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Abstract: According to numerous studies, various parts processed by machine tools usually have
multiple-quality characteristics at the same time. Moreover, the process capability index is a handy
and useful tool for assessing various quality characteristics. In order to assist downstream customers
in evaluating their process capabilities, achieve the effect of integrating the production data of the
machine tool industry chain, advance the process quality of products, and reduce rework and scrap,
we constructed a shared decision-making model of production data management for multi-quality
characteristic products on the cloud platform in consideration of Industry 4.0. This model not only
can help downstream customers improve the process for quality characteristics with insufficient
process precision or accuracy to figure out the optimum machine parameter setting but also can
build a better system of repairs and maintenance. At the same time, all downstream customers’
improvement experiences can be gathered to form a knowledge database for improvements and
provided to the machine tool industry to set up a complete mechanism of supplier selection, or they
can be regarded as a reference for designing superior key components of machine tools, thereby
enhancing the product value and industrial competitiveness of machine tools.

Keywords: Industry 4.0; Internet of Things; production data analysis; quality characteristic; process
capability index

1. Introduction

A number of studies have revealed that the German government proposed Industry
4.0 in 2011, mainly intending to encourage a comprehensive networking production envi-
ronment of smart manufacturing through information and communication technologies as
well as digital manufacturing technologies [1,2]. Further, numerous studies have consid-
ered that as the Internet of Things (IoT) and analytical technology such as Big Data becomes
gradually mature, innovation in various industries around the world will be driven [3–6],
and the manufacturing industry will stride forward towards smart manufacturing by
means of integration and application of related technologies [7–9]. When facing increas-
ingly serious global warming issues, the concept of circular economy (CE) will catalyze the
continuous development of innovation and management techniques for enterprises, move
towards smart manufacturing and intelligent management, and strive to achieve economic
growth as well as environmental sustainability [10,11].

Obviously, what the concept of Industry 4.0 brings the greatest value to the manufac-
turing industry is that various production data, including machine parameters, process
capability analysis, machine maintenance, environmental safety, and energy consumption,
are integrated into product design, research and development, and management analysis of
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production and process [12,13]. Central Taiwan is an industrial cluster of machine tools, and
the value of output and volume of export of machine tools are among the best. Apparently,
all kinds of downstream machining factories that purchase machine tools are scattered
all over the world, forming an industrial chain of machine tools with Taiwan’s machine
tool manufacturers and suppliers [14,15]. According to plenty of studies, the components
manufactured by machine tools usually have multi-quality characteristics. The quality
of finished products can only be ensured when each quality characteristic achieves the
required quality level [16,17]. As mentioned above, the Internet of Things (IoT) is becoming
more and more popular and mature in the world. If machine tools can build a decision-
making model of production data management for multi-quality characteristic products
on the cloud platform, this model will contribute to smart manufacturing and intelligent
management of the industry.

Many studies have addressed that the process capability index is an accessible and
useful tool that the industry uses to assess process quality levels for all types of quality
characteristics of products, a communication tool between the sales section and clients,
and an effective tool that internal engineers apply to the evaluation and analysis of the
process [18,19]. Quite a few studies have depicted process capability indices in the process
capability analysis chart, providing the industry with the process capabilities that can
simultaneously evaluate all multi-quality characteristics of their products [20,21]. How-
ever, the process capability analysis chart proposed by these studies is only suitable for
evaluating symmetric tolerances. In practice, the components processed by machine tools
have the nominal-the-best quality characteristics, which usually belong to asymmetrical
tolerances. To solve this problem, we propose a process capability analysis chart that can
simultaneously calculate multiple symmetric tolerances and asymmetric tolerances for
products with multiple nominal-the-best quality characteristics. This paper calls this chart
Process Capability Analysis Chart with Asymmetric Tolerances, abbreviated to PCAC-AT,
for multi-quality characteristic products. With this PCAC-AT, a decision-making model of
production data management is established. This decision-making model of production
data management can help various machining manufacturers and customers of machine
tools to gauge the process capability for each quality characteristic, improve or enhance the
process precision and accuracy of quality characteristics, and then find the best machining
parameter setting as well as set up a more appropriate machine maintenance system, in
order to reduce environmental pollution and energy consumption losses resulting from
scrap and rework. Additionally, machine tool makers can gather all downstream customers’
experiences of improvements to form an improvement knowledge base, which can be
viewed as a reference for the machine tool industry to build a complete supplier selection
mechanism or design more quality key components of machine tools, thereby enhancing
the product value and industrial competitiveness of machine tools.

Obviously, the advantages of the model proposed in this paper include: (1) It can
assist the machining manufacturers, which is the customer end of the machine tool industry
chain. In order to evaluate the process capabilities of all important quality characteristics
of the processed products. Allowing the processing industry to grasp the overall picture
of the processed products and timely improve the quality characteristics of poor qual-
ity; (2) It can assist the machine tool industry, collect the improvement experience of all
processors, form an improvement knowledge basement, and share it with all machining
manufacturers, which is the customer end of the industrial chain; (3) In addition, it can
assist the tool industry machinery manufacturers, count all the parts that often go wrong,
and give feedback to suppliers or outsourcers to help them improve the quality of the parts
they supply; (4) The quality characteristics in the model include symmetrical tolerances
and asymmetrical tolerances, in line with the current practice of the machine tool industry.
(5) Based on the above, it can assist all members of the machine tool industry chain, includ-
ing machining manufacturers (customers), machine tool manufacturers, and component
suppliers or outsourcers, to reduce carbon emissions by improving quality performance so
as to benefit society’s responsibility.
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Furthermore, a process capability index contains two unknown parameters. If it is
evaluated by point estimation directly, then misjudgment is likely to take place due to
sampling error [22,23]. Therefore, in this paper, an evaluation coordinate point is built by
the interval estimation of two parameters. Because the evaluation coordinate point is built
on the confidence interval, it can avoid the misjudgment made by sampling error [24]. In
fact, the abscissa of the PCAC-AT analysis chart is the accuracy index, the ordinate is the
accuracy index, and the process capability index for evaluating the process quality is a
function of these two indexes. For example, if the process capability level is required to be
“Capable”, then PCAC-AT is a contour map with a process capability index value equal to
1.00. First, you can check the collected product processing data to see if there are extreme
values and remove them. Then, considering the position of the evaluation coordinate point
of each quality characteristic in the PCAC-AT, we can determine whether to enhance the
process of the quality characteristic. The improved method includes adjusting the machine
parameters or carrying out the Taguchi test in order to obtain the processing conditions of
the best combination of machine parameters.

The other sections are arranged as follows. In Section 2, we build a process capability
analysis chart using asymmetric tolerances. Then, we derive the (1− α) 100% confidence
region of process mean and process standard deviation. In Section 3, based on (1− α)100%
confidence region, an evaluation coordinate point is created. Next, an empirical example is
demonstrated to explain the application of the suggested PCAC-AT analysis method in
Section 4. Conclusions are made in Section 5. Last, research limitations and future research
are in Section 6.

2. Process Capability Analysis Chart with Asymmetric Tolerances

As mentioned above, the process capability index is an accessible and useful tool that
the industry applies to gauge the process quality level of each quality characteristic for
products. Chan et al. [25] came up with a process capability index named Cpm on the basis
of the Taguchi loss function. In the index, the denominator is the expectation of the Taguchi
loss function so that the process loss can be fully depicted. Further, this index is one of
the tools that the manufacturing industry comprehensively applies to the process quality
evaluation, defined as follows:

Cpm =
d

3
√

σ2 + (µ− T)2
, (1)

where µ refers to the process mean, σ represents the process standard deviation, d = (USL−
LSL)/2 means the half of the specification interval, T = (USL + LSL)/2 means the midpoint
of the specification limits, USL stands for upper specification limit, and LSL stands for
lower specification limit. Plenty of studies have suggested that an unequal relationship is
formed between the index Cpm and the process yield as the value of the process capability
index Cpm becomes large enough [26,27]. According to Yu et al. [28], Cpm has an unequal
relationship with the process yield (Yield%), such that Yield% ≥ 2Φ

(
3Cpm

)
− 1, where Φ(·)

symbolizes the cumulative distribution function of the standard normal distribution. Thus,
since Cpm is only suitable for assessing symmetric tolerances, not only can Cpm depict the
process loss, but it also can fully mirror the process yield. As mentioned earlier, practically,
the nominal-the-best quality characteristics of component products processed by machine
tools usually belong to asymmetrical tolerances. Thus, Chen et al. [29] put forward a
process capability index called Cpm with asymmetric tolerances. As noted by some studies, a
process has asymmetric tolerances when the upper tolerance dU = USL − T is unequal to the
lower tolerance dL = T − LSL [30–32]. This asymmetric tolerance index can be shown below:

C′′pm=
d∗

3
√

σ2 + A2
, (2)
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where A = Max{(µ− T)d∗/dU , (T − µ)d∗/dL} and d∗ = Min{dU , dL}. Apparently, when
the preset target value T = (USL + LSL)/2 = M (symmetric case), then d* = d, A = |µ − T|,
and the asymmetric tolerance index C′′pk will drop to the original index Cpk. In the definition,

factor A guarantees that C′′pk can reach its maximal value at µ = T (on-target process) no
matter if the tolerance is symmetric (T = M) or asymmetric (T 6= M). Let γ = σ/d∗ and

C′′pm=
d∗

3
√

σ2 + A2
, (3)

where δ′ = (µ− T)/d∗, d1 = d∗/dU , and d2 = d∗/dL. Then

C′′pm =
1

3
√

γ2 + δ2
. (4)

When δ = 0, it means that the process average µ is just located at the target value T.
When δ > 0, it shows that the process is shifted to the right. For example, when δ = 1/4, it
indicates that the process average µ is shifted to the right by 1/4 tolerance from the target
value T. When δ < 0, then the process is shifted to the left. For instance, when δ = −1/2,
then the process average µ is shifted to the left by 1/2 tolerance from the target value T.

As mentioned earlier, usually multiple important quality characteristics exist in a prod-
uct after it is processed. When the process quality of all quality characteristics attains the
required quality level, then the product’s process quality can be ensured to meet customer
demand. Without losing generality, it is assumed that there are k quality characteristics of
the product in this paper.

Based on Chen et al. [33], if we require that the value of the process capability index
C′′PMT should be at least CT , then the value of the process capability index C′′pmh of the
quality characteristic h should be required to be at least C as well, where h = 1, 2, . . . , k.
The relationship can be defined below:

C =
1
3

Φ−1
{

1− 1−Φ(3CT)

k

}
. (5)

When C′′pmh= C, we have γ2
h + δ2

h = 1/(3C)2, where δh = δ′hdh1 for µh ≥ Th and
δh = δ′d2 for µh < Th. Next, this paper takes δ as abscissa (x-axis) and γ as ordinate (y-axis).
Based on the above-stated, the process capability analysis chart with asymmetric tolerances
can be depicted in Figure 1 as follows:

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 13 
 

 
Figure 1. Process Capability Analysis Chart with Asymmetric Tolerances. 

As the value of the process capability index PMTC′′  is required to be TC , the value of 
process capability index pmhC ′′  is required to be C for each quality characteristic. Thus, we 
define the process capability accept zone AZ ′′  as follows: 

AZ ′′ = { }2 2 2( , ) 1/ (3 ) , 0h h h h hCδ γ γ δ γ+ = ≥ . (6)

Obviously, when the pair of process mean and process standard for quality charac-
teristic h belong to zone AZ ′′ , that is ( , )h hδ γ ∈ AZ ′′ , then the process capability attains the 
required quality level ( pmhC ′′ ≥  C). When ( , )h hδ γ ∉ AZ ′′ , then the process capability is be-
low the required quality level ( pmhC ′′  < C). Therefore, the process quality needs to be ame-
liorated. Both the process mean and the process standard are unknown parameters; there-
fore, sample data need to be gauged. Numerous studies have indicated that the point es-
timation is prone to wrong judgment incurred by sampling error. As a result, we derive 
the 100(1 − α)% confidence region of ( , )h hδ γ  based on sample data in the next section. 
Based on the process capability analysis chart and the 100(1 − α)% confidence region of 
( , )h hδ γ , we construct the measurement coordinate point of quality characteristic h. 

In fact, the abscissa of the PCAC-AT analysis diagram is the accuracy index, the or-
dinate is the accuracy index, and the accept zone AZ ′′  is the contour line of pmhC ′′  = C. 
According to the position of each evaluation coordinate point, the deviation or variation 
of the process of the quality characteristic can be directly observed, so it is possible to 
grasp the overall picture of the processed product and the opportunity for improvement. 

3. Construct the Measurement Coordinate Point 
This article established the PCAC-AT analysis chart in Section 2 and then will estab-

lish the rules based on the analysis chart of Section 2, and then construct the evaluation 
coordinate points of each quality characteristic according to the principle of statistical in-
ference and evaluation rules. Let ,1 ,,...,h h nX X  be a random sample derived from quality 
characteristic h with sample size n, where h = 1, 2, …, k. Then the estimators of hμ  is 

,1

1 n
h h jj
X X

n =
=   and the estimators of hσ  is ( )2,1

1 n
h h j hj
S X X

n =
= − . 
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As the value of the process capability index C′′PMT is required to be CT , the value of
process capability index C′′pmh is required to be C for each quality characteristic. Thus, we

define the process capability accept zone Z′′A as follows:

Z′′A =
{
(δh, γh)|γ2

h + δ2
h = 1/(3C)2, γh ≥ 0

}
. (6)

Obviously, when the pair of process mean and process standard for quality char-
acteristic h belong to zone Z′′A, that is (δh, γh) ∈ Z′′A, then the process capability attains
the required quality level (C′′pmh ≥ C). When (δh, γh) /∈ Z′′A, then the process capability is

below the required quality level (C′′pmh < C). Therefore, the process quality needs to be
ameliorated. Both the process mean and the process standard are unknown parameters;
therefore, sample data need to be gauged. Numerous studies have indicated that the point
estimation is prone to wrong judgment incurred by sampling error. As a result, we derive
the 100(1 − α)% confidence region of (δh, γh) based on sample data in the next section.
Based on the process capability analysis chart and the 100(1 − α)% confidence region of
(δh, γh), we construct the measurement coordinate point of quality characteristic h.

In fact, the abscissa of the PCAC-AT analysis diagram is the accuracy index, the
ordinate is the accuracy index, and the accept zone Z′′A is the contour line of C′′pmh = C.
According to the position of each evaluation coordinate point, the deviation or variation of
the process of the quality characteristic can be directly observed, so it is possible to grasp
the overall picture of the processed product and the opportunity for improvement.

3. Construct the Measurement Coordinate Point

This article established the PCAC-AT analysis chart in Section 2 and then will estab-
lish the rules based on the analysis chart of Section 2, and then construct the evaluation
coordinate points of each quality characteristic according to the principle of statistical
inference and evaluation rules. Let Xh,1, . . . , Xh,n be a random sample derived from quality
characteristic h with sample size n, where h = 1, 2, . . . , k. Then the estimators of µh is

Xh = 1
n ∑n

j=1 Xh,j and the estimators of σh is Sh =

√
1
n ∑n

j=1

(
Xh,j − Xh

)2
.

Therefore, the estimators of index δ′h is δ̂′h =
(
Xh − Th

)
/d∗h and the estimators of index

γ′h is γ̂′h = Sh/d∗h. With an assumption of normality, Th =
√

n
(
δ̂′h − δ′h

)
/γ̂h is distributed

as a t-distribution with n−1 degree of freedom, denoted by tn−1, and Kh = nγ̂2
h/γ2

h is
distributed as a chi-square distribution with n−1 degree of freedom, denoted by χ2

n−1.
Since the probability that Th between −t1−α/4;n−1 and t1−α/4;n−1 is 1− α/2, where tα/4;n−1
is the upper α/4 quintile of tn−1. Therefore, the 1− α/2 lower confidence limit of δ′h is
δ̂′h − eh and the 1− α/2 upper confidence limit of δ′h is δ̂′h + eh, where eh = tα/4;n−1γ̂h/

√
n.

Similarly, since probability that Kh between χ2
α/4;n−1 and χ2

1−α/4;n−1 is 1− α/2, where
χ2

α/4;n−1 is the lower α/4 quintile of χ2
n−1, and χ2

1−α/4;n−1 is the lower 1− α/4 quintile of
χ2

n−1. Therefore, the 1− α/2 lower confidence limit of γ′h is γ′Lh and the 1− α/2 upper

confidence limit of γ′h is γ′Uh, where γ′Lh =
√

n/χ2
1−α/4;n−1γ̂′ and γ′Uh =

√
n/χ2

α/4;n−1γ̂′h.

Obviously, when δ̂′h − eh ≥ 0, it can be inferred that δ′h ≥ 0 and µh ≥ Th. Likewise,
when δ̂′h + eh < 0, it can be inferred that δ′h < 0 and µh < Th. Thus,

δ̂h =

{
δ̂′hdh1, δ̂′h − eh ≥ 0
δ̂′hdh2, δ̂′h + eh < 0

. (7)

In order to derive the 100(1− α)% confidence region of
(
δ′h, γ′h

)
, this paper defines

events Eδh =
{

δ′Lh ≤ δ′h ≤ δ′Uh
}

and Eγh =
{

γ′Lh ≤ γ′h ≤ γ′Uh
}

.

Obviously, p(Eδh) = p
(
Eγh
)
= 1 − α/2 and p

(
EC

δh
)
= p

(
EC

γh

)
= α/2. Based on

Boole’s inequality and DeMorgan’s rules, we have p
(
Eδh ∩ Eγh

)
≥ 1 − p

(
EC

δh
)
− p

(
EC

γh

)
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= α/2. Then, CR =
{
(δh, γh)|δ′Lh × dh1 ≤ δh ≤ δ′Uh × dh1, γ′Lh × dh1 ≤ γh ≤ γ′Uh × dh1

}
,

where γ̂h = γ̂′hdh1, δh = δ′hdh1. is the 100(1 − α)% confidence region of (δh, γh) for
δ̂′Lh ≥ 0. Similarly, δ̂h = δ̂′hdh2 for δ̂′Uh < 0, then, 100(1− α)% confidence region of (δh, γh)

is CR =
{
(δh, γh)|δ′Lh × dh2 ≤ δh ≤ δ′Uh × dh2, γ′Lh × dh2 ≤ γh ≤ γ′Uh × dh2

}
for δ̂′Uh < 0,

where γh = γ′hdh2 and δh = δ′hdh2. Based on the above-stated, the 100(1− α)% confidence
region of (δh, γh) is expressed as:

CR =

{ {
(δh, γh)|δ′Lh × dh1 ≤ δh ≤ δ′Uh × dh1, γ′Lh × dh1 ≤ γh ≤ γ′Uh × dh1

}
, δ′Lh ≥ 0{

(δh, γh)|δ′Lh × dh2 ≤ δh ≤ δ′Uh × dh2, γ′Lh × dh2 ≤ γh ≤ γ′Uh × dh2
}

, δ′Uh < 0
. (8)

Obviously, since the intersection of zone (Z′′A) and the confidence region (CR) are not
empty sets, it can be deduced that the value of the process capability index C′′pk is larger

than or equivalent to C (C′′pk ≥ C). Based on this concept, we can create the measurement
coordinate point (xh, yh) of quality characteristic h as follows (see Appendix A):

(xh, yh) =


(δLh, γLh) =

((
δ̂′h −

tα/4;n−1√
n γ̂′h

)
× dh1,

√ n
χ2

1−α/4;n−1
γ̂′h × dh1

)
, δ′Lh ≥ 0

(δUh, γLh) =

((
δ̂′h +

tα/4;n−1√
n γ̂′h

)
× dh2,

√ n
χ2

α/4;n−1
γ̂′h × dh2

)
, δ′Uh < 0

(9)

Then, the process quality of the quality characteristic h is measured by the location of
the coordinate point. Decision-making rules for the measurement are listed as follows:

When (xh, yh) ∈ Z′′A, then the value of index C′′pmh is bigger than C, and the process
capability of quality characteristic h attains the required level.

When (xh, yh) /∈ Z′′A, then the value of index C′′pmh is smaller than C, and the process
capability of quality characteristic h is under the required level. The process capability of
quality characteristic h needs to be leveled up. This quality characteristic is regarded as
critical to quality (CTQ) in this paper.

4. An Empirical Example

As mentioned above, the central part of Taiwan is an industrial cluster of machine
tools, and the value of output and the volume of export of machine tools are both among
the best. Usually, components processed by machine tools are simultaneously equipped
with multiple quality characteristics. The quality of finished goods can only be ensured
when each quality characteristic conforms to the required level of quality. It will contribute
to smart manufacturing and intelligent management of the machine tool industry to apply
a decision-making model of production data management for multi-quality characteris-
tic products built in the second and third sections of this paper as well as conduct the
process capability evaluation of each quality characteristic with the production data of
the components processed by machining factories through the Internet of Things and
cloud platforms.

The components processed by a machining factory have a total of four important qual-
ity characteristics, including inner diameter, outer diameter, length, and weight. According
to Equation (5), when the value of the process capability index C′′PMT is set to be at least 1.0
(CT = 1.0), then the required value of index C′′pmh is at least 1.133 (C = 1.133) for each quality

characteristic. Thus, the process capability accept zone Z′′A is defined as

Z′′A =
{
(δh, γh)|γ2

h + δ2
h = 1/(4.5)2, γh ≥ 0

}
In addition, the units and tolerance specifications for these four important quality

characteristics are illustrated in Table 1 below:
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Table 1. Units and Tolerances of Four Important Quality Characteristics.

Quality Characteristic Tolerance Unit

1. Inner Diameter 1.2+0.03
−0.01 mm

2. Outer Diameter 1.8+0.02
−0.03 mm

3. Length 30 ± 0.03 mm
4. Weight 12 ± 0.05 mg

The sample mean and sample standard of random samples from four quality charac-
teristics with sample size n = 36 can be displayed as follows:

δ =

{
δ′d1, µ ≥ T
δ′d2, µ < T

,

where δ′ = (µ− T)/d∗, d1 = d∗/dU , and d2 = d∗/dL. Then,

quality characteristic 1: (T1 = 1.2, dL1 = 0.01, dU1 = 0.03, d∗1 = 0.01, d11 = 1/3, d12 = 1),
X1 = 1.201 and S1 = 0.002;
quality characteristic 2: (T2 = 1.8, dL2 = 0.03, dU2 = 0.02, d∗2 = 0.02, d21 = 1, d22 = 2/3),
X2 = 1.796 and S2 = 0.005;
quality characteristic 3: (T3 = 30, dL3 = 0.05, dU3 = 0.05, d∗3 = 0.05, d31 = 1, d32 = 1), X3 = 30.02
and S3 = 0.005;
quality characteristic 4: (T4 = 12, dL4 = 0.1, dU4 = 0.1, d∗4 = 0.1, d41 = 1, d42 = 1), X4 = 12.01
and S4 = 0.01.

Therefore, the value of estimators for index δ′h and index γ′h are expressed as follows:

quality characteristic 1: δ̂′1 = 0.2 and γ̂′1 = 0.2;
quality characteristic 2: δ̂′2 = −0.2 and γ̂′2 = 0.25;
quality characteristic 3: δ̂′3 = 0.4 and γ̂′3 = 0.167;
quality characteristic 4: δ̂′4 = 0.2 and γ̂′4 = 0.2.

In fact, the value of the upper 0.0025 quintile of t35 is 2.996 (t0.0025;35 = 2.996). Then,
based on Equation (A11), this paper will calculate the value of measurement coordinate
point for four quality characteristics and show as follows:

quality characteristic 1: The value of
[
δ′L1, δ′U1

]
is [−0.325, −0.075]. Thus, the value of δ′L1 is

bigger than zero (δ′L1 = 0.1 ≥ 0), and the measurement coordinate point is

(x1, y1) = (δL1, γL1) = (0.033, 0.050).

quality characteristic 2: The value of
[
δ′L2, δ′U2

]
is [0.1, 0.3]. Thus, the value of δ′U2 is smaller

than zero (δ′U2 = −0.75 < 0), and the measurement coordinate point is

(x2, y2) = (δU2, γL2) = (−0.05, 0.126).

quality characteristic 3: The value of is
[
δ′L3, δ′U3

]
is [0.315, 0.485]. Thus, the value of δ′L3 is

bigger than zero (δ′L3 = 0.315 ≥ 0), and the measurement coordinate point is

(x3, y3)= (δL3, γL3) = (0.315, 0.126).

quality characteristic 4: The value of
[
δ′L4, δ′U4

]
is [0.100, 0.300]. Thus, the value of δ′L4 is

bigger than zero (δ′L4 = 0.300 ≥ 0), and the measurement coordinate point is

(x4, y4) = (δL4, γL4) = (0.100, 0.151).

According to the above calculation results, the evaluation coordinate points of the four
quality characteristics are depicted in Figure 2 below:
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In Figure 2, the evaluation coordinate point of quality characteristic three does not
belong to zone Z′′A ((x3, y3) /∈ Z′′A), then the value of C′′pm3 is smaller than 1.133. The pro-
cess capability of quality characteristic three needs to make improvements. For quality
characteristic 3, γ̂3 = 1/6 means that the process variation is small and the precision has
reached six-sigma, while δ̂3 = 0.4 indicates that the process is seriously shifted to the right,
so the poor process capability is caused by the right skewness of the process, and it may be
necessary to adjust the machine parameters.

Machine tool manufacturers can collect relevant data for this evaluation and im-
provement. In the meantime, the relevant data of all machining factories which purchase
machine tools can be sorted out to form a process capability improvement database. The
database can be offered to all customers who purchase machine tools to help them make
improvements in their processes. Additionally, the machine tool industry can collect the
improvement experience of all machining manufacturers, form an improvement knowledge
basement, and share it with the machining manufacturers, which is the customer end of
the industrial chain. In addition, machine tool manufacturers can also count all the parts
that often go wrong and give feedback to suppliers or outsourcers to help them improve
the quality of the parts they supply.

5. Conclusions

Many studies have pointed out that the output value and the export volume of Tai-
wan’s machine tools both come out among the best. Various downstream machining facto-
ries that purchase machine tools are scattered all over the world, forming an industrial chain
of machine tools with Taiwan’s machine tool makers and suppliers. According to numerous
studies, multiple quality characteristics usually exist simultaneously in all components
processed by machine tools. Moreover, under the condition that the sound environment of
the Internet of Things (IoT) and analytical technology such as Big Data become gradually
mature, we adopted process capability indicators to depict a process capability evaluation
and analysis chart with multiple quality characteristics in this paper. This evaluation and
analysis chart can simultaneously evaluate process capabilities of quality characteristics for
products, including symmetric tolerances and asymmetric tolerances. In order to achieve
such a function, the process precision index was set as δh, and the process accuracy index
was set as γh for the asymmetric tolerances of the quality characteristic h by means of
variable transformation. Moreover, we used the 100(1− α)% confidence region of these
two indexes and applied the principle of statistical inference to set up the evaluation co-
ordinate point (xh, yh) of the quality characteristic h. It allows process engineers to not
only position the evaluation coordinate point (xh, yh) of each quality characteristic h on the
process capability analysis chart but also grasp the accuracy and precision of the process
for each quality characteristic. Next, following the evaluation criteria, we decided whether
to carry out process improvement and determined the improvement direction based on
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the evaluation coordinate point (xh, yh). The above-mentioned decision-making model of
production data management for multi-quality products can be built on the cloud platform
to help downstream customers in the machine tool industry chain improve their processes
to figure out the best machine parameter setting for quality characteristics with insufficient
process precision or accuracy as well as help them establish a better system of machine
repairs and maintenance. In the meantime, all downstream customers’ improvement expe-
riences can be gathered and shaped into an improvement knowledge base, providing the
machine tool industry with a complete mechanism for the supplier selection or reference
for designing better quality key components of machine tools, thereby raising the product
value and industrial competitiveness of machine tools as well as moving towards the goal
of smart manufacturing.

6. Research Limitations and Future Research

As mentioned above, the model proposed in this paper can assist the machining man-
ufacturers, which is the customer end of the machine tool industry chain, to evaluate the
process capability of all important quality characteristics of the processed products so that
the machining manufacturers can grasp the overall picture of the processed products and
improve the poor quality in time quality characteristics. In addition, when the entire ma-
chine tool industry chain uses this model for a period of time, the machine tool industry can
collect the improvement experience of all machining manufacturers, form an improvement
knowledge basement, and share it with all machine tool manufacturers at the customer end
of the industry chain. Feedback on the problematic parts and components for suppliers
or outsourcers to help them improve the quality of supplied parts and components. Due
to the itinerary and sharing of the knowledge basement, the problems and feedback of
common components not only need a long time to collect and build but also a complex
problem. This study focuses on the process capability evaluation and improvement model
for multi-quality characteristic products. The establishment and application of the other
issues can be the focus of future research.
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Appendix A

The measurement coordinate point (xh, yh) of quality characteristic h as follows:

(xh, yh) =


(δLh, γLh) =

((
δ̂′h −

tα/4;n−1√
n γ̂′h

)
× dh1,

√ n
χ2

1−α/4;n−1
γ̂′h × dh1

)
, δ′Lh ≥ 0

(δUh, γLh) =

((
δ̂′h +

tα/4;n−1√
n γ̂′h

)
× dh2,

√ n
χ2

α/4;n−1
γ̂′h × dh2

)
, δ′Uh < 0

(A1)
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Proof:
Let Xh,1, . . . , Xh,n be a random sample derived from quality characteristic h with

sample size n, where h = 1, 2, . . . , k. Then estimators of µh and σh are expressed as follows:

Xh =
1
n∑n

j=1 Xh,j (A2)

and

Sh =

√
1
n∑n

j=1

(
Xh,j − Xh

)2
. (A3)

Therefore, the estimators of index δ′h and index γ′h are displayed below:

δ̂′h=
Xh − Th

d∗h
(A4)

and
γ̂′h=

Sh
d∗h

. (A5)

With an assumption of normality,
√

n
(
δ̂′h − δ′h

)
/γ̂h is distributed as t-distribution

with n−1 degree of freedom, denoted by tn−1, and nγ̂2
h/γ2

h is distributed as chi-square
distribution with n−1 degree of freedom, denoted by χ2

n−1. Therefore,

p

(
−tα/4;n−1 ≤

√
n
(
δ̂′h − δ′h

)
γ̂h

≤ tα/4;n−1

)
= p

(
δ̂′h − eh ≤ δ′h ≤ δ̂′h + eh

)
= 1− α

2
, (A6)

where eh = tα/4;n−1γ̂h/
√

n and tα/4;n−1 is the upper α/4 quintile of tn−1. Similarly,

p

(
χ2

α/4;n−1 ≤
nγ̂2

h
γ2

h
≤ χ2

1−α/4;n−1

)
= p

√ n
χ2

1−α/4;n−1
γ̂′h ≤ γ′h ≤

√
n

χ2
α/4;n−1

γ̂′h

 = 1− α

2
, (A7)

where χ2
α/4;n−1 is the lower α/4 quintile of χ2

n−1, and χ2
1−α/4;n−1 is the lower 1 − α/4

quintile of χ2
n−1. Obviously, when δ̂′h − eh ≥ 0, it can be inferred that δ′h ≥ 0 and µh ≥ Th.

Likewise, when δ̂′h + eh < 0, it can be inferred that δ′h < 0 and µh < Th. Thus,

δ̂h =

{
δ̂′hdh1, δ̂′h − eh ≥ 0
δ̂′hdh2, δ̂′h + eh < 0

. (A8)

In order to derive the 100(1− α)% confidence region of
(
δ′h, γ′h

)
, this paper defines

events Eδh and Eγh as follows:

Eδh =
{

δ′Lh ≤ δ′h ≤ δ′Uh
}
=

{
δ̂′h −

tα/4;n−1√
n

γ̂′h ≤ δ′h ≤ δ̂′h +
tα/4;n−1√

n
γ̂′h

}
(A9)

Eγh =
{

γ′Lh ≤ γ′h ≤ γ′Uh
}
=


√

n
χ2

1−α/4;n−1
γ̂′h ≤ γ′h ≤

√
n

χ2
α/4;n−1

γ̂′h

. (A10)

Obviously, p(Eδh) = p
(
Eγh
)
= 1 − α/2 and p

(
EC

δh
)

= p
(

EC
γh

)
= α/2. Based on Boole’s

inequality and DeMorgan’s rules, we have p
(
Eδh ∩ Eγh

)
≥ 1 − p

(
EC

δh
)
− p

(
EC

γh

)
= α/2.

Thus,

p

δ̂′h −
tα/4;n−1√

n
γ̂′h,≤ δ′h ≤ δ̂′h +

tα/4;n−1√
n

γ̂′h,
√

n
χ2

1−α/4;n−1
γ̂′h ≤ γ′h ≤

√
n

χ2
α/4;n−1

γ̂′h

 = 1− α. (A11)
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Based on Equation (A8), δ̂h = δ̂′hdh1 for δ̂′Lh ≥ 0, then

p
{

δ̂′h × dh1 −
tα/4;n−1√

n γ̂′h × dh1,≤ δh ≤ δ̂′h × dh1 +
tα/4;n−1√

n γ̂h × dh1√ n
χ2

1−α/4;n−1
γ̂′h × dh1 ≤ γh ≤

√ n
χ2

α/4;n−1
γ̂′h × dh1

}
= 1− α,

(A12)

where γ̂h = γ̂′hdh1, δh = δ′hdh1. Therefore, 100(1− α)% confidence region of (δh, γh) for
δ̂′Lh ≥ 0 is expressed as:

CR =
{
(δh, γh)|δ′Lh × dh1 ≤ δh ≤ δ′Uh × dh1, γ′Lh × dh1 ≤ γh ≤ γ′Uh × dh1

}
. (A13)

Similarly, δ̂h = δ̂′hdh2 for δ̂′Uh < 0, then

p
{

δ̂′h × dh2 −
tα/4;n−1√

n γ̂′h × dh2 ≤ δh ≤ δ̂′h × dh2 +
tα/4;n−1√

n γ̂′h × dh2,√ n
χ2

1−α/4;n−1
γ̂′h × dh2 ≤ γh ≤

√ n
χ2

α/4;n−1
γ̂′h × dh2

}
= 1− α

(A14)

where γ̂h = γ̂′hdh2, δh = δ′hdh2. Therefore, 100(1− α)% confidence region of (δh, γh) for
δ̂′Uh < 0 is displayed as:

CR =
{
(δh, γh)|δ′Lh × dh2 ≤ δh ≤ δ′Uh × dh2, γ′Lh × dh2 ≤ γh ≤ γ′Uh × dh2

}
. (A15)

Based on the above-stated, the 100(1− α)% confidence region of (δh, γh) is expressed
as:

CR =

{ {
(δh, γh)|δ′Lh × dh1 ≤ δh ≤ δ′Uh × dh1, γ′Lh × dh1 ≤ γh ≤ γ′Uh × dh1

}
, δ′Lh ≥ 0{

(δh, γh)|δ′Lh × dh2 ≤ δh ≤ δ′Uh × dh2, γ′Lh × dh2 ≤ γh ≤ γ′Uh × dh2
}

, δ′Uh < 0
. (A16)

Obviously, since the intersection of zone (Z′′A) and the confidence region (CR) are
not empty sets, it can be deduced that the value of process capability index C′′pk is larger

than or equivalent to C (C′′pmh ≥ C). Based on this concept, we can create the measurement
coordinate point (xh, yh) of quality characteristic h as follows:

(xh, yh) =


(δLh, γLh) =

((
δ̂′h −

tα/4;n−1√
n γ̂′h

)
× dh1,

√ n
χ2

1−α/4;n−1
γ̂′h × dh1

)
, δ′Lh ≥ 0

(δUh, γLh) =

((
δ̂′h +

tα/4;n−1√
n γ̂′h

)
× dh2,

√ n
χ2

α/4;n−1
γ̂′h × dh2

)
, δ′Uh < 0

(A17)
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