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Abstract: Detection of AI-generated content is a crucially important task considering the increasing
attention towards AI tools, such as ChatGPT, and the raised concerns with regard to academic integrity.
Existing text classification approaches, including neural-network-based and feature-based methods,
are mostly tailored for English data, and they are typically limited to a supervised learning setting.
Although one-class learning methods are more suitable for classification tasks, their effectiveness in
essay detection is still unknown. In this paper, this gap is explored by adopting linguistic features
and one-class learning models for AI-generated essay detection. Detection performance of different
models is assessed in different settings, where positively labeled data, i.e., AI-generated essays,
are unavailable for model training. Results with two datasets containing essays in L2 English
and L2 Spanish show that it is feasible to accurately detect AI-generated essays. The analysis
reveals which models and which sets of linguistic features are more powerful than others in the
detection task.
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1. Introduction

The rapid advancement and availability of Artificial Intelligence (AI) and Natu-
ral Language Processing (NLP) technologies to the general public have raised signifi-
cant concerns regarding the authenticity of written content, especially in academic set-
tings [1,2]. The current academic research on the use of AI tools, such as ChatGPT (Gen-
erative Pre-trained Transformer), has predominantly followed two avenues of inquiry:
the first explores the applications and potential uses of AI [3], while the second focuses
on developing methodologies to discern between human-generated and AI-generated
writing. Tools have been developed to classify text, with GPTZero and the TurnItIn
extension being the most relevant in academic settings. Nonetheless, one important
drawback to most of these detection tools is the fact that English is the only supported
language or the language on which they are based. This is problematic in language
courses, where written production is part of the curriculum. Moreover, it was observed
that GPTZero and Turnitin are often inconsistent in recognizing human written text, mak-
ing them unreliable to be deployed without a substantial risk of false positives (https:
//nerdschalk.com/is-gptzero-accurate-detect-chat-gpt-detector-tested/ (accessed on 1
July 2023) ; https://teaching.pitt.edu/newsletter/teaching-center-update-for-june-9-2023/
(accessed on 1 July 2023). Given that information on the algorithmic foundation work
of these tools is vague or not publicly disclosed, it is of paramount importance to inves-
tigate and design new transparent detection models specially designed for L2 users, a
growing population in academic contexts (https://www.statista.com/statistics/233880
/international-students-in-the-us-by-country-of-origin/ (accessed on 1 July 2023)), who
encounter extra challenges when utilizing the internet [4]. Examples of these challenges
include inadequate search techniques, dependence on unsuitable sources, and directly
copying and pasting text without proper citation [5–7].
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Popular machine learning methods for text classification can be characterized as neural-
network-based and feature-based. The former involves neural network model architectures,
which extract a hidden representation of the text, or, in some cases, multiple modalities
where available, with high discriminating power, and directly conduct the classification
task in an end-to-end fashion. The latter adopts NLP tools to extract feature vectors from
text, e.g., frequency and fluency, which in turn are used to train external machine-learning
classification models, such as Random Forest (RF) and Support Vector Machines (SVMs).

Neural-network-based models include Bi-LSTM, which is particularly popular in
sentiment classification [8,9]. Lately, a consistent research effort has been devoted to multi-
modal neural network models, which support the combined analysis of multiple modalities,
or aspects, of the data. The authors in [10] performed deep multi-task learning, integrating
novelty detection, emotion recognition, sentiment prediction, and misinformation detection
within the same architecture. The work in [11] leverages multivariate data fusion via
Independent Vector Analysis and pre-trained deep learning models to accomplish misin-
formation detection during high-impact events. Similarly, the authors in [12] proposed the
adoption of a Transformer-based model to analyze multiple modalities as intermediate
tasks, i.e., rumor score prediction and event classification extracting hidden relationships
across various modalities that facilitate the final task. The authors in [13] proposed a
multimodal fusion neural network model with dual attention applied to rumor detection.
The method extracts text and image features, enhancing its detection capabilities. A Char-
acter Text Image Classifier (CTIC) model was proposed in [14], where the model builds
upon BERT, Capsule Network, and EfficientNet, involving different types of embeddings
(word, character, and sentence level), as well as images. The work in [15] investigated
the interplay between news content and users’ posting behavior clues in detecting fake
news, with convolutional and bidirectional gated recurrent unit neural networks coupled
with a self-attention mechanism. The proposed architecture was shown to be effective in
learning rich semantic and contextual representations of news for the detection task. The
authors in [16] devised a text and audio database with sentences extracted from videos
presenting real-world situations and categorized them into three classes: neutral sentences,
insulting sentences, and sentences representing unsafe conditions. A deep neural network
was proposed to jointly consider text and audio embedding vectors, which resulted in
accurate detections of unsafe and insulting situations.

Shifting the focus to feature-based methods, the use of linguistic features for human
versus machine-generated text has demonstrated notable advantages. Their transparency,
explainability, and discriminative capabilities make them an effective approach to rep-
resenting the underlying data [17]. The reliance on linguistic features in methods that
aim to differentiate human from AI-generated text is based on the assumption that dif-
ferences exist between these two forms of text across specific dimensions. Feature-based
approaches have been employed in the assessment of readability [18,19] and authorship
attribution [20]. Text-related feature analysis has encompassed the computation of the
distribution of punctuation marks, frequency of punctuation within sentences, and average
length of sentences and paragraphs. These measures have been effective when detecting
fake news [17,21]. AI-generated texts exhibit distinctive features, such as the frequent
repetition of words and expressions [22], as well as the utilization of commonly used words
in a given language. These patterns have been detected by automated detection techniques
that consider stop-words, unique words, and top lists [23]. Repetitiveness has been repre-
sented by the calculation of lexical repetition through the n-gram overlap of words [24].
In contrast to human text, AI-generated text avoids language that is not commonly used.
Furthermore, machine-generated texts lack emotional semantics and personal biases found
in human language. As a result, sentiment-related words tend to receive higher scores
when determining a text’s topicality using lexicon-based sentiment analysis tools [25].
Readability refers to the ease with which a piece of written text can be understood by
readers. The factors that determine a text’s readability are vocabulary complexity, sentence
structure and length, and text organization. Diverse readability measurements are available
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to determine the suitability of a text for a specific audience [26]. These measures use
mathematical formulas to provide an estimation of how accessible and comprehensible
a text can be [17]. AI-generated texts have been estimated as easier to understand given
the scores obtained by readability indexes [17,18,26]. As noted, human text uses words
that are more emotionally charged than machine-generated text. Previous studies have
used Part-of-Speech (POS) Tagging [18], an NLP task that involves assigning grammatical
labels to each word in a given text based on the part of speech to which it belongs. Thus,
words that are associated with emotions, such as adjectives and adverbs, present a higher
frequency in human-generated text. In general, linguistic feature extraction is a viable
approach to quantitatively represent relevant properties of the language, which supports
machine learning models in text classification tasks.

A common limitation of both neural-network-based and feature-based methods stands
in their supervised nature, which relies on data availability for both classes to perform
model training. Initial studies towards AI-generated essay detection also followed super-
vised approaches that require both human and AI-generated essays in training data [27].
However, this requirement becomes arduous due to the scarce availability of data for the
positive class (phenomenon or anomaly class to detect) and due to the potentially different
forms that the phenomenon could take, which are unknown at training time. In such
a setting, one-class learning and anomaly detection approaches appear more ideal than
fully supervised models.

The adoption of one-class models is particularly important for the AI-generated essay
detection task since AI-generated essays are not readily available to train and update
the models by the end users of detection tools, i.e., instructors. Therefore, a one-class
learning approach would offer the possibility to train models using exclusively human-
written essays.

The authors in [28] compare six unsupervised anomaly detection methods of vary-
ing complexity to determine a relationship between model complexity and effectiveness
in detecting anomaly types. An anomaly detection approach for sequential data is pro-
posed in [29], where tabular data are transformed into an image representation by means of
a specialized filter, allowing the model to detect multiple types of outliers simultaneously.
The work in [30] proposes a digital-twin-driven GAN-based method for an oil and gas
station anomaly detection method. A spatially aware approach is proposed in [31] to deal
with the detection of anomalies in geo-distributed smart grid data observed in smart grids.
The authors in [32] propose a method to automatically highlight changing trends and
anomalous behavior in music streaming data, which also delivers two levels of outlier
explanations: the deviation from the model prediction and the explanation of the model
prediction. The work in [33] leverages one-class models to perform anomaly detection
with active learning in a continual learning setting, focusing on the cybersecurity domain.
One-class ensembles with diverse models have shown to be effective in detecting rare
biological sequences [34], where available data are characterized by almost only negative
examples. Despite the wide range of applications covered by one-class learning studies,
approaches addressing textual content are scarce and none so far has been devoted to essay
data. On the other hand, supervised neural-network-based and feature-based approaches
have been more pervasively applied to text data, dealing with issues pertaining to social
media, such as fake news, hate speech, and misinformation. As a result, the effectiveness of
different models in the context of education and academia is still unexplored.

The present paper fills this gap, inspired by the ongoing discussion on the impact of
ChatGPT in academic contexts. Specifically, this work investigates the impact of linguistic
features on the predictive capabilities of one-class learning models on AI-generated essay
detection. The contribution of this paper is threefold. First, it explores the adoption of
linguistic features and one-class learning models for AI-generated essay detection. Second,
it designs two datasets leveraging two real-world essay corpora in two languages, English
and Spanish. These essays were written by L2 speakers and were complemented by AI-
generated counterparts written by ChatGPT. Third, it proposes an extensive experimental
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evaluation that involves multiple one-class learning methods against different sets of
linguistic features, measuring and discussing their performance on the AI-generated essay
detection task.

2. Materials and Methods

The proposed method consists of two main components: (i) linguistic features, which
provide us with a concise numerical description of different text data characteristics, and
(ii) one-class models, which are trained using linguistic features extracted from a training
set of human essays and are able to extract predictions (human or AI) for a new set of
unlabelled essays. A graphical overview of this process is shown in Figure 1.
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Figure 1. Proposed method for human vs. AI-generated essay classification. Linguistic features are
extracted for human essays (negative data) available in a training corpus and are exploited to train
one-class models. At prediction time, linguistic features are extracted from unlabelled data, and
trained models extract a prediction without any usage of AI-generated essays (positive data) during
their training stage.

2.1. Feature Extraction

The method involves the extraction of linguistic features, which aid in the distinction
between human and AI-generated texts [19]. The study encompasses the use of five
categories: Text, Repetitiveness, Emotional Semantics, Readability, and Part-of-Speech.

• Text: This category possesses features found in textual data, which can be employed
as input for machine learning models since they are measurable. The six Text features
in this study include distinct type of punctuation marks, number of Oxford commas,
number of paragraphs [35], number of full stops, number of commas [35], and average
sentence length [36]. Previous studies have demonstrated that human-generated texts
typically contain a higher frequency of punctuation mark use [35]. However, the
examination of distinctive types of punctuation marks has been largely overlooked.
Similarly, the number of paragraphs, full stops, commas, and average sentence length
are higher in human texts [35]. The Oxford comma was included (comma before the
final element in a list) as a distinguishing feature for its use is prevalent in certain
English dialects but absent in Spanish, thus acting as a language transfer feature
when analyzing essays written by English-speaking learners of Spanish. Moreover,
language, more specifically dialect bias [37], will be evident in AI-generated texts if
the Oxford comma is employed.

• Repetitiveness: Features in this category were compiled due to the fact that AI-
generated texts frequently display the use of similar words and phrases, resulting
in monotonous writing and lack of narrative and linguistic diversity [22]. The set
of unique n-grams, iterations over the set, and count of the number of times each n-
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gram appears in the text are extracted to compute the unigram, bi-gram, and tri-gram
overlap in order to quantify repetitiveness properties. The overlap is then calculated as
a ratio between the count and the total number of different n-grams [38]. Additionally,
the frequency of the words in the data is compared to the top 5K and 10K words in each
language [24], thus determining how closely the lexicon in the dataset matches that
of everyday speech. What is more, the lexical diversity of human and AI-generated
texts can also be studied. Punctuation from essays was removed to extract the list of
tokens in order to determine the number of matches with the most-used words.

• Emotional Semantics: This set of features represents the texts’ emotional tone, ex-
pressed through words, phrases, and sentences [39]. Text that has been created by
humans has been said to have more subjectivity, complexity, and emotional diver-
sity. AI-generated text, on the other hand, is more likely to be consistent in tone and
emotionally neutral [40]. Polarity and Subjectivity, two of the emotional semantic
features, are extracted using TextBlob, a lexicon-driven open-source Python text data
processing package. Polarity expresses sentiment on a scale from −1.0 to 1.0 [−1.0:
negative; 0.0: neutral; 1.0: positive], and Subjectivity indicates the degree by which
personal feelings, views, beliefs, opinions, allegations, desires, beliefs, suspicions,
and speculations are expressed in the essay, with a range from 0.0 to 1.0 [0.0: very
objective; 1.0: very subjective] [41]. Three model-driven techniques were used to
capture the semantics of sentiments: Sentiment (ES), Sentiment (Multi-language), and
Sentiment Score (Multi-language). For the first one, a Naive Bayes model trained using
over 800,000 reviews from El Tenedor, Decathlon, Tripadvisor, Filmaffinity, and eBay
was used (https://github.com/sentiment-analysis-spanish/sentiment-spanish (ac-
cessed on 1 July 2023)). For Sentiment (Multi-language), the bert-base, A-multilingual-
uncased-sentiment model was trained on reviews in different languages: English 150K,
Dutch 80K, German 137K, French 140K, Italian 72K, Spanish 50K. From this model,
three categories are obtained: 1- and 2-star reviews are considered negative [−1.0],
3-star reviews are neutral [0.0], and 4- and 5-star reviews are positive [1.0]. For the last
feature, Sentiment Score (Multi-language), the raw star ratings were normalized in a
0–1 range [0.0: one star, 1.0: five stars], obtaining a continuous score.

• Readability: The fourth set of features encompasses the complexity of a text’s vo-
cabulary [18,26] through the use of thirteen different indicators, four of them being
exclusive to the Spanish language. Each indicator possesses its own unique formula.
The Flesch Reading Ease Score indicates how difficult a passage is to understand based
on word length and sentence length. Scores range from 0 to 100, with higher scores
denoting material that is easier to read and easily understood by elementary school
students. Lower scores depict a text that is difficult to read, best understood by people
with tertiary education. The Flesch Kincaid Grade Score also determines the readabil-
ity of a text, but the score that it provides is aligned with a US grade level. Given the
formula, there is no upper bound. However, the lowest possible score, in theory, is
−3.40. This indicator emphasizes sentence length over word length. The SMOG Index
Score estimates the years of education necessary to comprehend a text. The Coleman
Liau Index Score measures the understandability of a text, whose output indicates
the necessary US grade level to comprehend the text. The score ranges from 1 to 11+.
Similarly, The Automated Readability Index Score measures the understandability
of a text by providing a representation of the US grade level required to understand
the text. Its scores range from 1 to 14, where 1 indicated kindergarten and 14 college
student. The Dale–Chall Readability Score uses a list of 3000 words, which could be
easily understood by fourth graders. The scores range from 4.9 or lower to indicate
that the text is understood by an average fourth grader or lower to 9.9 to denote that
the text is understood by college students. The Difficult Words Score provides a value
based on the number of syllables a word contains. Words with more than two syllables
are considered difficult to understand. The Linsear Write Formula Score provides
a score that indicates the grade level of a text considering sentence length and the

https://github.com/sentiment-analysis-spanish/sentiment-spanish
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number of words with three or more syllables. Values range from 0 to 11+. The
Gunning Fog Score estimates the years of formal education required to comprehend
a text on the first reading. Scores range from 6, sixth grade, to 17, college graduate.
The following four indexes were used in the Spanish dataset. The Fernandez-Huerta
Score stems from the Flesch Reading Ease Index, with similar score interpretation,
where higher scores indicate that a text is easier to understand than lower scores. The
Szigriszt-Pazos Score is also based on the Flesch Reading Ease Index, with similar
score interpretation. However, the levels of difficulty of the text can also be associated
with a type of text; i.e., a score between 1 and 15 indicates that a text is very hard
to understand and that it is a scientific or philosophical publication. Conversely, a
score between 86 and 100 indicates that the text is very easy to read and is usually
a comicbook or a short story. The Gutiérrez de Polini Score is not an adapatation of
any index and was designed for school-level Spanish texts. A low score indicates that
the readability of the text is more difficult. The Crawford Score indicates the years of
schooling that a person requires in order to understand the text. The utilization of
diverse readability indexes provides valuable information about the complexity and
accessibility of each text.

• Part-of-Speech (POS): The aforementioned absence of syntactic and lexical variance
in machine-generated texts can be quantified by identifying the distribution of Parts
of Speech. These word classes are useful to analyze, understand, and construct
sentences [42]. POS tagging has been introduced in previous work [18,24] to indicate
the relative frequency of word types based on per-sentence count of most classes.
Given the complexity of languages, where word order could alter the meaning of
a word or where words that use different morphemes possess a similar meaning,
SpaCy (https://spacy.io/ (accessed on 1 July 2023)) was used to parse and tag the data
according to the linguistic context of each token. In terms of morphologically inflected
words, the process by which words are modified to convey grammatical categories
(number, tense, person), the lemma (root form; without inflection) becomes a token. A
schematic view of all the features considered in this study is shown in Table 1.

Table 1. Linguistic features considered in the study: types, names, and example (where applicable).
An asterisk symbol (∗) denotes that the feature value is normalized by the essay length (number of
words). A plus symbol (+) denotes that the feature is novel, i.e., never encountered by the authors in
other text classification works.

Type Feature Example

Text

Distinct types of punctuation marks + . , ; . . .
Number of Oxford commas + “ . . . Christmas, Easter, and spring break. . . ”

Number of paragraphs /
Number of full stops ∗ /
Number of commas ∗ /

Average sentence length ∗ /

Repetitiveness

Unigram Overlap only . . . only . . .
Bi-gram Overlap only you . . . only you . . .
Tri-gram Overlap only you can . . . only you can . . .

Matches in the 5K most common words ∗ from, your, have . . .
Matches in the 10K most common words ∗ scared, infringement, bent . . .

Emotional

Polarity (−1.0, 1.0)

Semantics

Subjectivity (0.0, 1.0)
Sentiment (ES) + (−1.0, 1.0)

Sentiment (Multi-language) + (−1.0, 1.0)
Sentiment Score (Multi-language) + (0.0, 1.0)

https://spacy.io/
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Table 1. Cont.

Type Feature Example

Readability

Flesch Reading Ease Score (0, 100)
Flesch Kincaid Grade Score (−3.40, no limit)

Smog Index Score (1, 240)
Coleman Liau Index Score (1, 11+)

Automated Readability Index (1, 14)
Dale–Chall Readability Score (0, 10)

Difficult Words Score Varies
Linsear Write Formula Score (0, 11+)

Gunning Fog score (6–17)
Fernández-Huerta Score (SPAN) (0, 100)

Szigriszt-Pazos Score (SPAN) (0, 100)
Gutiérrez de Polini Score (SPAN) (0, 100)

Crawford Score (SPAN) (6–17)

Part-of-Speech

ADJ (Adjective) * current, long

(POS)

ADP (Adverbial Phrase) * during the week, right there
ADV (Adverb) * hopefully, differently

AUX (Auxiliary) * “. . . as you have seen. . . ”
CCONJ (Coordinating Conjunction) * and, but, or

DET (Determiner) * the, a, an
NOUN * teachers, adoption
NUM * two, hundreds

PRON (Pronoun) * I, you, him, hers
PROPN (Proper Noun) * Sweden, United States
PUNCT (Punctuation) * . ,

SCONJ (Subordinating Conjunction) * although, because, whereas
SYM (Symbol) * symbol that is not punctuation, e.g., $

VERB * mirror, use, have
SPACE (Number of spaces) * count of number of spaces

2.2. One-Class Models

Once linguistic features are extracted, they are used to train and extract inferences
using one-class learning models. A set of popular and diverse models is adopted in the
study. Specifically:

• One-Class Support Machines (OCSVMs) [43]: They conceptually operate in a sim-
ilar way to Support Vector Machines, which identify a hyperplane to separate data
instances from two classes. However, the one-class learning counterpart uses a hyper-
plane to encompass all of the background data instances (human essays). Solving the
OCSVM optimization problem corresponds to solving the dual quadratic program-
ming problem:

min
α

1
2 ∑

ij
αiαjK

(
xi, xj

)
subject to the constraints 0 ≤ αi ≤ 1

νl and ∑i αi = 1, where αi is the weight for
the instance i, vectors with non-zero weights are defined as support vectors and
determine the optimal hyperplane, ν is a parameter that represents a trade-off between
the distance of the hyperplane from the origin and the number of instances covered
by the hyperplane, l is the number of instances in training data, and K

(
xi, xj

)
is the

kernel function. Leveraging the kernel function to project input vectors into a feature
space allows for nonlinear decision boundaries. Specifically, a feature map can be
defined as:

φ : X → RN ,
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where φ maps training vectors from the input space X to a dimensional feature space,
and the kernel function is defined as:

K(x, y) = 〈φ(x), φ(y)〉

The adoption of kernel values K(x, y) allows to avoid the explicit computation of
feature vectors, with great improvement in the computational efficiency. Common
kernels include Linear, Radial Basis Function (RBF), Polynomial, and Sigmoid. Fol-
lowing the training phase, the OCSVM-learned hyperplane can categorize a new data
instance (essay) as regular/normal (human) or different/anomaly (AI-generated) with
regard to the training data distribution based on its geometric location within the
decision boundary.

• Local Outlier Factor (LOF) [44]: The method measures the deviation in local density
of data instances (essays) with respect to their neighbors. The anomaly score returned
by LOF is based on the ratio between the local density of the data instance and the
average local density of the nearest neighbors. Considering the k-distance (A) as the
distance of instance A from its k-th nearest neighbors, it is possible to define the notion
of reachability distance:

RDk(A, B) = max{k− d(B), distance(A, B)}.

Instances that belong to the k nearest neighbors of B are considered to be equally dis-
tant. The local reachability density of an instance A defined as lrk(B) is the inverse of
the average reachability distance of the object A from its neighbors. Local reachability
densities are compared with those of the neighbors as:

LOFk(A) :=
ΣB∈Nk(A)

lrk(B)
rrk(A)

|Nk(A)| =
ΣB∈Nk(A)lrk(B)
|Nk(A)| · lrk(A)

,

which represents the average local reachability density of neighbors divided by the
local reachability density of the instance. A value lower than 1 is indicative of a higher
density than neighbors (inlier), whereas a value greater than 1 is indicative of a lower
density than neighbors (outlier).

• Isolation Forest [45]: It uses a group of tree-based models and calculates an isolation
score for every data instance (essay). The average distance that lies from the tree’s root
to the leaf associated with the data instance, corresponding to the number of partitions
required to reach the instance, is used to compute the anomaly score. Considering
that more noticeable variations in values relatively correspond to shorter paths in
the tree, the method uses this information to distinguish one abnormal observation
(AI-generated essays) from the rest (human essays). The anomaly score is defined as

s(x, n) = 2−
E(h(x))

c(n) ,

where h(x) is the path length of the instance x, c(n) is the average path length of
unsuccessful search in the Binary Search Tree, and n is the number of external nodes.
An anomaly score close to 1 indicates that an instance has a high chance to be an
anomaly (AI-generated essay), whereas scores smaller than 0.5 are indicative of a
normal instance (human essay).

• Angle-Base Outlier Detection (ABOD) [46,47]: is a widely adopted method that
calculates the variance of weighted cosine scores between each data instance and its
neighbors and uses that variance as the anomaly score. It has the ability to reduce the
frequency of false positive detections by effectively identifying relationships in high-
dimensional spaces between each instance and its neighbors rather than interactions
among neighbors.



Appl. Sci. 2023, 13, 7901 9 of 24

• Histogram-based Outlier Score (HBOS) [48]: It is a straightforward statistical ap-
proach for anomaly detection that assumes feature independence. The main concept
is the generation a histogram for each feature of the data. Subsequently, for each in-
stance, the method multiplies the inverse height of the bins associated to it, providing
an assessment of the density of all features. This behavior is conceptually similar
to the Naive Bayes algorithm for classification, which is known for multiplying all
independent feature probabilities. Histograms represent a quick and effective way
to identify anomalies (AI-generated essays). Even though feature relationships are
ignored (i.e., the method assumes feature independence), this simplification allows
the method to converge quickly. HBOS builds histograms in two different modalities:
(i) static bin sizes and a preset bin width, and (ii) dynamic bins with a close-to-equal
number of bins.

• AutoEncoder: A neural network model used to learn efficient representation of unla-
beled data in an unsupervised manner. It learns two functions: an encoding function
that transforms the input data, and a decoding function that recreates the input data
from the encoded representation. The learned representation can be used to address
detection tasks by performing the reconstruction of new data instances and comparing
their reconstruction error with that of the learned distribution.

2.3. Research Questions

This experimental study is devised to address the following research questions:
• RQ1: Is it possible to accurately detect human vs. AI-generated essays using one-class

learning models, i.e. without exploitation of AI-generated essays for model training?
• RQ2: Do linguistic features allow one-class models to accurately classify human vs.

AI-generated essays, and which ones are the most relevant for essay classification?
• RQ3: Are there substantial differences in detection accuracy in essays written in

L2 English and L2 Spanish?

In order to answer the RQs, specific datasets, setup, and metrics are used.

2.4. Datasets

The dataset (the datasets are available at the following public repository: https://
github.com/rcorizzo/one-class-essay-detection (accessed on 1 July 2023)) for this study
encompasses essays written by L2 English learners, L2 Spanish learners, and AI-generated
counterparts. For the human-generated essays, two corpora were used:
1. L2 English: the Uppsala Student English Corpus (USE) (https://ota.bodleian.ox.ac.

uk/repository/xmlui/handle/20.500.12024/2457 (accessed on 1 July 2023)), which
consists of 1489 essays written by Swedish university students learning English. The
majority of the essays belong to students in their first term of full-time studies. Es-
says found in the ’a2’ folder in the repository were used for two main reasons: the
substantial amount of essays in that folder and the nature of the task. Learners wrote
argumentative essays on diverse topics. While argumentative essays are linguistically
more complex than introductory or personal experience texts, they are easier to gener-
ate using AI. The language proficiency of the students (A2) reflects the performance of
a basic user of the language. The total number of human-generated essays in English
was 335.

2. L2 Spanish: To obtain L2 Spanish data, the UC Davis Corpus of Written Spanish, L2
and Heritage Speakers (COWSL2HS (https://github.com/ucdaviscl/cowsl2h (ac-
cessed on 1 July 2023))) was used. The corpus includes essays written by students in
university-level Spanish courses. Essays written only by L2 learners were considered.
Similarly to L2 English essays, the language proficiency of the learners was that of a
basic user and topics were varied; 350 essays were compiled for analysis.

The two datasets were complemented with the same amount of AI-generated essays.
ChatGPT wrote essays in both languages. For English, the following propmpt was used:
“Write an 800-word essay on [topic] as a second language speaker”. The same instruction

https://github.com/rcorizzo/one-class-essay-detection
https://github.com/rcorizzo/one-class-essay-detection
https://ota.bodleian.ox.ac.uk/repository/xmlui/handle/20.500.12024/2457
https://ota.bodleian.ox.ac.uk/repository/xmlui/handle/20.500.12024/2457
https://github.com/ucdaviscl/cowsl2h
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was used to collect Spanish texts: “Escribe un ensayo de 800 palabras sobre [tema] como
un hablante de segunda lengua”. [topic] and [tema] were matched for each student essay
in the dataset. Data collection occurred in December 2022, a few days after the release of
ChatGPT. Thus, drawbacks occurred when generating essays using this tool: word limits or
paragraph lengths were not considered in the output provided; requesting the telling of a
personal story yielded no results since ChatGPT has no experiences; after the first inquiries
on a topic, the output exhibited a high degree of repetition; and there exists a limit on the
number of inquiries within an hour. The English dataset is comprised of 670 essays, 335
found in the corpus and 355 generated by AI. The Spanish dataset is made up of 700 essays,
equally distributed between human (350) and machine-generated (350) essays. Table 2
shows examples of the dataset.

Table 2. Short essay samples in our datasets. Second paragraph in an essay for the English dataset
(top), and first sentences of an essay for the Spanish dataset (bottom).

Topic: Capital punishment

Human Generated

. . . The right to life is the most fundamental part of the Human
Rights Agenda. To claim the right to life for innocent people is
not very difficult. It goes without saying. It is considerably
harder to defend people with horrible crimes on their
consciences; mass-murderers, war criminals, paedophiles etc.
But that is how universal rights works. They applies to
everyone, everywhere and during all circumstances. . .

. . . One of the main reasons why capital punishment is not good
is that it is not an effective deterrent to crime. Studies have
shown that the death penalty does not have a greater deterrent
effect on crime than other forms of punishment, such as life
imprisonment. Additionally, the death penalty can also have a
negative impact on the crime rate, as it can lead to a lack of
public trust in the justice system, which can in turn lead to a rise
in crime. . .

Topic: Una persona famosa

Human Generated

Hay un artista y se llama Kanye West. El tiene muchos dinero.
El tiene cuarenta y cuartro anos de edad. El es de estados unicos
y es americano. El tiene dos ojos grandes. El lleva una camiseta
blanca y pantalones negro o azul. El lleva zapatos blancos.
Tiene una esposa y llamada Kim Kardashian West. El tiene una
hija y un hijo. Sus nombres son North West y Saint West. El
escribe musica El trabaja con artistas de musica . . .

Una persona famosa que me viene a la mente es Albert Einstein.
Einstein es conocido en todo el mundo como uno de los
científicos más importantes y brillantes de la historia. Nacido en
Alemania en 1879, Einstein comenzó a mostrar una gran aptitud
para las matemáticas y la física desde temprana edad.
A los 16 años, se matriculó en la Universidad Politécnica de
Zurich, donde obtuvo su título en 1900 . . .

2.5. Setup and Metrics

One-class learning models are trained following an evaluation scheme that resembles
a stratified 5-fold cross-validation, with the exception that training folds contain exclusively
human essays and testing folds contain both human and AI-generated essays. As a result,
models are trained and evaluated 5 times and results are aggregated. For OneClassSVM,
experiments were performed with different kernel types (RBF, Polynomial, Linear) and
results were reported separately. For LocalOutlierFactor, experiments with different
numbers of neighbors (3, 5, 10) were performed. For AutoEncoder, a model architecture
with three hidden layers of 10, 5, and 10 neurons was used. The model was trained for
200 epochs with a batch size of 32. For all other methods and parameters, considering that
the experimental conditions are standard with respect to the common one-class learning
setting, the recommended configurations proposed in the respective software libraries
(SkLearn (https://scikit-learn.org/ (accessed on 1 July 2023)) and PyOD (https://pyod.
readthedocs.io/en/latest/index.html (accessed on 1 July 2023))) were used. Commonly
used metrics for machine-learning-based classification tasks, such as Precision, Recall, and
F1-Score, were adopted.

3. Results

RQ1: The results in Table 3 for English indicate that OneClassSVM (RBF kernel)
achieves the best performance in terms of F1-Score in three of the five settings, i.e., Text

https://scikit-learn.org/
https://pyod.readthedocs.io/en/latest/index.html
https://pyod.readthedocs.io/en/latest/index.html
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(0.6694), Emotional Semantics (0.6436), and POS (0.7223). AutoEncoder presents exceptional
F1-Score performance in the Repetitiveness setting (0.9553), outperforming all methods
in this setting. Isolation Forest presents a very high F1-Score performance in Readability
(0.8942), surpassing all other methods. The results for OneClassSVM with other kernels
show relatively low F1-Score performance, except for the Polynomial kernel with Readabil-
ity features, which possesses the highest performance level (0.7292). LocalOutlierFactor
yields satisfactory results in the Readability setting, where its performance increases expo-
nentially: 3 (0.7582), 5 (0.7995), and 10 (0.8236). The method is unsatisfactory in all other
settings. HBOS exhibits excellent F1-Score performance in the Repetitive setting (0.9027).
However, its performance is sub-optimal in Readability (0.7085) and falls below random
performance in the remaining settings. ABOD presents subpar F1-Scores in all settings.

Results for the Spanish data in Table 4 show that OneClassSVM (RBF kernel) achieves
the best performance in four of the five settings, i.e., Text (0.5917), Repetitiveness (0.5199),
POS (0.4968), and Emotional Semantics (0.4881). The results for OneClassSVM with other
kernels present a subpar F1-Score performance, except for the Linear kernel with Read-
ability features, which represents the highest performance across all settings (0.7238) and
methods. LocalOutlierFactor presents a poor F1-Score across all neighbor configurations (3,
5, 10) in the Repetitiveness (0.4426, 0.4369, 0.4223) and Emotional Semantics (0.4663, 0.4501,
0.4684) settings. Its performance is notably poorer in the remaining three settings. Isolation-
Forest showcases similar F1-Score performance to LocalOutlierFactor in Readability (0.5788)
and Emotional Semantics (0.4499) settings. Its performance is subpar in Repetitiveness
(0.3424), POS settings (0.3247), and Text (0.3132). ABOD, HBOS, and AutoEncoder present
unsatisfactory performance (below random) in all settings.

RQ2: Table 3 shows that linguistic features aid in the accurate prediction of human vs.
AI-generated essays in English. Based on the average F1-Score of each setting across all
methods, Readability (0.7166) is the best-performing feature, preceded by Repetitiveness,
POS (0.5345), and Emotional Semantics (0.5120). Text had the lowest performance (0.3994).
The maximum F1-Score in each setting across all methods reveals that Repetitiveness
(0.9553) scored the highest, preceded by Readability (0.8942), POS (0.7223), Text (0.6694),
and Emotional Semantics (0.6436). Readability and Repetitiveness are the best-performing
features, as shown by both average and maximum F1-Score across all methods. For
Spanish (Table 4), average F1-Scores revealed that Readability had the highest score (0.5056),
preceded by Emotional Semantics (0.4165), Repetitiveness (0.4189), and POS (0.3699). Text
features present the poorest performance (0.3509). On the other hand, maximum F1-
Scores reveal a different order of features, from highest to lowest: Readability (0.7238),
Text (0.5917), Repetitiveness (0.5199), POS (0.4968), and Emotional Semantics (0.4881).
Readability emerges as the top-performing setting, displaying the highest average and
maximum performance despite the generally sub-optimal results.

The results obtained with the extraction of confusion matrices show that the secondary
diagonal of confusion matrices offers a different perspective than performance metrics. For
models with multiple configurations (OneClassSVM and LocalOutlierFactor), the confu-
sion matrix obtained with the best configuration (kernel type and number of neighbors,
respectively) is provided.

For the English dataset, the Text setting (see Figure 2) shows 344 (AutoEncoder), 340
(ABOD), 331 (HBOS), 262 (IsolationForest), 332 (LocalOutlierFactor), and 207 (OneClassSVM)
incorrectly classified essays out of 671. The difference between the best-performing method
(OneClassSVM) and the second-best (IsolationForest) method is substantial and the re-
sults are not optimal. The Repetitiveness setting (see Figure 3) highlights 294 (ABOD),
265 (LocalOutlierFactor), 262 (OneClassSVM), 65 (HBOS), 39 (IsolationForest), and 30 (Au-
toEncoder) incorrectly classified essays, making AutoEncoder and IsolationForest the
top-performing methods.
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Table 3. English dataset: detection accuracy via 5-fold stratified cross-validation. Highest F1-Scores
in bold.

Setting = Text Precision Recall F1-Score

OneClassSVM (RBF kernel) 0.7607 0.6915 0.6694
OneClassSVM (Polynomial kernel) 0.3092 0.3294 0.3110

OneClassSVM (Linear kernel) 0.3092 0.3294 0.3110
LocalOutlierFactor (3 neighbors) 0.5169 0.5052 0.4084
LocalOutlierFactor (5 neighbors) 0.4817 0.4948 0.3783

LocalOutlierFactor (10 neighbors) 0.4395 0.4903 0.3527
IsolationForest 0.6465 0.6095 0.5836

ABOD 0.3312 0.4933 0.3324
HBOS 0.5978 0.5067 0.3587

AutoEncoder 0.4297 0.4873 0.3534

Setting = Repetitiveness Precision Recall F1-Score

OneClassSVM (RBF kernel) 0.6141 0.6095 0.6054
OneClassSVM (Polynomial kernel) 0.5082 0.5082 0.5082

OneClassSVM (Linear kernel) 0.5067 0.5067 0.5067
LocalOutlierFactor (3 neighbors) 0.6764 0.6051 0.5611
LocalOutlierFactor (5 neighbors) 0.7163 0.6036 0.5446

LocalOutlierFactor (10 neighbors) 0.7113 0.6021 0.5435
IsolationForest 0.9473 0.9419 0.9417

ABOD 0.7268 0.5618 0.4651
HBOS 0.9105 0.9031 0.9027

AutoEncoder 0.9563 0.9553 0.9553

Setting = Emotional Semantics Precision Recall F1-Score

OneClassSVM (RBF kernel) 0.6699 0.6528 0.6436
OneClassSVM (Polynomial kernel) 0.4918 0.4918 0.4918

OneClassSVM (Linear kernel) 0.5291 0.5291 0.5286
LocalOutlierFactor (3 neighbors) 0.6085 0.5648 0.5168
LocalOutlierFactor (5 neighbors) 0.6065 0.5574 0.5005

LocalOutlierFactor (10 neighbors) 0.6214 0.5708 0.5215
IsolationForest 0.6516 0.6110 0.5835

ABOD 0.6968 0.5350 0.4155
HBOS 0.5674 0.5067 0.3657

AutoEncoder 0.6606 0.5768 0.5138

Setting = Readability Precision Recall F1-Score

OneClassSVM (RBF kernel) 0.7526 0.5112 0.3569
OneClassSVM (Polynomial kernel) 0.8318 0.7466 0.7292

OneClassSVM (Linear kernel) 0.8324 0.7481 0.7310
LocalOutlierFactor (3 neighbors) 0.8166 0.7675 0.7582
LocalOutlierFactor (5 neighbors) 0.8408 0.8048 0.7995

LocalOutlierFactor (10 neighbors) 0.8563 0.8271 0.8236
IsolationForest 0.8943 0.8942 0.8942

ABOD 0.7581 0.6006 0.5291
HBOS 0.8072 0.7273 0.7085

AutoEncoder 0.8525 0.8376 0.8358

Setting = POS Precision Recall F1-Score

OneClassSVM (RBF kernel) 0.8154 0.7392 0.7223
OneClassSVM (Polynomial kernel) 0.6065 0.5618 0.5098

OneClassSVM (Linear kernel) 0.5835 0.5812 0.5781
LocalOutlierFactor (3 neighbors) 0.7457 0.6080 0.5446
LocalOutlierFactor (5 neighbors) 0.7513 0.5991 0.5280

LocalOutlierFactor (10 neighbors) 0.7501 0.5708 0.4776
IsolationForest 0.6678 0.5887 0.5342

ABOD 0.7326 0.5693 0.4782
HBOS 0.5932 0.5127 0.3800

AutoEncoder 0.7014 0.6289 0.5925
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Table 4. Spanish dataset: detection accuracy via 5-fold stratified cross-validation. Highest F1-Score in
bold.

Setting = Text Precision Recall F1-Score

OneClassSVM (RBF kernel) 0.6190 0.6043 0.5917
OneClassSVM (Polynomial kernel) 0.3102 0.3329 0.3123

OneClassSVM (Linear kernel) 0.3102 0.3329 0.3123
LocalOutlierFactor (3 neighbors) 0.3641 0.4600 0.3443
LocalOutlierFactor (5 neighbors) 0.3409 0.4657 0.3354

LocalOutlierFactor (10 neighbors) 0.2582 0.4629 0.3187
IsolationForest 0.2511 0.4514 0.3132

ABOD 0.2489 0.4957 0.3314
HBOS 0.2475 0.4900 0.3289

AutoEncoder 0.2426 0.4714 0.3204

Setting = Repetitiveness Precision Recall F1-Score

OneClassSVM (RBF kernel) 0.5200 0.5200 0.5199
OneClassSVM (Polynomial kernel) 0.3988 0.4029 0.3968

OneClassSVM (Linear kernel) 0.3972 0.4014 0.3952
LocalOutlierFactor (3 neighbors) 0.5369 0.5171 0.4426
LocalOutlierFactor (5 neighbors) 0.5697 0.5257 0.4369

LocalOutlierFactor (10 neighbors) 0.5752 0.5229 0.4223
IsolationForest 0.3971 0.4886 0.3424

ABOD 0.2482 0.4929 0.3301
HBOS 0.2486 0.4943 0.3308

AutoEncoder 0.4578 0.4929 0.3599

Setting = Emotional Semantics Precision Recall F1-Score

OneClassSVM (RBF kernel) 0.4898 0.4900 0.4881
OneClassSVM (Polynomial kernel) 0.3568 0.3614 0.3562

OneClassSVM (Linear kernel) 0.3828 0.3843 0.3824
LocalOutlierFactor (3 neighbors) 0.5305 0.5186 0.4663
LocalOutlierFactor (5 neighbors) 0.5177 0.5100 0.4501

LocalOutlierFactor (10 neighbors) 0.5387 0.5229 0.4684
IsolationForest 0.4859 0.4900 0.4499

ABOD 0.5947 0.5100 0.3689
HBOS 0.4830 0.4986 0.3496

AutoEncoder 0.5561 0.5157 0.4094

Setting = Readability Precision Recall F1-Score

OneClassSVM (RBF kernel) 0.7514 0.5057 0.3459
OneClassSVM (Polynomial kernel) 0.8218 0.7357 0.7168

OneClassSVM (Linear kernel) 0.8244 0.7414 0.7238
LocalOutlierFactor (3 neighbors) 0.7134 0.6329 0.5946
LocalOutlierFactor (5 neighbors) 0.7055 0.6129 0.5637

LocalOutlierFactor (10 neighbors) 0.6382 0.5671 0.5033
IsolationForest 0.6904 0.6186 0.5788

ABOD 0.2486 0.4943 0.3308
HBOS 0.2482 0.4929 0.3301

AutoEncoder 0.4845 0.4971 0.3684

Setting = POS Precision Recall F1-Score

OneClassSVM (RBF kernel) 0.4971 0.4971 0.4968
OneClassSVM (Polynomial kernel) 0.4100 0.4100 0.4100

OneClassSVM (Linear kernel) 0.3787 0.3843 0.3771
LocalOutlierFactor (3 neighbors) 0.5200 0.5029 0.3673
LocalOutlierFactor (5 neighbors) 0.5216 0.5029 0.3652

LocalOutlierFactor (10 neighbors) 0.5311 0.5043 0.3681
IsolationForest 0.2701 0.4757 0.3247

ABOD 0.2478 0.4914 0.3295
HBOS 0.2482 0.4929 0.3301

AutoEncoder 0.3171 0.4671 0.3297
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The Emotional Semantics setting (see Figure 4) showcases 331 (HBOS), 312 (ABOD),
288 (LocalOutlierFactor), 284 (AutoEncoder), 261 (IsolationForest), and 233 (OneClassSVM)
incorrectly classified essays. These results show that this setting does not allow for accurate
essay detection for all models, as evident by the large amount of miscategorized data. The
Readability setting (see Figure 5) presents 268 (ABOD), 183 (HBOS), 170 (OneClassSVM),
116 (LocalOutlierFactor), 109 (AutoEncoder), and 71 (IsolationForest) incorrectly classi-
fied essays. This setting is, overall, effective for it yields better results than the Text and
Emotional Semantics settings; however, it does not outperform Repetitiveness. The POS
setting (see Figure 6) shows 327 (HBOS), 289 (ABOD), 276 (IsolationForest), 263 (LocalOut-
lierFactor), 249 (AutoEncoder), and 175 (OneClassSVM) incorrectly classified essays. Its
performance falls between Text and Readability.

For the Spanish dataset, the Text setting (see Figure 7) shows 384 (IsolationForest),
378 (LocalOutlierFactor), 370 (AutoEncoder), 357 (HBOS), 353 (ABOD), and 277 (OneClass
SVM) incorrectly classified essays out of 700. These results are close to the random per-
formance with this setting, with OneClassSVM being the best-performing method. The
Repetitiveness setting (see Figure 8) highlights 358 (IsolationForest), 355 (ABOD), 355 (Au-
toEncoder), 354 (HBOS), 338 (LocalOutlierFactor), and 336 (OneClassSVM) incorrectly
classified essays. Across all the methods in this setting, the performance is consistently
poor, as indicated by the minimal deviation in the number of misclassified essays. The Emo-
tional Semantics setting (see Figure 9) showcases 357 (IsolationForest), 357 (OneClassSVM),
351 (HBOS), 343 (ABOD), 339 (AutoEncoder), and 334 (LocalOutlierFactor) incorrectly clas-
sified essays. These results confirm that Emotional Semantics do not offer highly predictive
information for the detection task, as shown in the English dataset. The Readability setting
(see Figure 10) presents 355 (HBOS), 354 (ABOD), 352 (AutoEncoder), 267 (IsolationForest),
257 (LocalOutlierFactor), and 181 (OneClassSVM) incorrectly classified essays. This setting
is more effective than others, as observed by performance metrics. In fact, OneClassSVM,
LocalOutlierFactor, and IsolationForest are able to reach results that are above random per-
formance. The POS setting (see Figure 11) shows 373 (AutoEncoder), 367 (IsolationForest),
356 (ABOD), 355 (HBOS), 352 (OneClassSVM), and 347 (LocalOutlierFactor) incorrectly
classified essays, falling between Text and Readability. Overall, these results appear to
be close to random performanc and in line with the results obtained in the Emotional
Semantics, Repetitiveness, and Text settings for the English dataset.

RQ3: The results obtained from the English (Table 3) and Spanish datasets (Table 4)
reveal that there is a substantial difference in model performance. Considering the best
outcomes obtained within each setting across all methods for English vs. Spanish essays,
the following side-by-side F1-Score comparisons are obtained: Text (0.6694 vs. 0.5917),
Repetitiveness (0.9553 vs. 0.5199), Emotional Semantics (0.6436 vs. 0.4881), Readability
(0.8942 vs. 0.7238), and POS (0.7223 vs. 0.4968).
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Figure 2. Confusion matrices reporting the number of correctly (main diagonal) and incorrectly
(secondary diagonal) predicted essays for all methods (English dataset—setting: Text).

Figure 3. Confusion matrices reporting the number of correctly (main diagonal) and incorrectly
(secondary diagonal) predicted essays for all methods (English dataset—setting: Repetitiveness).
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Figure 4. Confusion matrices reporting the number of correctly (main diagonal) and incorrectly (sec-
ondary diagonal) predicted essays for all methods (English dataset—setting: Emotional Semantics).

Figure 5. Confusion matrices reporting the number of correctly (main diagonal) and incorrectly
(secondary diagonal) predicted essays for all methods (English dataset—setting: Readability).
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Figure 6. Confusion matrices reporting the number of correctly (main diagonal) and incorrectly
(secondary diagonal) predicted essays for all methods (English dataset—setting: POS).

Figure 7. Confusion matrices reporting the number of correctly (main diagonal) and incorrectly
(secondary diagonal) predicted essays for all methods (Spanish dataset—setting: Text).
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Figure 8. Confusion matrices reporting the number of correctly (main diagonal) and incorrectly
(secondary diagonal) predicted essays for all methods (Spanish dataset—setting: Repetitiveness).

Figure 9. Confusion matrices reporting the number of correctly (main diagonal) and incorrectly (sec-
ondary diagonal) predicted essays for all methods (Spanish dataset—setting: Emotional Semantics).
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Figure 10. Confusion matrices reporting the number of correctly (main diagonal) and incorrectly
(secondary diagonal) predicted essays for all methods (Spanish dataset—setting: Readability).

Figure 11. Confusion matrices reporting the number of correctly (main diagonal) and incorrectly
(secondary diagonal) predicted essays for all methods (Spanish dataset—setting: POS).
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4. Discussion

In this section, the experimental results obtained for the AI-generated detection task
are discussed.

RQ1: This question pertains to the accurate detection of human vs. AI-generated
essays using one-class learning models. The results showed that AutoEncoder achieved
the best results on the English dataset, followed by IsolationForest. Analyzing this result
from the perspective of recent research works involving one-class learning methods, a
similar pattern was observed in [33], where AutoEncoder significantly outperformed other
approaches in terms of both model accuracy and robustness to contamination in training
data. The same behavior was observed in [31], where AutoEncoder outperformed both
IsolationForest and OneClassSVM in the context of geo-distributed sensor network data,
and in [29,30,32], where deep learning approaches based on neural networks such as
AutoEncoder yielded remarkable detection performances. This result shows that such
approaches are particularly effective when the ability to catch the non-linearities across
features is beneficial for the detection task.

However, it is noteworthy that this phenomenon was not systematically observed in
the literature. For instance, the study in [28] compared deep learning and classical ma-
chine learning methods and identified that classical methods outperformed deep learning
approaches on the considered time series domains. The work in [34] also showcases the
effectiveness of one-class ensembles of classical machine learning approaches in complex
domains. This result, which seems to contradict what is observed in the present paper
for the English dataset, is actually in line with the results for the Spanish dataset. On
that dataset, OneClassSVM, which is regarded as a classical machine learning approach
for one-class learning, yielded the best performance, outperforming other approaches
including AutoEncoder. Therefore, different one-class learning methods present varying
robustness and performance in the presence of different data characteristics.

Overall, the general results of the experiments are significant. Their practical implica-
tion is that it is possible to train models for the detection task that yield accurate predictions
without exploiting positively labelled training data (AI-generated essays), which are usually
unavailable to end users, i.e., instructors. Thus, the classification of human vs. AI-generated
essays using one-class learning methods without leveraging positively labeled data during
the model training process is an achievable undertaking.

RQ2: Regarding the importance of linguistic features for accurate essay detection, the
results showed that Readability was on average the best-performing setting for the English
and Spanish datasets. This finding contradicts the results in other previously published
studies on fake news [21,49], which deemed Readability as the features with the lowest
detection capabilities. Such an anomaly can be explained by the number and complexity
of the features used. The authors in [21,49] used seven and four features, respectively.
The current study employs thirteen features, including some that are specific to academic
texts and the Spanish language. Furthermore, Readability possessed the highest F1-Score
performance across all methods in Spanish and the second-highest in English. Readability
refers to the complexity of the vocabulary of a text; given that essays display elaborate and
specific lexicon, as opposed to that of fake news, it is not surprising for these linguistic
features to rank high.

In the English data, Repetitiveness obtained the highest F1-Score. This setting was the
third-highest in Spanish. As noted in [50], AI essays are repetitive, not only in the use of
vocabulary but also in the expression of ideas. Essays generated by ChatGPT exhibited
great repetition of ideas and phrases in the current study, particularly those generated in
English.

Based on the assumption that machine-generated text presents shorter and less complex
sentences, less use of adjectives and adverbs, and overall shorter sentence length [18,24],
POS tagging was expected to have higher classifying power. However, the results indicated
that it was the fourth-best in English and the least competitive in Spanish. While sentence
length is a differentiating feature between AI- and human-generated essays, it is not
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competitive enough when compared to semantic features. Overall, the results showed that
linguistic features enabled one-class models to effectively classify human vs. AI-generated
essays, an unexplored venue in detection studies.

RQ3: This research question addresses the differences in detection accuracy in English
and Spanish essays. The results highlighted that Readability is the setting that could be
considered optimal for both languages. This may be the case because of the features used
in this setting. Overall, lower model performance in the Spanish dataset is observed. This
phenomenon could be due to two main reasons. First, human essays were produced by
L2 learners of English and Spanish, which could exhibit language transfer, a process by
which learners use their knowledge of other languages and apply it to another [51]. Thus,
linguistic features that highly depend on meaning—Emotional Semantics, Readability, and
POS—may have been influenced by learners’ inaccuracy and/or misspelling of words.
Second, Spanish is a morphologically synthetic language, relying on inflection to express
syntactic meaning, whereas English is analytic in nature, using words and word order
to convey syntactic meaning [52]. More inaccurate use of morphological inflections was
present in Spanish human-generated essays compared to the English dataset. Additionally,
the use of the Oxford comma is found in certain dialects of English. Evidence of its
use in Spanish has not been reported in the literature. Oxford commas in L2 Spanish
essays were found since the essays were written by L1 (First Language) American English
students. However, this single feature alone could not help the model discern between
both text modalities. What is more, Spanish essays generated by ChatGPT exhibited
the use of the Oxford comma, depicting a strong influence of the English language in
ChatGPT outcomes. Thus, considering that GPT has been mostly trained on English
texts (https://seo.ai/blog/how-many-languages-does-chatgpt-support (accessed on 1 July
2023)), it is likely that the class overlap between essays written by L2 learners of Spanish
with English as their L1 and AI-generated essays is smaller than that observed for the
English dataset, resulting in a more difficult detection task for one-class learning models
with the Spanish dataset. Average sentence length is longer in Spanish than in English [53].
Considering the aforementioned influences, the complexity of the detection task using
simple features in the one-class learning setting was increased. Identifying effective features
and models for the Spanish language is a crucial aspect to be further investigated in future
research.

5. Conclusions and Future Work

This paper attended to the gaps in the literature for essay data analysis, which often
involve supervised neural-network-based and feature-based methods applied to English
data. Additionally, the effectiveness of one-class learning methods, considered more
suitable for detection tasks, had never been explored in the context of essay data. Previous
research has predominantly concentrated on L1 texts or has overlooked the implications of
not knowing if the text comes from a native speaker of the language or a speaker who uses
the language as a second means of communication. The noteworthy contribution of this
paper resides in the composition of the analyzed dataset, which consists of essays written
in English and Spanish by L2 learners, and in addressing the AI-generated essay detection
task using one-class learning models.

This paper assessed the detection performance of different models in varied settings,
where positively labeled data, i.e., AI-generated essays, are unavailable for model training.
Experiments with two datasets containing essays in L2 English and L2 Spanish showed
that it is feasible to accurately detect AI-generated essays, especially those that are written
in English. The results revealed that the AutoEncoder model for English, OneClassSVM
for Spanish, and Readability as a linguistic feature are more powerful than others in the
detection task.

In summary, this paper addressed the task of AI-generated essay detection, empha-
sizing its importance given the adoption of ChatGPT by the general public, which raised
concerns with regard to academic integrity. Overall, the extracted results should guide and
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stimulate researchers and practitioners in the design of new and effective methods, as well
as the adoption of new linguistic features, for this detection task. To this end, the results
presented and published datasets that can be used as a benchmark for future works. Future
work should also focus on analyzing and improving the detection accuracy for Spanish
essays. Moreover, custom one-class-learning methods as well as more sophisticated deep-
learning model architectures for AI-generated essay detection that do not exclusively rely
on linguistic features are to be explored.
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