

[
1 −

(
χinh

j
2 + χexc

j
2
)]

(10)

d
(

χexc
j

)
dt

= χinh
j

[
f (R, θ) + vw

[
cos(θs)
sin(θs)

]]
+ χexc

j

[
1 −

(
χinh

j
2 + χexc

j
2
)]

(11)

where θs is the angular velocity-aware information and W is the self-organizing mapping
input weight matrix, θ represents the directional sensory information of the mobile robot.
v is the current velocity of the mobile robot, where the value of χinh

j is a negative number
indicating the inhibition level of the j-th grid cell. The value of χexc

j is a positive number
indicating the j-th grid cell excitation level and f (R, θ) is the boundary cell response value.

LAHN uses a bipolar activation function and the dependent variable of the activation
function takes values from −1 to 1, which is when the input and output of the activation
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function have the same sign and where the network connection weight is increased, other-
wise the network connection weight is instead decreased. The network output value is the
grid cell response value and the LAHN output value is shown in Equation (12):

ξi(t) =
m

∑
j=1

qij[χ
exc
j (t) + χinh

j (t)] +
n

∑
k=1

wikξk(t − 1) (12)

where qij is the forward channel weight, wik is the lateral channel weight, ξk(t − 1) is the
grid cell response value at the previous time, m is the total number of neurons in the LAHN
layer, and n is the number of grid cells.

The grid cell distribution maps and their corresponding grid cell firing rate maps
were obtained by exploring in the trilateral, pentagonal, and nine-sided environments,
respectively, as shown in Figure 5a,c. The control analysis shows that the grid cell clusters
converge with the highest firing rate in the center, decreasing layer by layer toward the
periphery. In this paper, we introduced the grid cell scoring mechanism, which is shown in
Equations (13) and (14) [29–31]. This mechanism was constructed to score the distribution
and activity of the grid cells that are obtained in the three different environments. This
mechanism also allowed us to generate a grid cell score table, which is shown in Table 1. The
trends of the grid cell scores in the three different environments showed that the grid cell
scores gradually increased and eventually stabilized as the exploration time increased. This
pattern of data change is due to the positive effect of the boundary cells that was activated
by the rats visiting the boundary of the environment, which thus updated the grid cell
distribution. The reason for the higher grid cell scores, which were obtained by exploring
the nine-sided environment rather than the pentagonal and trilateral ones, is explained by
the fact that the nine-sided environment provides richer boundary information.

r
(
τx, τy

)
=

n ∑
x,y

λ(x, y)λ
(

x − τx, y − τy
)
− ∑

x,y
λ(x, y)∑

x,y
λ
(

x − τx, y − τy
)

√√√√√
M ∑

x,y
λ(x, y)2 −

[
∑
x,y

λ(x, y)

]2
[n ∑

x,y
λ
(
x − τx, y − τy

)2 −
[
λ
(
x − τx, y − τy

)]2 (13)

HGS = min
[
cor
(

r, r60◦
)

, cor
(

r, r120◦
)]

− max
[
cor
(

r, r30◦
)

, cor
(

r, r90◦
)

, cor
(

r, r150◦
)]

(14)

where n is the number of grid cells, HGS is the fraction of grid cells, r is the auto-correlation
plot of grid cells, and λ(x, y) is the firing rate of grid cells at position. Furthermore, τx and
τy are the spatial lag coordinates corresponding to the x and y coordinates, and rβ is the
auto-correlation plot rotated by β degrees. cor

(
r, rβ

)
is the correlation score of the auto-

correlation plot r and the correlation score of the two plots after rotating the auto-correlation
plot by β degrees.

Table 1. Grid cell scores in different geometric environments.

Time (s) 30 60 90 120 150 180 210 240 270 300 330 360

Trilateral environment 0.25 0.32 0.38 0.45 0.55 0.56 0.68 0.69 0.74 0.73 0.74 0.74
Pentagonal environment 0.24 0.35 0.41 0.51 0.62 0.68 0.72 0.75 0.78 0.78 0.78 0.78
Nine-sided environment 0.20 0.34 0.40 0.49 0.58 0.71 0.80 0.84 0.86 0.84 0.85 0.85
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3. Spatial Location Representation Map Construction

Based on the physiological properties of each the navigation cells mentioned above,
it is known that boundary cells can fire specifically in response to the perception of the
environmental boundary by the rat, i.e., the vectorial relationship between the rat and
the boundary. Furthermore, the closer the rat is to the environmental boundary, the
greater the value of the boundary cell firing response [32]. Grid cells are considered as a
coordinate system for characterizing the environment due to their specific spatial metric
properties, and when multiple grid cells fire aggregately the current position of the rat
can be estimated [33,34]. A process schematic diagram of constructing a spatial location
representation map, using the specific firing responses of these navigation cells and their
mapping relationships with each other, is shown in Figure 6. The specific map construction
steps are as follows:
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Step 1: As the mobile robot explores the environment, it collects the speed, direction,
and distance-aware information needed to construct a spatial location representation map.

Step 2: The inputs of the direction and velocity-aware information to the input layer
of LAHN are conducted. The output of the grid cell response value is obtained after the
learning performed by LAHN.

Step 3: Grid cells undergo a competitive Hebb learning network in order to generate
place cells that are capable of representing current location information [18]. The mobile
robot explores the environment by continuously activating new place cells in response to
new location scenarios and jointly constructs a spatial location cell representation map
until the robot stops running. The algorithm for the construction of the spatial location
representation map is shown in detail in Algorithm 1.

In order to avoid the undesirable situation where the number of place cell activations
for the same scene is too many due to the small place cell spacing in the operation of
the mobile robot (thus resulting in the waste of system computational resources) or the
undesirable situation where the place cell spacing is too large (thus resulting in the poor
accuracy of position estimation), this paper introduces the place cell distance threshold
rth in order to constrain the place cell activation response. Figure 7 shows the box plot
of the localization accuracy of the mobile robot when constructing the spatial location
representation map under different values of rth. The localization error in Figure 7 fluctuates
upward with the distance threshold, and the localization error is minimized when rth is
taken as 0.06 m, such that rth is taken as 0.06 m in this paper.

Algorithm 1: Spatial location representation map construction algorithm

Input: Grid cell response value, place cell distance threshold rth
Output: Spatial Location Representation Map
BEGIN:
FOR
Get grid cell response values
Updating winning place cells through competitive Hebb learning network
Calculate the Euclidean distance rb between Current place cell and nearby place cell

IF rb<rth
The previous place cell can represent the current scene, continue run forward
ELSE

The previous palace cell is not enough to represent the current scene and construct a new
place cell

END IF
IF the movement is not over

Continue forward motion and update grid cell response value information
ELSE

Output spatial location representation map
END IF
ND FOR
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Step 4: When the mobile robot runs to the boundary cell excitation zone, the distance-
aware information and angle-aware information of the mobile robot are relative to the
environment boundary. They are mutually excited and inhibited in order to activate the
boundary cells, which are used to correct the place cell response values and to eliminate the
accumulated errors that are generated due to the long time running of the mobile robot. At
the same time, the boundary cell response values are mapped to the input layer of LAHN,
and the grid cell distribution law in the current scene is updated simultaneously. The place
cell correction update rules are as follows:

pbc(t) =

pc(t) +

(
n

∏
i=1

fi(R, θ, t)/maxx

) 1
n

+

(15)

where fi(R, θ, t) is the boundary cell firing response value, pbc(t) is the place cell response
value after the boundary cell response correction, and pc(t) is the place cell response
value before the boundary cell response correction. n represents the number of boundary
cells.[•]+ indicates that the output value is non-negative.

Figure 8a depicts the pre-correction place cell response map, revealing the presence
of an accumulated error resulting from prolonged operation of the mobile robot. This
error is evident in the place cell response map, where a single place cell fails to generate a
response to the current position. In Figure 8b, the post-correction position cell response
map is presented. The comparison with Figure 8a demonstrates that the corrected place cell
response map exhibits a solitary, distinct place cell response point, thereby enhancing the
accuracy of current position estimation by eliminating interference caused by redundant
place cell responses.
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4. Experimental Results and Analysis

The computer configuration used to test the experiments in this paper was as follows:
i5-9400F CPU, 6-core processor, 2.9 GHz, 8 GB RAM. The method proposed in this paper
was verified by the circular experimental datasets that were published in the Microstructure
of a spatial map in the entorhinal cortex, published by Hafting et al. in Nature [11]. These
datasets record the perceptual information, such as the movement direction, as well as the
speed and distance of the rats at different times.

4.1. Boundary Cell Simulation Experiments

This paper further validates the method of this study using a larger Hafting circular
experiment environment. The diameter of the circular experiment environment is 2 m and
the rat also starts from the center of the experiment environment for the purposes of free
exploration learning. The environmental plan diagram and the trajectory formed by the rat
in completing the exploration are shown in Figure 9.
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Figure 9. The environmental plan diagram and rat trajectory map. (a) The environmental plan
diagram. (b) The rat trajectory map.

Figure 10 shows the intercepted boundary cell discharge response plots at different
times. It can be seen that as the rat explores the environmental boundary gradually and
comprehensively, the number of activated boundary cells in response to the environmental
boundary increases. Table 2 shows the correlation data between the number of activated
boundary cells and the mean localization error at different times. It can be seen that the
number of activated boundary cells tends to increase rapidly before 1600 s, while after
1600 s, the number of activated boundary cells gradually slows down and stabilizes as
the rat explores the environment more fully. At 1800 s, the activated boundary cells
can adequately represent the environmental boundary and its number remains largely
unchanged while the localization error is stable at about 0.037 m. It can be seen that the
proposed method in this paper is also well adapted to larger circular environments.
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Table 2. The number of activated boundary cells at different times with the mean localization error.

Time (s) 200 400 600 800 1000 1200 1400 1600 1800

Number of boundary cells (pcs) 103 195 274 318 378 421 472 503 498
Mean localization error (m) 0.67 0.71 0.83 0.86 0.74 0.61 0.50 0.39 0.37

4.2. Grid Cell Simulation Experiment

The grid cell construction method proposed in this paper was validated by the Hafting
circular experimental environment. Figure 11 shows the grid cell response maps obtained
by the OI model, the CAN model, and the SLRB method at different times. The distribution
of grid cells activated by the OI model after 30 min lacked physiological properties. In
comparison, the grid cell distribution acquired by the CAN model has been improved,
but the acquired grid cell clusters contain too many grid cells, posing a potential risk
of computational time consumption for the construction of large-scale spatial location
representation maps. Compared with the former two, the method in this paper obtained
the vector information between the rat and the environment boundary, which was obtained
by the rat in the process of exploring the environment and was performed to correct the grid
cell distribution pattern. This meant that the method in this paper successfully achieved
the goal of representing a circular experimental environment with fewer grid cells while
maintaining the physiological characteristics of grid cells. Table 3 shows the number of
activated grid cells and their corresponding grid cell fractions for the three compared
methods in characterizing the above circular experimental setting. It is more intuitive to see
from the data comparison of the three algorithms that the number of grid cells utilized by
this method is lower. This was achieved under the premise of also achieving the purpose
of characterizing the environment. Moreover, the fraction of the grid cells generated by
this method is higher as the environment is gradually explored completely, which indicates
that the grid cells activated by this method are highly active and reasonably distributed.
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Figure 11. The grid cell response maps obtained by the OI and CAN models, as well as those obtained
by the method used in this paper at different times. (a) 5 min for the OI model to obtain results.
(b) 5 min for the CAN model to obtain results. (c) 5 min for this paper’s method to obtain results.
(d) 15 min for the OI model to obtain results. (e) 15 min for the CAN model to obtain results.
(f) 15 min for this paper’s method to obtain results. (g) 30 min for the OI model to obtain results.
(h) 30 min for the CAN model to obtain results. (i) 30 min for this paper’s method to obtain results.

Table 3. Comparison of the grid cell properties that were activated by the three algorithms.

Exploration
Time (min)

Number of Activated
Grid Cells (pcs) Grid Cell Fraction

OI CAN SLRB OI CAN SLRB

5 171 160 128 0.71 0.75 0.74
10 382 171 165 0.73 0.74 0.69
15 410 290 195 0.68 0.79 0.79
20 472 353 287 0.54 0.71 0.84
25 524 427 354 0.51 0.72 0.88
30 614 541 478 0.43 0.65 0.86

4.3. Spatial Location Representation Map Construction Experiment

The place cell properties obtained by the method in this paper were validated in a
Hafting circular experimental environment. Figure 12 shows the firing response maps of
the pose/place cells to the current location as acquired by RatSLAM, as well as by the
competing Hebb learning networks and the method used in this paper at different times. In
addition, the maps of their spatial location representations are generated after completing
the environmental exploration. The RatSLAM method still did not perform well in the
circular environment because the RatSLAM algorithm only integrated the rat’s self-motion
information to activate the pose cells in response to the rat’s current location, without
exhaustively considering the effect of the simple similarity boundaries on the firing pattern
of the pose cells. At the same time, along with the increase in the environmental scene, the
growth of the exploration time response leads to a gradual increase in the accumulated
error, which renders the RatSLAM method unable to generate a single pose cell by which
to respond accurately to the current location. Compared with the RatSLAM method, the
competitive Hebb learning network can adjust the response values of the place cells via
the connection weights between the place cells, which enables the system to maintain a
better localization performance at the early stage of unknown environment explorations.
However, as the exploration proceeds and the environment itself is characterized, the
number of place cells gradually increases and the burden of adjusting the connection
weights between the place cells increases, thus leading to the overlapping phenomenon of
place cell responses, which then affects the accuracy of localization. In order to overcome
the negative effects of environmental size and cumulative errors, this method introduces
environmental boundary information to correct the place cell firing responses in real time,
such that only one place cell responds to the current location at each individual time.
By removing the interference of the other place cell firing responses, the accuracy of the
location information estimation of this method is improved.
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Figure 12. The process of constructing the spatial location representation maps by the three methods.
(a) 5 min for the RatSLAM method to obtain results. (b) 5 min for the competitive Hebb learning
network to obtain results. (c) 5 min for this paper’s method to obtain results. (d) 30 min for the
RatSLAM method to obtain results. (e) 30 min for the competitive Hebb learning network to obtain
results. (f) 30 min for this paper’s method to obtain results. (g) The RatSLAM spatial location
representation map. (h) The competitive Hebb Learning network spatial location representation map.
(i) The SLRB method spatial location representation map.

Figure 13 shows a comparison of the experimental data that was generated by the
three methods for constructing spatial location representation maps. From Figure 13a, it can
be seen that the number of place cells activated by all three methods in the early stage of the
environmental information exploration grew rapidly with time, but with the completion
of the environmental learning in the rats, the growth of grid cells in this method entered
a stable interval after 20 min. Furthermore, the final number was stabilized at about 300,
which was reduced by about half when compared with the other two methods. In terms
of the absolute trajectory error shown in Figure 13b, the absolute trajectory error of the
method in this paper at the end of the run is about 0.031 m, which is about 47.2% lower
when compared to the competitive Hebb learning network and about 56.9% lower when
compared to the RatSLAM algorithm. Additionally, in terms of the whole exploring time,
the method in this paper shows a good performance in terms of the location estimation.
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Figure 13. Comparison of the performance of the three methods in terms of their spatial location
representation maps.

5. Analysis and Discussion

Discussion 1: Experiments on Activated Boundary Cells in Different Scenarios
In the experiments involving activated boundary cells in different scenarios, as the rat

runs facing a wall, the number of activated boundary cells gradually increases, transitioning
from the inhibition zone of boundary cells to the region of increased activity. When the
rat moves away from the environmental boundary, the activation frequency of boundary
cells gradually decreases (with a slower growth rate in the number of activated boundary
cells). When the rat’s motion corresponds to Figure 3d, exhibiting a trend of moving
away from the environmental corner, the activation frequency of boundary cells gradually
decreases. In an instantaneous motion similar to Figure 3d but with the difference that
the rat is moving away from the environmental corner, and the restraining force from the
environment decreases rapidly as the rat moves further from the boundary, the number
of activated boundary cells temporarily enters a stage of slow growth. It can be observed
that the activated boundary cells in different scenarios exhibit similar patterns as shown in
Figure 4 (Activated Boundary Cells in Different Scenarios), aligning with the physiological
observations. Furthermore, from the boundary cell response graphs at different time points
in Figure 10, it can be observed that the proposed model can effectively model the boundary
cells based on boundary information, regardless of the square or circular environment. As
indicated by the boundary cell discharge response graphs captured at different time points
in Figure 10, with the rat’s comprehensive exploration of the environmental boundary, the
number of activated boundary cells responding to the boundary continuously increases.
Before 1600 s, the number of activated boundary cells exhibits a rapid increase, while after
1600 s, with the rat’s comprehensive exploration of the environment, the growth rate of
the number of activated boundary cells gradually slows down, approaching stability. At
1800 s, the activated boundary cells sufficiently represent the environmental boundary, and
the number of activated boundary cells remains relatively stable, while the localization error
stabilizes at around 0.37 m. This demonstrates the adaptability of the proposed method
to larger circular environments, validating the effectiveness of the algorithm presented in
this paper.

Discussion 2: Validation Experiment on the Public Hafting Dataset
The method proposed in this paper is validated using the square experiment dataset

and the circular experiment dataset published by Hafting et al. in their paper “Microstruc-
ture of a spatial map in the entorhinal cortex” in Nature. The obtained position cell
responses from the method proposed in this paper are compared with the position cell
responses obtained from the competitive Hebbian learning network and the pose cell
discharge response map obtained from RatSLAM. The RatSLAM algorithm only integrates
self-motion information from the rat to activate pose cell responses at its current location,
without fully considering the influence of simple geometric boundary cues on the discharge
patterns of pose cells. Additionally, with the increase in exploration time response and
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the growing environmental scene, cumulative errors gradually accumulate, resulting in
RatSLAM’s inability to generate a single pose cell that accurately responds to the current
location. Compared to RatSLAM, the competitive Hebbian learning network can adjust the
response values of position cells through the connection weights between them, enabling
the system to maintain good localization performance in the early stages of exploration in
unknown environments. However, as exploration progresses and due to the characteris-
tics of the overall environment, the number of position cells increases, and the burden of
adjusting connection weights between position cells increases, leading to overlap in their
response patterns and consequently affecting the accuracy of localization. The proposed
method in this paper activates boundary cells when encountering boundaries, and the
correction function of boundary cells on position cells enables real-time updating and
constraint of position cell discharge responses, reducing position estimation uncertainty,
and thereby improving the localization accuracy of the proposed method. At the end of the
operation, the absolute trajectory error of the proposed method is approximately 0.031m,
which is about 47.2% lower than that of the competitive Hebbian learning network, and
about 56.9% lower than that of the RatSLAM algorithm.

6. Conclusions

In this paper, based on the understanding of the physiological properties of various
spatial navigation cells and their role in autonomous navigation and localization, a spatial
location representation method incorporating boundary information is proposed in order
to construct a map of the unknown environment. The method improves the accuracy of
autonomous localization and the robustness of map construction by activating the learning
and memory of the spatial location of the unknown environment by navigation cells. The
method presented in this paper belongs to an exploration of the mechanism of the brain
operations that occur during the mammalian process of localization and map construction.
It lays the foundation for further research on bionic localization and navigation algorithms
for mobile robots. However, the method proposed in this paper only utilizes self-motion
information such as rat’s direction, velocity, and distance for mapping and does not consider
the influence of visual perceptual information on mapping. This limitation results in the
inability of the method to perform relocalization using familiar scenes. When fusing
visual information with self-motion information, the difference in the sampling rates of
the two signals can lead to joint initialization failure. Future work will propose a joint
initialization method for visual and self-motion information to synchronize the two signals
and overcome the challenges of joint initialization. By incorporating the obtained visual
perceptual information into the proposed method, the stability and accuracy of spatial
representation map construction will be improved.
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