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Abstract: The discipline of automatic image captioning represents an integration of two pivotal
branches of artificial intelligence, namely computer vision (CV) and natural language processing
(NLP). The principal functionality of this technology lies in transmuting the extracted visual features
into semantic information of a higher order. The bidirectional long short-term memory (Bi-LSTM) has
garnered wide acceptance in executing image captioning tasks. Of late, scholarly attention has been
focused on modifying suitable models for innovative and precise subtitle captions, although tuning
the parameters of the model does not invariably yield optimal outcomes. Given this, the current
research proposes a model that effectively employs the bidirectional LSTM and attention mechanism
(Bi-LS-AttM) for image captioning endeavors. This model exploits the contextual comprehension from
both anterior and posterior aspects of the input data, synergistically with the attention mechanism,
thereby augmenting the precision of visual language interpretation. The distinctiveness of this
research is embodied in its incorporation of Bi-LSTM and the attention mechanism to engender
sentences that are both structurally innovative and accurately reflective of the image content. To
enhance temporal efficiency and accuracy, this study substitutes convolutional neural networks
(CNNs) with fast region-based convolutional networks (Fast RCNNs). Additionally, it refines the
process of generation and evaluation of common space, thus fostering improved efficiency. Our
model was tested for its performance on Flickr30k and MSCOCO datasets (80 object categories).
Comparative analyses of performance metrics reveal that our model, leveraging the Bi-LS-AttM,
surpasses unidirectional and Bi-LSTM models. When applied to caption generation and image-
sentence retrieval tasks, our model manifests time economies of approximately 36.5% and 26.3%
vis-a-vis the Bi-LSTM model and the deep Bi-LSTM model, respectively.

Keywords: image captioning; bidirectional long short-term memory; attention mechanism; fast
region-based convolutional network; common space

1. Introduction

Image captioning is a hot topic involving several fields such as computer vision
(CV) and natural language processing (NLP), known as image semantic description or
“talking about pictures” [1–6]. Image captioning technology not only needs to recognize
the entity object information in the image and the relationship between objects but also
needs to learn how to integrate them into the ability to describe reasonable sentence
descriptions. Traditional methods use models based on visual space search, sentence
template usage, and the most matching sentence in the dataset to accomplish the tasks of
image captioning. The disadvantage of these methods is the low efficiency of generating
real and accurate sentences and the poor ability to generate structurally novel sentences. In
recent research [7–11], visual and language information has been embedded into a common
space via recurrent neural networks (RNNs) initially. Convolutional neural networks
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(CNNs) were then embedded within the visual space and combined with long short-term
memory (LSTM) to produce more effective results.

Most models extract image features by embedding the CNN into visual space. While
this method can achieve good results, the extracted image features are not highly accurate
and efficient, wasting a lot of time. Many models embed LSTM and Bi-LSTM into language
space to generate sentences, but the results are not accurate enough. Therefore, it is
challenging for subtitling models to perform novel subtitling tasks with accurate and
efficient image-sentence retrieval.

To address these issues, we propose a model leveraging a bidirectional LSTM coupled
with an attention mechanism (Bi-LS-AttM). This innovative model substitutes the region
convolutional neural network (RCNN)—commonly used for feature extraction—with a
more efficient fast region convolutional neural network (Fast RCNN). This adjustment
enhances the identification and extraction of features within the image’s regions of interest
(RoIs). The optimized model is then applied to refine the LSTM network’s performance. By
juxtaposing forward and backward outcomes and incorporating the attention boost, the
Bi-LS-AttM is able to predict word vectors with greater precision and generate more fitting
image captions.

Why do we use the model? We employed the model to break through the boundaries
of the traditional Bi-LSTM model, which is not focused enough on the comparison of
historical and future word results. In the traditional LSTM cells, the prediction of the
next word xt using the visible context V and historical context x1:t−1 is performed by
estimating log P(xt|V, x1:t−1). However, in the Bi-LS-AttM, the prediction of the word xt
depends on the forward and backward results of separately maximizing log P(xt|V, x1:t−1)
and log P(xt|V, xt+1:t) at time t. By combining the Bi-LSTM with the attention model, the
model focuses increasingly on comparing historical and future word results and using
their dependencies to predict and generate appropriate image captions. Figure 1 shows the
example image of the Bi-LS-AttM model generating a sentence that supports our hypothesis
that the Bi-LS-AttM model can generate more complementary and focused captions.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 2 of 17 
 

were then embedded within the visual space and combined with long short-term memory 
(LSTM) to produce more effective results. 

Most models extract image features by embedding the CNN into visual space. While 
this method can achieve good results, the extracted image features are not highly accurate 
and efficient, wasting a lot of time. Many models embed LSTM and Bi-LSTM into lan-
guage space to generate sentences, but the results are not accurate enough. Therefore, it is 
challenging for subtitling models to perform novel subtitling tasks with accurate and effi-
cient image-sentence retrieval. 

To address these issues, we propose a model leveraging a bidirectional LSTM cou-
pled with an attention mechanism (Bi-LS-AttM). This innovative model substitutes the 
region convolutional neural network (RCNN)—commonly used for feature extraction—
with a more efficient fast region convolutional neural network (Fast RCNN). This adjust-
ment enhances the identification and extraction of features within the image’s regions of 
interest (RoIs). The optimized model is then applied to refine the LSTM network’s perfor-
mance. By juxtaposing forward and backward outcomes and incorporating the attention 
boost, the Bi-LS-AttM is able to predict word vectors with greater precision and generate 
more fitting image captions. 

Why do we use the model? We employed the model to break through the boundaries 
of the traditional Bi-LSTM model, which is not focused enough on the comparison of his-
torical and future word results. In the traditional LSTM cells, the prediction of the next 
word 𝑥  using the visible context 𝑉 and historical context 𝑥 :  is performed by esti-
mating log𝑃(𝑥 |𝑉, 𝑥 : ). However, in the Bi-LS-AttM, the prediction of the word 𝑥  de-
pends on the forward and backward results of separately maximizing log 𝑃(𝑥 |𝑉, 𝑥 : ) 
and log 𝑃(𝑥 |𝑉, 𝑥 : )  at time 𝑡 . By combining the Bi-LSTM with the attention model, the 
model focuses increasingly on comparing historical and future word results and using their 
dependencies to predict and generate appropriate image captions. Figure 1 shows the exam-
ple image of the Bi-LS-AttM model generating a sentence that supports our hypothesis that 
the Bi-LS-AttM model can generate more complementary and focused captions.  

 
(a) Caption generation on Flickr30K (b) Caption generation on MSCOCO 

Figure 1. Example captions generated by the model. (a) Caption generation (by the unidirectional 
model (upper) and by our model (lower)) on Flickr30K. (b) Caption generation (by the unidirec-
tional model (upper) and by our model (lower)) on MSCOCO. 

We tested the efficiency of our model on the datasets Flickr30K and MSCOCO and 
performed a qualitative analysis. The analysis showed that the method performs effi-
ciently, and the proposed Bi-LS-AttM model outperforms other published models. The 
principal contributions of this paper are threefold: 
• We proposed a trainable model incorporating a bidirectional LSTM and attention 

mechanism. This model embeds image captions and scores into a region by capital-
izing on the long-term forward and backward context. 

• We upgraded the feature extraction mechanism, replacing the conventional CNN 
and RCNN with a Fast RCNN. This improvement enhances the model’s ability to 
rapidly detect and extract features from items within an image’s regions of interest. 
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Figure 1. Example captions generated by the model. (a) Caption generation (by the unidirectional
model (upper) and by our model (lower)) on Flickr30K. (b) Caption generation (by the unidirectional
model (upper) and by our model (lower)) on MSCOCO.

We tested the efficiency of our model on the datasets Flickr30K and MSCOCO and
performed a qualitative analysis. The analysis showed that the method performs efficiently,
and the proposed Bi-LS-AttM model outperforms other published models. The principal
contributions of this paper are threefold:

• We proposed a trainable model incorporating a bidirectional LSTM and attention
mechanism. This model embeds image captions and scores into a region by capitalizing
on the long-term forward and backward context.

• We upgraded the feature extraction mechanism, replacing the conventional CNN and
RCNN with a Fast RCNN. This improvement enhances the model’s ability to rapidly
detect and extract features from items within an image’s regions of interest.

• We verified the efficiency of the framework on two datasets Flickr30K and MSCOCO.
The evaluation demonstrated that the Bi-LSTM and attention mechanism model
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achieved highly competitive performance results relative to current techniques in the
tasks of generating captions and image sentence retrieval.

2. Related Works

Initially, researchers utilized computers to analyze identified content in image cap-
tioning, which was the original task for image recognition [12–14]. Later, they introduced
additional requirements such as processing and determining object properties, identifying
object relationships, and describing image content in natural language. Since then, numer-
ous image captioning techniques have been introduced, broadly categorized into three
groups: template-based, retrieval-based, and deep-learning-based methods.

Template-based methods, which utilize fixed templates for sentence generation, iden-
tify image elements such as objects, actions, and scenes based on visual dependency
grammar. For instance, Farhadi [15] used a support vector machine (SVM) [16,17] to de-
tect image items and pre-established templates for sentence descriptions. However, the
limitations of datasets and template algorithms impeded their performance. Similarly,
Li [18] employed Web-scale N-grams for phrase extraction linked to objects, actions, and
relationships in 2011. Later, Kulkarni [19] used a conditional random field (CRF) [20,21] for
data extraction from a large pool of visual descriptive text, thereby improving computer
vision recognition and sentence generation. Despite these efforts, the performance of these
methods was suboptimal due to the inherent restrictions of template-based approaches.

The retrieval-based method stores all image descriptions in a collection. The image
to be described is then compared to the training set and filtered to find similar images.
Using a similar image description to the one found, the candidate description is modified
accordingly. Kuznetsova [22] proposed to search for images with attached titles on the
Internet and obtain expressive phrases as tree fragments from the test images. Then,
new descriptions are composed by filtering and merging the fragments of the extraction
tree. Mason [23] proposed a nonparametric density estimation (NDE) technique that
estimates the frequency of visual content words of the image to be detected and transforms
caption generation into an extractive summarization problem. Sun [24] proposed a concept
automatic recognition method that uses parallel text and visual corpora. It can filter out
text terms by matching the visual characteristics of similar images in the image library and
the image to be described. Retrieval-based methods can be more natural language-like,
although relying heavily on the capacity of the database makes it difficult to generate
sentences for specific images.

In recent years, with the continued advancement of deep learning, neural networks
have been extensively used in image caption tasks. Kiros [25] first used deep neural
networks and LSTM to construct two different multimodal neural network models in
2014, continuously integrating semantic information to generate words. For the encoding
part, they applied an RNN to convert vocabulary into D-dimensional word vectors. The
sentence described can be written as matrix V x D, where V is the number of words in a
sentence, and D is the size of the word vector. Finally, they used a decoder consisting of
LSTM cells to generate the final picture subtitle result word by word with the combination
of image features and the language model sentence by sentence. In subsequent research,
Xu et al. [26] incorporated attention mechanisms into the encoder and decoder structural
models to describe images. By establishing an attention matrix, they can automatically
focus on different areas when predicting different words at different times to enhance the
description effectiveness of the model. Bo [27] used generative adversarial networks to
generate diversified descriptions by controlling random noise vectors.

In contemporary research, Ayoub [28] deployed the Bahdanau attention mechanism
and transfer learning techniques for image caption generation. They incorporated a pre-
trained image feature extractor alongside the attention mechanism, thus improving cap-
tioning quality and precision. Muhammad [29] proposed a model blending the attention
mechanism and object features for image captioning, enhancing the model’s ability to
leverage extracted object features from images. Chun [30] demonstrated an advanced deep



Appl. Sci. 2023, 13, 7916 4 of 17

learning approach for image captioning that combined CNN for image feature extraction
and RNN for caption generation, enhanced by the attention mechanism. This innovative
method facilitated the automated creation of comprehensive bridge damage descriptions.
Lastly, Wu [31] addressed the challenge of describing novel objects through a switchable at-
tention mechanism and multimodal fusion approach, resulting in the generation of accurate
and meaningful descriptions.

Wang [8] used a Bi-LSTM model to perform image caption. Wang has developed a
deep Bi-LSTM model based on this and has achieved good results. Fazin [9] simplified
Wang’s model by reducing many parameters and improving the efficiency of the model.
Unlike the above models, the mapping relationship between vision and language in our
Bi-LS-AttM model is reverse-crossed, and the forward and backward attention of visual
language are dynamically learned. As shown in Section 4, this has been demonstrated to
be extremely beneficial for picture caption and image sentence retrieval.

3. Methodology

This section outlines our proposed model, an enhanced version of the deep Bi-LSTM
model for image captioning as proposed by Wang [8] and Fazin [9]. In our design, we
replace the RCNN used in Wang and Vahid’s model with Fast RCNN to expedite the
feature extraction process. Furthermore, we substitute the Bi-LSTM with the Bi-LS-AttM,
representing our unique contribution to this study.

Our model framework comprises three components: a Fast RCNN for detecting objects
within images; a Bi-LSTM paired with an attention mechanism to provide attentional repre-
sentation for each word; and a common space to compile all sentences and their respective
final scores. The specifics of each module will be elaborated in the subsequent sections.

3.1. Detect Object by Fast RCNN

In this section, we adopt the method proposed by Girshick [32] for feature extraction
and recognition. The selective search algorithm is utilized to extract candidate regions from
the input image. These regions are then mapped to the final convolutional feature layer
based on their spatial positional relationship.

For each candidate region on the convolutional feature layer, RoI pooling is performed
to secure fixed-dimensional features. These extracted features are then fed into the fully
connected layer for subsequent classification and regression tasks.

Fast RCNN outputs the probability of each category for each candidate region, as well
as the calculated position of each candidate box through regression. For each candidate
region, the following loss function is calculated:

L(p, u, tu, v) = Lcls(p, u)(1 + λ[u ≥ 1]) (1)

where p is the probability of each category belonging to the candidate region and u is the
ground truth category. t is the predicted position for each category, and v is the ground
truth position for the candidate field. Compared with the previous version of RCNN, Fast
RCNN improves the calculation speed, saving the time and cost of object detection.

Fast RCNN combines classification and regression into a common network, enabling
consistent training. In particular, its main enhancement on RCNN is that it eliminates
the practice of using separate SVM classifiers and bounding regressors, which greatly
improves speed.

3.2. Long Short-Term Memory

The LSTM cells form the basis of this work. They are a unique form of RNN able to
memorize long-term associations. Figure 2 shows that an LSTM cell is made up of four
important components: a memory cell g and three gate circuits (i is the gate of the input, f
is the gate of forget, and o is the gate of the output) [9].
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In the formula below, f (t), i(t), and o(t) are the values of forget, input, and output at
time t, respectively. a(t) is the intermediate feature extract result of ht−1 and xt at time t:

a(t) = tanh(Waht−1 + Uaxt + ba) (2)

i(t) = σ(Wiht−1 + Uixt + bi) (3)

f (t) = σ
(

W f ht−1 + U f xt + b f

)
(4)

o(t) = σ(Woht−1 + Uoxt + bo) (5)

where xt is the entrance, and ht−1 is the hidden state value at time t− 1. The results calcu-
lated by forgetting and inputting operate on the cell state, expressed as the formula below:

c(t) = c(t− 1)� f (t) + i(t)� a(t) (6)

where � represents the Hadamard product. Finally, the hidden state is at t. h(t) is
obtained by multiplying the gate output o(t) and the current cell state c(t) using the
Hadamard product:

h(t) = o(t)� tanh(c(t)) (7)

The following equation uses the parameters Ws and bS to predict the next word:

F(pti; Ws, bS) =
exp(Wshti + bS)

∑K
j=1 exp

(
Wshtj + bS

) (8)

where pti is the tipping probability of the forecast value.

3.3. Bi-LSTM

Both RNN and LSTM units leverage past temporal information to predict forthcoming
outputs. However, in some instances, the desired output is associated with not just the pre-
vious state but also the future state. For instance, predicting a missing word within a textual
context requires comprehension of both the preceding and succeeding context. This dual-
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directional context analysis provides a more comprehensive and accurate interpretation,
thereby achieving a genuine contextual understanding and decision-making process.

In the traditional LSTM, the forecast of the word xt using the optical context V and
historical context x1:t−1 is performed by estimating log P(xt|V, x1:t−1). However, in the Bi-
LSTM with attention, the prediction of the word xt depends on the forward and backward
results of separately maximizing log P(xt|V, x1:t−1) and log P(xt|V, xt+1:t) at time t.

In the Bi-LSTM cell structure, the input sequence is processed in both forward and
backward directions by two distinct LSTM cells to extract features. As illustrated in Figure 3,
the output vectors generated are amalgamated to form the final word representation. The
core concept behind the Bi-LSTM cell is to facilitate the capture of features at any given
time point, encompassing information from both preceding and succeeding time steps. It is
worth noting that the two LSTM units within the Bi-LSTM cell operate with independent
parameters while sharing a common word-embedding vector space.
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3.4. Architecture Model

The general layout of the model is illustrated in Figure 4. It is mainly composed of
three modules: Fast RCNN for encoding image input, Bi-LS-AttM for encoding sentence
input, and embedding picture and caption into common space and decoding it into image
captions and evaluation scores.

The Bi-LS-AttM generates word vectors by comparing similarity using the context
information from the frontend and the backend. More accurate words are selected after
passing by attention. In our work, the model calculates the front hidden vector

→
h and the

back hidden vector
←
h . The front cell starts at t = 1, while the back cell starts at t = T.

Our framework works such that for an initial input frame I, the encoding is performed
as follows:

It = F(I; θm) (9)

→
h1

t = B
(→

M; θn

)
(10)

←
h1

t = B
(←

M; θn

)
(11)
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where F and B represent Fast RCNN and Bi-LSTM, respectively. θm and θn are their

corresponding weight coefficients.
→
M and

←
M are forward and backward vectors learned

from the neural network, respectively. Afterward, the obtained vectors
→
h and

←
h are input

into attention. The bilinear scoring procedure is applied to calculate the correlation between

the query q and
→
h and

←
h . Next, a SoftMax is applied to these scores to normalize them

and obtain the attention distribution a = [a1, a2, . . . , at]. The bilinear scoring function and
SoftMax are defined as follows:

s
(→

h1
t ,
←
h1

t , q
)
=
→
h1

t

T←
h1

t

T

Wq (12)

at =

exp
(

s
(→

h1
t ,
←
h1

t , q
))

∑n
j=1 exp

(
s
(→

h1
j ,
←
h1

j , q
)) (13)

where W is a trainable parameter matrix. s is a bilinear function.
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After training the model, it can predict the word xt with a given image context V and
forward word context x1:t−1, predicted either in a forward direction using P(xt|x1:t−1, V)
or in a backward direction using P(xt|xt+1:t, V). For both forward and backward directions,
x1 = xT = 0 is set at the starting point. Finally, for sentences generated from both
directions, the last sentence of the given image P(x1:T |V) is determined by the sum of all
words’ probabilities in the caption:

p(x1:T | V) = max

(
T

∑
t=1

(→
p (xt | V)

)
,

T

∑
t=1

(←
p (xt | V)

))
(14)

→
p (xt | V) =

T

∏
t=1

p(xt | x1, x2, . . . , xt−1, V) (15)
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←
p (xt | V) =

T

∏
t=1

p(xt | xt+1, xt+2, . . . , xT , V) (16)

The Bi-LSTM module and its training parameters are similar to those presented in
Wang [8]. The difference is that an attention mechanism is added to it. It can focus
more on comparing the forward and backward context information to obtain the attention
distribution. When extracting features, the Fast RCNN is more efficient and saves time.

4. Experiments
4.1. Dataset

Experiments were performed to validate the effectiveness, generality, and robustness
of the model compared to other methods on two datasets, Flickr30K [33] and MSCOCO [34]:

Flickr30K. This is an extended version of Flickr8K. The dataset can be accessed via the
following link: http://shannon.cs.illinois.edu/DenotationGraph (accessed 2 May 2023). It
contains 31,783 images, each with 5 captions. The dataset does not explicitly categorize the
images into different types or categories. We followed the dataset partitioning proposed
by Karpathy [4]. In this split of the dataset, 29,000/1000/1000 pictures were utilized for
training, validation, and testing, respectively.

MSCOCO. The dataset can be accessed via the following link: https://cocodataset.org
(accessed 2 May 2023). This dataset, published several years ago, includes 82,783 training,
40,504 validation, and 40,775 test images. The dataset contains 80 different object categories.
Five sentences are annotated for each frame. The focus is on describing all important parts
of the scene rather than unimportant details. In the absence of a standard classification, we
follow the classification of Wang et al. [8], which uses 80,000 images to train and 5000 to
validate and test.

4.2. Evaluation Metrics

The evaluation methods of machine translation can be referred to as the evaluation
criteria, which match the generated sentences with human descriptions to obtain a similarity
score to measure the accuracy of the task.

For caption generation, the previous work is continued, and the BLEU-N score [35]
is used:

U(d, s) = b(d, s) exp

[
Z

∑
z=1

k log p(d, s)

]
(17)

where d represents the candidate description, which is the reference description, b is the
penalty function, k represents the probability of selecting a specific caption, and p represents
the accuracy measurement function. Comparing the results of METEOR [36] and CIDEr [37],
METEOR can overcome the inherent deficiencies of the BLUE standard, while CIDEr
computes the closeness of reference and modeled descriptions as the evaluation standard.

In the retrieval of an image-sentence, we use R@K and Medr as assessment scores.
R@K is the recall rate of the top captions. Medr is the average score of the first basic fact
image and caption retrieved.

4.3. Implementation Details

During the image encoding process, we utilize the VggNet model [38] for pre-training
and employ Fast RCNN to obtain the features from the final fully connected layer. This
allows Fast RCNN to share features and parameters in the feature extraction and RoI
pooling stages, thereby enhancing processing efficiency. The Bi-LS-AttM is deployed for
training the language module. In addition, we selected the widely used and enhanced
VggNet [38] and GoogleNet [39] models for our experiments. We tested our model on two
datasets specifically designed for image captioning: Flickr30k and MSCOCO.

The server hardware configuration was as shown below: Intel(R) Core (TM) i5-6200U
2.30 GHz CPU, NVIDIA RTX3080Ti GPU, and Win10 OS. The respective version levels

http://shannon.cs.illinois.edu/DenotationGraph
https://cocodataset.org
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needed for the software are Python 3.9, Torch 1.13.1, Scipy 1.2.1, H5py, and Tqdm. The
parameters set for models are shown in Tables 1–3.

Table 1. Model parameters.

Parameters Descriptions Value

Emb-dim Dimension of word embeddings. 256
Attention-dim Dimension of Bi-LSTM attention linear layers. 256

Frcnn-dim Dimension of fast RCNN. 128
Dropout The phenomenon of learning to adapt can be considerably reduced by training batches. 0.5

Cudnn-benchmark Set to true only if inputs to model are fixed size; otherwise, lots of computational overhead. True

Table 2. Bi-LSTM attention parameters.

Parameters Descriptions Value

Lay-Num Number of layers 3
Time-fore Time of data used to make the forecast. 5

Hidden-size The size of the featured area in the hidden status. 8
Epoch Displaying the number of forward and backward calculations that could be performed. 120

Batch-size The amount of data transferred to the trainer. 0.5
Learning-rate Adjustment of the network weighting rate by the loss gradient. 0.002

Optimizer Training and parameter tuning to reduce the loss of function. Adam

Table 3. Training parameters.

Parameters Descriptions Value

Lay-Num Number of layers. 3
Hidden-dim Size of the featured area in the hidden status. 8

Epoch Displaying the number of forward and backward calculations that could be performed. 120
Batch-size The amount of data transferred to the trainer. 64

Learning-rate Adjustment of the network weighting rate by the loss gradient. 0.004
Optimizer Training and parameter tuning to reduce the loss function. Adam
Grad-clip Clipping to threshold, and gradient to update weights. 5
Alpha-c Regularization parameter for attention mechanisms. 1

All words in the caption are taken from the vector used to generate the caption. Words
appearing less than five times in the training set are marked and removed. A vocabulary of
7200 and 8600 words is provided for the Flickr30K and MSCOCO datasets, respectively.
Additionally, 048 Bi-LSTM hidden units are used, and the initialization range of the weight
coefficients is set to [−0.06, 0.06].

4.4. Experimental Results on the Generated Image Caption

Our image captioning model’s efficacy was evaluated through comparative exper-
iments utilizing the BLUE-N metric, with the resultant data exhibited in Table 4. The
additional attention layer implemented within our model contributed significantly to its
strong performance on both evaluated datasets. Substituting AlexNet with VggNet [40] re-
sulted in substantial performance improvements across all BLUE metrics. Our model ranks
predominantly within the top two positions across these metrics. While our model lags
marginally behind the top-rated Hard-attention [24] model in the B-1 metric, it surpasses the
performance of both the Bi-LSTM and deep Bi-LSTM models in all other assessed metrics.

Figure 5 illustrates the comparison of our model with others on the METEOR and
CIDEr metrics. We compared our model with the Bi-LSTM [9] and deep Bi-LSTM [8]
models. As shown in the figure, the Bi-LS-AttM outperformed the leading-edge methods
on the metrics. In the Flickr30K dataset, we improved the METEOR and CIDEr scores by
about 8.0% and 12.5%, respectively. In the MSCOCO dataset, our model improved the
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METEOR and CIDEr scores by about 6.8% and 15.6%, respectively. We can also speculate
that it can give better results on larger datasets.

Table 4. Compare the BLEU score of each model on Flickr30K and MSCOCO.

Model
Flickr30K MSCOCO

B-1 B-2 B-3 B-4 B-1 B-2 B-3 B-4

Deep VS [41] 57.3 36.9 24.0 15.7 62.5 45.0 32.1 23.0
m-RNN(AlexNet) [40] 54.0 36.0 23.0 15.0 - - - -
m-RNN(VGGNet) [40] 60.0 41.0 28.0 19.0 67.0 49.0 35.0 25.0

Hard-attention [26] 66.9 43.9 29.6 19.9 71.8 50.4 35.7 25.0
Bi-LSTM [9] 62.1 42.6 28.1 19.3 67.2 49.2 35.2 24.4

Deep Bi-LSTM [8] 63.1 44.2 29.7 20.0 67.5 49.0 35.5 24.9
Our model (Bi-LSTM

and attention mechanism) 64.5 44.6 29.8 20.2 68.8 51.0 35.9 25.2

The results shown in bold type are the best values.
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We performed a comparative evaluation of our model against other advanced models
on METEOR and CIDEr metrics, as depicted in Table 5. This analysis reveals that our Bi-
LS-AttM model demonstrates robust competitiveness within the MSCOCO Karpathy split
dataset. Particularly, on the METEOR score, our model trails slightly behind Wu’s model,
potentially due to their superior parameter optimization techniques and the dataset’s com-
patibility with their switchable novel object captioner. This calls for further investigations
into novel datasets. However, our model excels in the CIDEr score. A considerable score
variation is evident when comparing the performance of our model with and without the
attention mechanism.

Table 5. Comparison of the METEOR and CIDEr scores between our and the state-of-the-art models.

Model METEOR CIDEr

Muhammad’s model [29] 16.3 39.0
Wu’s model (SNOC) [31] 21.9 39.5

Our model (Bi-LSTM) 17.8 34.5
Our model (Bi-LS-AttM) 21.5 41.2

The results shown in bold type are the best values.

In a similar vein, we conducted a thorough comparison between the performance
scores of the baseline model, which lacks an attention mechanism, and our proposed model,
employing diverse evaluation metrics. The results presented in Table 6 clearly depict the
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relative performance of the baseline model in contrast to our model. Remarkably, our
model consistently surpasses the baseline model in terms of performance metrics on both
the MSCOCO and Flickr30k test sets. Furthermore, the line graph depicted in Figure 6
visually demonstrates the competitive advantage of our model across various evaluation
metrics. It is noteworthy that our model exhibits a more pronounced competitive edge,
particularly on the MSCOCO test set. We attribute this observation to the larger scale of the
MSCOCO test set, enabling a more comprehensive evaluation and, subsequently, yielding
higher performance scores.

Table 6. Performance scores of the baseline model and our model across various metrics.

Model
Flickr30K MSCOCO

B-1 B-2 B-3 B-4 METEOR B-1 B-2 B-3 B-4 METEOR

Baseline models (without attention) 56.2 38.9 23.0 14.8 14.7 59.6 45.8 28.4 19.7 15.9
Our model (Bi-LS-AttM) 64.5 44.6 29.8 20.2 18.6 68.8 51.0 35.9 25.2 21.5

The results shown in bold type are the best values.
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4.5. Experimental Results on the Retrieval of Image-Sentence

In assessing image-sentence retrieval, we primarily focused on retrieval scores. Table 7
presents the R@K and Medr scores from our model’s image-sentence retrieval across various
datasets. Generally, our model surpasses previous methodologies on most metrics, with
a particularly strong performance on the MSCOCO dataset. Notably, the Bi-LS-AttM
outstrips advanced models in both image-to-sentence and sentence-to-image retrieval
tasks. However, some metrics reveal suboptimal performance; for instance, the Mind’s Eye
model [42], which effectively integrates image and text features, outperforms our model on
the Flickr30K dataset. We posit that incorporating an adaptive attention mechanism could
enhance efficiency in image-sentence retrieval tasks, a hypothesis we aim to investigate in
future research.

We conducted additional experiments to authenticate our model’s performance in
image-sentence retrieval tasks. Figure 7 presents examples from several retrieval exper-
iments on the MSCOCO validation set. In each caption query, the model retrieves visu-
ally congruent images and captions, illustrating its proficiency in discerning the visual–
textual association in image caption rankings. The upper dashed line represents image
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retrieval predicated on keywords, while the lower one symbolizes sentence retrieval based
on images.

Table 7. R@K (a high score is good) and Medr (a low score is good) comparison of each model on
Flickr30K and MSCOCO.

Dataset Model
Image to Sentence Sentence to Image

R@1 R@2 R@3 Medr R@1 R@2 R@3 Medr

Flickr30k

Deep VS [41] 22.2 48.2 61.4 4.8 15.2 37.7 50.5 9.2
m-RNN(AlexNet) [40] 18.4 40.2 50.9 10.0 12.6 31.2 41.5 16.0

Mind’s Eye [42] 18.5 45.7 58.1 7.0 16.6 42.5 58.9 8.0
Bi-LSTM [9] 28.1 53.1 64.2 4.0 19.6 43.8 55.8 7.0

Deep Bi-LSTM [8] 29.2 54.0 64.9 3.8 20.8 44.5 56.7 6.7
Our model (Bi-LSTM

and attention mechanism) 29.5 53.8 65.0 3.6 21.0 44.7 57.3 6.5

MSCOCO

Deep VS [41] 16.5 39.2 52.0 9.0 10.7 29.6 42.2 14.0
m-RNN(AlexNet) [40] 12.4 29.3 48.6 15.0 9.5 25.4 38.2 18.0

Mind’s Eye [42] 12.8 35.6 50.1 11.0 11.6 33.7 48.5 10.0
Bi-LSTM [9] 13.4 33.1 44.7 13.0 9.4 26.5 37.7 19.0

Deep Bi-LSTM [8] 16.6 39.4 52.4 9.0 11.6 30.9 43.4 13.0
Our model (Bi-LSTM

and attention mechanism) 17.2 40.0 53.6 8.0 12.2 35.6 49.8 11.0

The results shown in bold type are the best values.
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In the sentence-image retrieval task, we generated three images that mirror the key-
words and sentences and then selected the matching image based on its similarity. For the
image-sentence retrieval task, we produced three appropriate captions grounded on the im-
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ages and then chose the generated sentences based on their high scores in the shared space.
The given examples underscore the efficiency of our model in executing image-sentence
retrieval tasks.

4.6. Discussion

Effect of Bi-LS-AttM: To gauge the influence of the Bi-LS-AttM, we compared the
computational time of the Bi-LS-AttM model with the Bi-LSTM and deep Bi-LSTM models
for caption creation and image-to-sentence retrieval tasks. Table 8 delineates the computa-
tional durations of these models for the respective tasks. We randomly selected 20 images
from the Flickr30K validation set and assessed each model ten times for caption creation
and image-to-sentence retrieval. The table provides the average time duration across the
ten trials, excluding model initialization and training time.

Table 8. The cost of checking 10 images on Flickr30K.

Task Bi-LSTM Deep Bi-LSTM Our Models

Caption creation 1.04s 1.07 s 0.67 s
Image-Sentence Retrieval 5.78 s 5.81 s 4.28 s

The results shown in bold type are the best values.

The caption generation time expenses encompass the extraction of image features,
bidirectional caption content sampling, computation of the final caption result, and caption
accuracy evaluation. Conversely, the retrieval time accounts for the computation of the
image-to-sentence retrieval score, image and sentence query, and sorting operations in
descending order. By employing the Fast R-CNN framework and fine-tuning the relevant
parameters, our model demonstrates significant time savings in accomplishing the given
task. From Table 8, we can see that our model saves about 36.5% and 26.3% of the time com-
pared to the Bi-LSTM and deep Bi-LSTM models, respectively, in solving image captioning
and image-sentence retrieval tasks. We have verified the efficiency of the Bi-LS-AttM.

Effect of image caption: We used the Bi-LS-AttM model to generate real, accurate,
and novel image descriptions. Figure 8 shows the comparison of the baseline model and
our model in generating captions on the datasets. We evaluated generated captions from
various perspectives. In some descriptions, the relationships between objects are well
expressed (e.g., “A hot dog and a red bottle of drink are on the table”). In the example
above, the objects ‘hot dog’ and ‘table’ are accurately identified, and the relationship
between them is established. Finally, the image is described accurately and in a novel way
(e.g., “A boy dressed in black surfs the sea with a red surfboard.”). However, the baseline
model solely provides descriptive accounts of the images, lacking the generation of novel
and expressive sentences to depict them. From the perspective of object detection, the
object recognized in the baseline model is “bread” rather than the more accurate “hot dog”.
The results of the studies show our model has good efficiency. Our model can achieve a
balance between performance and efficiency.

Examples of failed experiments: Figure 9 depicts a notable number of anomalies
arising from our experimental approach. It is pertinent to note that these inaccuracies
primarily originate from the Flickr30K validation set, which we hypothesize may be due
to the limited range and diversity present in the training dataset of this source. For in-
stance, in the preceding images, our model exhibits imprecision in object identification (i.e.,
identifying “white clothes” when the man is not clothed). Another example demonstrates
an illogical caption suggesting a man cycling on water. We surmise that these limitations
could be ameliorated through improvements in our visual feature extraction aspect.

Despite these anomalies, we see them as potential avenues for further research rather
than setbacks. Nonetheless, it is crucial to emphasize that a substantial number of remaining
cases were accurately represented, as exemplified in Figure 8.
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For the dual purposes of feature extraction and time optimization, we utilized the Fast RCNN. 
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5. Conclusions

In this study, we have introduced a model that leverages the capabilities of the Bi-LS-
AttM approach to generate captions that are precise, inventive, and context-sensitive. This
was accomplished by incorporating bidirectional information and an attention mechanism.
For the dual purposes of feature extraction and time optimization, we utilized the Fast
RCNN. Additionally, to provide a comprehensive understanding of the proposed model’s
structure, we generated a detailed visualization outlining the word generation process at
consecutive timesteps. The model’s robustness and stability were thoroughly assessed
across various datasets pertinent to image captioning and image-sentence retrieval tasks.

In terms of future work, we intend to delve into more intricate domains of image
captioning, including those related to remote sensing and medical imaging. We anticipate
broadening the application scope of our model to encapsulate other forms of captioning
tasks such as video captioning. Furthermore, we plan to explore the integration of multi-
task learning methodologies with an aim to enhance the model’s general applicability.
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Abbreviations
The abbreviations used in this manuscript are listed in the following tables:

CV Computer Vision
NPL Natural Language Processing
Bi-LSTM Bidirectional Long Short-Term Memory
LSTM Long Short-Term Memory
Bi-LS-AttM Bidirectional LSTM and Attention Mechanism
Fast RCNN Fast Region-based Convolutional Network
CNN Convolutional Neural Network
RNN Recurrent Neural Network
RoI Region of Interest
SVM Support Vector Machine
CRF Conditional Random Field
NDE Nonparametric Density Estimation
VggNet Visual geometry group Net
Deep VS Deep Visual Semantic
m-RNN Multimodal Recurrent Neural Network
BULE Bilingual Evaluation Understudy
MSCOCO Microsoft Common Objects in Context
METEOR Metric for Evaluation of Translation with Explicit Ordering
CIDEr Consensus-based Image Description Evaluation
R@K Recall@K
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