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Abstract: Over the years, there has been an increase in the consumption of drugs, particularly
antibiotics. Amoxicillin (AMX) is considered one of the most widely used antibiotics, causing
resistance in microorganisms in the ecosystem where it is found. Additionally, it has been cataloged
among the drugs under surveillance by the European Commission since 2020. The present work
studies the efficiency of AMX degradation by photolysis and heterogeneous solar photocatalysis
processes under different reaction pH levels (3.5, 4.15, 7 and 9) and observing the influence of
different doses of H2O2 (nil and 4 mM), as an oxidizing agent. TiO2 P25 was used as photocatalyst,
impregnated in glass supports of 0.1 and 1 m2 in flat plate reactors (FPR). A 2 × 2 × 4 statistical
analysis carried out after repeated measurements to determine the relationship between the different
parameters involved (process, H2O2 dose, and pH). The kinetics of the AMX degradation reaction
showed the best rate constant (KphC = 0.10 min−1) under acidic medium conditions (pH 4.15), without
addition of H2O2, and by heterogeneous photocatalysis when using a 1 m2 FPR to achieve 100% COD
removal. ANCOVA showed significant differences (p < 0.05) in the use of H2O2 for the first minutes
of the reaction and in the different FPR surfaces.

Keywords: advanced oxidation processes; amoxicillin; emergent pollutants; TiO2; flat plate reactors

1. Introduction

Latin America is one of the main sources of fresh water in the world, producing
approximately one third. It is estimated that only 20% of municipal wastewater is treated in
most of the countries that comprise this region while in Mexico, less than 50% of wastewater
is processed [1]. The entry of different types of drugs into the environment has increased
by 1 to 5 million tons per year [2,3], causing concern about adverse environmental impacts
related directly to the drugs and their by-products [4]. Due to the high chemical stability of
many drugs and the limits of conventional wastewater treatment processes, effluent from
treatment plants often contains elevated concentrations of the chemicals and metabolites
and thus the wastewater is a source of drug compounds to aquatic ecosystems [2,5,6].

Drugs have been detected in different types of water, such as surface water, groundwa-
ter, wastewater, and even drinking water [7], where their concentrations vary from ng/L to
mg/L [2,8,9]. However, even in small quantities, they can cause various consequences, not
only in the environment where they are found but also in living beings [2]. As a result of
this continuous discharge into the environment, aquatic organisms such as fish, are affected,
which may accumulate significant amounts of these chemicals, generating alterations such
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as feminization or masculinization caused by hormones. As fish and birds are interme-
diaries in the trophic chain, the ingestion of these organisms when contaminated results
in the accumulation of these substances in humans, causing in some cases resistance to
antibiotics, endocrine disruption, histopathological disorders, and even, if these chemicals
manage to cross the placental barrier, serious problems for newborns [8].

Of the main drugs found in aquatic ecosystems are antibiotics. Antibiotics are now
used in many different settings including aquaculture and livestock operations for ther-
apeutic and treatment purposes [10,11]. Traces of antibiotics are also found in various
natural environments such as aquatic ecosystems [10,11]. Of these, those belonging to the
family of β-lactam antibiotics are the ones that appear most frequently, such as penicillin G,
cephalosporin and amoxicillin (AMX), which have been found in different concentrations
from ng/L to mg/L, both in surface waters and in wastewater [11].

AMX is one of the most widely used antibiotics worldwide due to its broad spectrum
elimination of bacteria, both gram-positive and gram-negative. AMX prevents the synthesis
of the cell wall of microorganisms is used in both human and veterinary fields [12,13].
However, due to its high demand and its continuous entry into the different wastewaters,
detectable concentrations have been reported in different parts of the world. In the case of
effluents from wastewater treatment plants, their concentrations vary, the highest being
1.3 mg/L and 1.6 mg/L, both detected in Hong Kong, China [14], and in Italy a magnitude
of 0.013 mg/L has been found [15]. For waters used in the pharmaceutical industry,
dedicated to the synthesis of this drug, concentrations around 92.2 mg/L have been found in
China [16], and in drinking water sources in southeastern Brazil, a maximum concentration
of 287.5 ng/L has been reported [17]. Therefore, in August 2020, the European Commission
added this drug to the watch list in the field of water policy as it represents a risk both for
humans and for aquatic ecosystems [18].

The generation of hydroxyl radicals, a powerful chemical agent, makes advanced
oxidation processes (AOPs) an efficient option for the degradation of recalcitrant and
emerging compounds [19–21], such as AMX. Among AOPs, heterogeneous photocatalysis,
which involves the use of TiO2 as a catalyst and UV radiation, has been widely studied.
The main idea behind photocatalysis is the generation of gaps in electron pairs, which can
reach and break molecular bonds [22].

When radiation consisting of photons of wavelength lower or equal to 387 nm reaches
the surface of the photocatalyst, an electron–hole pair (e−

(CB), h+
(VB)) is generated due to the

promotion of electrons from valence band (VB) to conduction band (CB) [23], as shown in
Equation (1):

TiO2 + hv→ TiO2 + e−
(CB) + h+

(VB) (1)

In the photocatalytic process, the molecules oxidation is caused mainly by •OH (with
a redox potential of 2.8 eV), superoxide (O2·−), and hydroperoxide (HO2·) radicals [24].
The •OH redox potential is higher than that generated by the holes (h+) produced in
the VB of the photocatalyst (2.53 eV) [25,26]. Reactive species can degrade pollutants
until mineralization, thus producing non-toxic substances [27]. Radical •OH is capable
of degrading most organic and organometallic pollutants by transforming them into CO2,
water, and inorganic ions [28]. In the past, recalcitrant substances have been successfully
degraded by means of photocatalytic processes [29].

Different types of reactors can be used for wastewater treatment through heteroge-
neous photocatalysis. They are all based on the use of a semiconductor, which receives
UV radiation from either a UV lamp or solar radiation [30]. Flat plate reactors (FPR) using
natural solar radiation present several advantages, especially with their low manufacturing
and maintenance costs. This type of technology, which works with natural solar radiation,
can be applied particularly in countries in the planet’s sunbelt given that they receive an
average annual solar irradiation of 5.5 kWh/m2/day [31].

The objective of the present work was to optimize the degradation of AMX in an
aqueous solution by means of photolysis and heterogeneous photocatalysis with the use of
sunlight as activation energy, using flat plate reactors (FPR) with surfaces of 0.1 and 1 m2,
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and TiO2 P25 as a photocatalyst for the reaction. This work also studied the influence of the
addition of H2O2 (0 and 4 mM) on the AMX degradation reaction as a function of different
pH values (3.5, 4.15, 7, and 9) through a kinetic study and ANOVA.

2. Materials and Methods
2.1. Chemical Reagents

Trihydrated AMX reagent (Figure 1) was purchased from Tecnofarma (Tecnofarma,
San Juan del Río, Qro., Mexico; CAS: 61336-70-7). As an oxidizing agent, 30% H2O2
(Productos Químicos Monterrey, S.A. de C.V. FERMONT, Monterrey, N.L., Mexico; CAS:
7722-84-1) was used. TiO2 P25 worked as a photocatalyst for photocatalysis experiments
(Evonik Industries AG, Essen, NRW, Germany; CAS: 13463-67-7).
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Figure 1. The AMX chemical structure.

In order to study pH influence on experiments, the initial pH of the solution was
adjusted to different pH magnitudes using 65% nitric acid and 0.1 M sodium hydroxide,
both chemicals were Merck brand (Merck, Naucalpan de Juárez, Edomex, Mexico). Also,
distilled water (Hycel, Zapopan, Jal., Mexico; CAS: 7732-18-5) was used to prepare all
needed solutions.

2.2. Characterization of TiO2

XRD was required to characterize the photocatalyst. A D8 Advance (Bruker Corpora-
tion, Billerica, MA, USA) was employed to obtain TiO2 diffraction pattern through 1.5406
Cu-kα1 wavelength. A time-per-point of two seconds, with a range of 2θ in the angular
range of 20◦ to 90◦, was set. The crystalline phases present in the XRD were identified by
comparing them with the PDF-2 2016 database of the International Center for Diffraction
Data (ICDD).

Band-gap was calculated by determining at room temperature the absorbance spec-
trum of the photocatalyst using a UV-visible spectrophotometer with LAMBDA 950
UV/Vis/NIR integration sphere (Perkin Elmer Inc., Waltham, MA, USA). As a last step, the
Kubelka–Munk function [32], which allows converting diffuse reflectance into equivalent
absorbance spectra, was employed using alumina for reference [33].

2.3. Flat Plate Reactors

Experiments were performed on two FPRs (Figure 2) that use sunlight as a radiation
source and are different in size with a contact area of 0.1 m2 (reactor 1) and 1 m2 (reactor 2).
FPRs are both made of an acrylic container supported on a metal base. Inside the acrylic
container are frosted glass plates on top of which the sample flows. The constant flow
of 127 L/h (reactor 1) and 355 L/h (reactor 2) served as experimental conditions and the
latitude of Durango City, Mexico (24◦01′37′′ N) was considered when setting the reactor
inclination (20◦), as solar radiation uptake was maximized [30,34].
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Figure 2. Flat plate reactors: (a) 1 m2 reactor surface; (b) 0.1 m2 reactor surface.

The contaminant solution (AMX) was placed in a collection tank, where a Biopro
H-330 submersible pump sent it through a polyvinyl chloride pipe to exit on the superior
end of the reactor. Then, the sample flowed over the glass plate and exited the reactor
body on the lower part, falling again into the collection tank in order to recirculate [19,30]
(Figure 3).
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2.4. Experimental Conditions 

Figure 3. Flat plate reactors dimensions; (a) 1 m2 surface FPR; (b) 0.1 m2 surface FPR; and
(c) operational conditions for both reactors, laminar regime Re < 1000, and 20◦ FPR inclination,
which is close to the latitude of Durango City, Mexico (24◦01’37′′ N).
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2.4. Experimental Conditions

The AMX initial concentration of 50 mg/L [11] was prepared by diluting AMX in
distilled water and stirring the solution for half an hour. Volume samples of 2 and 3 L were
required for reactors 1 and 2, respectively. For photocatalysis experiments, 2 g/m2 TiO2
P25 was impregnated on the frosted glass plates by direct spraying [8,23,35].

The influence of pH on contaminant degradation was tested by carrying out the
experiments at different initial pH of 3.5, 4.15, 7, and 9; the AMX solution pH was modified
by adding, drop by drop, HNO3 or NaOH solutions. pH was measured with an Orion Star
A211 potentiometer (Thermo Fisher Scientific Inc., Waltham, MA, USA).

The influence of H2O2 was studied as well. For this purpose, experiments were
performed in the absence of H2O2 and repeated by adding 4 mM H2O2 to the solution
just before starting the experiment [36]. Sample recirculation through the reactor lasted for
60 min, with sampling times of 0, 5, 10, 15, 20, 30, 45, and 60 min.

UV-Vis spectrophotometry in a DR 5000TM device (HACH Company, Loveland, CO,
USA) served to measure AMX removal in samples, considering the maximum absorption
range from 200 to 300 nm [37,38]. As a response variable, Chemical Oxygen Demand (COD)
change was measured, using the Hach 2000 method with a DR 2010 spectrophotometer
(HACH Company, Loveland, CO, USA).

Control experiments were performed in the absence of radiation at different pH magni-
tudes to ensure that H2O2 presence was not the only factor contributing to AMX degradation.

A meteorological station of the Secretaría de Recursos Naturales y Medio Ambiente
provided the radiation, temperature, and humidity data; the station uses a WE300 Solar
Radiation Sensor pyranometer (Global Water, Yellow Springs, OH, USA) for measurements.
Experiments were conducted on sunny, windless days, from 12:00 to 14:00 h from April to
July. The average solar radiation incidence reported was close to 1000 W/m2, as shown in
Figure 4.
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A 2 × 2 × 4 factorial design with covariates and repeated measures was used to
analyze the degradation results for the different FPR areas as described by Equation (2) for
a 0.1 m2 surface FPR and Equation (3) for a 1 m2 surface FPR:

Yijklm= µ + Pj + pHk + H2O2l + (pH* H2O2)kl + tm+ aRadS + bCOD0 + Ejklm (2)
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Yijklm= µ + Aj + Pk + H2O2l + tm + aRadS + bCOD0 + Ejklm (3)

In Equation (2), the response variable (COD) corresponds to Yijklm, the general average
of the model is µ, Pj is the process (photolysis and photocatalysis), pHk is the pH (3.5,
4.15, 7, and 9), H2O2l is the H2O2 dose (nil and 4 mM), tm is the sample time, aRadS is the
intensity of solar radiation, bCOD0 is the initial AMX concentration, and εijklm represents
the error. Due to the fact that it is an open system, the volume of the sample decreased
during the reaction, which is why evaporation is considered as a correction factor applied
to the dependent variable COD. As well as Equation (3), Yijklm is the response variable, µ
represents the general means of the model, Aj is the surface area of FPR (0.1 m2 and 1 m2),
Pk is the process and H2O2l is the H2O2 dose (0 and 4 mM), tm as the sample time, aRadS
the intensity of solar radiation and bCOD0 the initial AMX concentration.

2.5. Kinetic Analysis

Kinetic analysis was executed considering a first order reaction (n = 1) [39]. Degrada-
tion rate constant was calculated through Equation (4) [23,39–41]:

(X)t = (X)0e−(KphC) ·t (4)

In Equation (4), (X)t represents the concentration of AMX over time, (X)0 stands for the
initial concentration of AMX in the solution, and KphC for the photocatalytic rate constant.
Half-life time (t1/2) was calculated through Equation (5) [42]:

t1/2 =
ln(2)
KphC

(5)

2.6. Statistical Analysis

The effect of the factors considered in the experimental design was determined by an
analysis of covariance (ANCOVA), with an α = 0.05. For the ANCOVA, SAS Studio 9.4
(SAS Institute Inc., Cary, NC, USA) statistical package was used, and previous verification
of the Gauss–Markov assumptions was made.

3. Results and Discussions
3.1. Structural Analysis of TiO2 P25

This working group published the results of XRD patterns for TiO2 P25 [26], according
to the method of Le Bail et al. [43]. In TiO2 P25, in addition to anatase, Bragg positions of
the anatase phase (JCPDS file 00-021-1272 of the ICDD database), and the rutile phase were
found (JCPDS file 01-070-7347 of the ICDD database).

Diffraction data were treated by the Warren–Averbach method [44]. It was possible
to calculate crystallite size, average shape, the percentage of each phase, and the tensions
caused by structural defects in TiO2 P25 [26]. With this analysis, it was found that 85.27%
of the photocatalyst was anatase and 14.73% was the rutile phase. The crystalline size
was 20.97 nm for anatase and 33.96 nm for rutile, both presenting a spherical crystalline
form [26].

The Kubelka–Munk method served to handle absorbance spectra from photocatalysts.
A graphic representation of [F(R)h̄υ]1/2 against h̄υwas obtained and allowed determination
of the TiO2 band gap.

Figure 5 shows the graphs of the absorbance spectrum and the band-gap calcula-
tion for TiO2 P25 performed with Origin Pro 2018 software version b9.5.0.193 (OriginLab,
Northampton, MA, USA). A TiO2 P25 band gap of 3.2 eV was determined, being a lower
value than that for semiconductors obtained by the sol-gel method with titanium tetrabu-
toxide (TBT, 3.40 eV) and titanium tetraisopropoxide (TIPT, 3.38 eV) as precursors [30,45].
These results point to easier activation of the photocatalyst TiO2 P25 when exposed to solar



Appl. Sci. 2023, 13, 7857 7 of 15

radiation. Concerning band-gap estimation, the following recent references are also an
alternative method on how to treat Tauc plot data to extract the band-gap energy [46,47].
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3.2. Degradation of Amoxicillin by Solar Photolysis

The control experiments (in shade), both for the photolysis and photocatalysis pro-
cesses on 0.1 and 1 m2 surface FPR, did not show any degradation under any pH (3.5,
4.15, 7 and 9), with (at 4 mM) and without the addition of H2O2, analyzed by UV-Vis
spectrophotometry and COD.

In the treatments by solar photolysis on 0.1 m2 and 1 m2 surface FPRs, the results of
the experiments carried out at different pH (3.5, 7, and 9), showed no decrease in drug
concentration as determined by UV-vis spectrophotometry. No change was noticed by
the COD analysis, except in the experiment with pH 4.15 and without the addition of
H2O2 for both reactors, reflecting a COD reduction of 3–8% at minute 5, to later show no
degradation trend.

Kanakaraju et al. in 2015 [48], confirmed that although direct photolysis can slightly
help in the degradation of AMX, the effect of pH in the solution plays a very important
role, due to increased or decreased formation of hydroxyl radicals depending on solution
conditions. In a study carried out by Xu et al. in 2011 [49] the degradation behavior of
amoxicillin in solutions of organic matter isolated in a process of solar photolysis, reached 6
to 21% removal for simulated natural waters; however, when interacting with a solution of
organic matter in an excited state with the addition of sorbic acid and under deoxygenated
conditions, degradation of 48 to 74% was achieved. It is presumed that the degradation
obtained by photolysis is due to the energy transferred by the excited state of the organic
matter solution, due to the proximity of the formation site of the •OH radicals, as well as
the decrease in the pH level of the solution, coinciding with what was previously described
by Kanakaraju et al. in 2015 [48].

3.3. Degradation of Amoxicillin by Solar Photocatalysis

For solar photocatalysis with a 0.1 m2 FPR surface, the analysis showed, for the
best-observed experiment, a significant AMX degradation when working with a pH 4.15,
without the addition of H2O2, obtaining a percentage of 27% of COD removal, 60 min after
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the start of the reaction, and showing, besides, under these same experimental conditions,
a 46.9 % decrease in COD, in an extended reaction time of 80 min. In this case, due to the
acidic pH of the solution being close to the pH level of maximum stability of the drug,
which is around 5 [48,50], there is the possibility of a better performance in the degradation
of this drug with the use of a catalyst in the system.

At pH 3.5, 7, and 9, no degradation was observed on this surface (0.1 m2). Verma and
Haritash in 2020 [13], explain that at a lower magnitude of pH (very acidic), the adsorption
of AMX with TiO2 is affected by the positive charges on their surfaces, where the point of
zero charges of TiO2 (pzc = 6.4), as well as that of amoxicillin, become positive in acidic
media, repelling each other. In the case of the removal of AMX with the addition of H2O2, at
these pH values (3.5, 7, and 9), no decrease in the total or partial removal of the contaminant
is observed.

The range of solar radiation received during the experiments was close to 1000 W/m2,
the wavelength (λ < 387 nm) was in the UV-A region of the electromagnetic spectrum, and
the band-gap energy of the photocatalyst (3.2 eV), provided the necessary activation energy
of the photocatalyst (TiO2 P25); however, due to the size of the reactor surface (0.1 m2), the
best percentage of COD removal obtained was only 46.9%, as already mentioned.

Plantard et al. in 2012 [51], determined that the speed of the degradation reactions
given by the solar photocatalysis process is observed as a set of different operational
parameters, such as the intensity of the solar radiation received during the experiments,
the concentration of the contaminant and by the reaction surface and the concentration of
the catalyst used. Therefore, experiments were carried out using a FPR with a surface area
of 1 m2, to find out if this factor influenced the degradation of amoxicillin, under the same
conditions as in the degradation reaction of the previous experiments.

Figure 6 shows the results obtained by COD for the degradation of AMX by solar
photocatalysis, using TiO2 P25 as the photocatalyst, on a 1 m2 surface FPR under the
reaction conditions mentioned in Section 2.3.
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The results (Figure 6), are similar to what was observed in the experiments carried out
with a 0.1 m2 FPR for solar photocatalysis in that the only reaction conditions that showed
significant degradation of AMX were at pH 4.15, not having observed any degradation
at pH 3.5, 7 and 9. A possible explanation for such results is AMX speciation: when in
aqueous solution, AMX can present different forms according to the solution pH; at pH
4.15, a zwitterionic form is mainly present [52]. This being said, better results were to be
expected at this pH, as the AMX molecule is negatively charged while TiO2, is positively
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charged as the pH is below its isoelectric point, so attraction between AMX and catalyst
molecules facilitates interaction ad thus, degradation.

Unlike the results shown for the 0.1 m2 FPR, with the 1 m2 FPR significant percentages
of AMX degradation were obtained, measured as COD at pH 4.15, 65% degradation with
the addition of H2O2 (4 mM) to 60 min of reaction and up to 72% when the reaction was
extended to 80 min (Figure 6), reaching a final pH of 6.85 for the reaction with the addition
of 4 mM H2O2 and a final pH of 5.37 for the reaction without the addition of H2O2. For
experiments without added H2O2, the degradation of AMX by COD analysis reached 100%
after 50 min, with no observable change up to 80 min of reaction (Figure 6). The absence
of H2O2 in the reaction gave better results than in its presence, since, despite the fact that
H2O2 helps to accelerate the degradation of pollutants through the formation of •OH
radicals, in some cases the addition of H2O2 can compete for these radicals, thus reducing
the effectiveness of the photocatalytic reaction [16]. Also, as noted above, the solution with
a pH of 4.15, which is close to the level of maximum stability of the drug at pH 5 [48,50],
showed excellent performance of the TiO2 P25 catalyst in the removal of AMX.

The use of H2O2 as an enhancer in the degradation of different pollutants has been
widely studied. The in situ generation of this substance is promoted through the separation
of electron−/hole pairs+ [23], where only those e− and h+ that have migrated to the surface
and are not recombined participate in surface redox reactions, promoting the formation of
H2O2 [53,54]. The addition of this oxidation agent in the solution promotes the degradation
of the substances under study [54,55]. It has been observed, however, that at high doses
of this agent (H2O2) in the solution, negative effects are produced for the removal of
contaminants, as well as slower reaction rates, attributable to the competition between
H2O2 and other complexes formed during the reaction [54], which compete for union with
•OH radicals, favoring their conversion into hydroperoxide radicals (HO2·), and leads to a
decrease in the concentration of reactive oxygen species in the solution and therefore to a
low rate of degradation [55]. In this study, H2O2 was added as degradation enhancer, but it
had a detrimental effect on the reaction.

3.4. Chemical Kinetics of Photocatalytic Processes

The results of the chemical kinetics of the degradation of AMX in aqueous solution
for the heterogeneous solar photocatalysis process carried out under pH 4.15, show a first
order reaction (n = 1) on both 0.1 and 1 m2 FPR surfaces (Table 1).

Table 1. Photocatalytic rate constants (KphC) and half-life time (t1/2) for AMX degradation in aqueous
solution with absence (0 mM) and added (4 mM) H2O2, at constant pH 4.15 of reaction, for two FPR
surfaces (0.1 and 1 m2).

FPR Surface Rad. W/m2 H2O2
(mM/L)

COD
Degrad. (%)

KphC
(min−1)

t1/2
(min)

0.1 m2 951 0 46.9 0.013 54.02

1 m2 956 0 100 0.10 8.59
963 4 72.0 0.044 15.89

Rad: Solar Radiation Intensity; COD Degrad: AMX Degradation by COD analysis, after 80 min reaction.

Table 1 shows the calculation of the photocatalytic rate constant (KphC) for AMX
degradation, calculated by Equation (4) of Section 2.5, on both 0.1 and 1 m2 FPR surfaces,
with addition (4 mM) and in the absence of H2O2, under a reaction at pH 4.15. It also shows
the % degradation reached by the COD analysis, 80 min after the start of the reaction, and
indicates the average radiation of each experiment in W/m2. It also gives the half-life of
the reagent, calculated in each case using Equation (5), Section 2.5.

As observed in Table 1, AMX degradation in the absence of H2O2 shows differences
in photocatalytic rate constants for the different 0.1 and 1 m2 FPR surfaces, agreeing
with the indication of Plantard et al. 2012 [51], in that a greater exposed reaction surface
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(FPR1m
2 = 10 FPR0.1m

2) favors the degradation of AMX under similar reaction parameters,
and also favoring the speed of the reaction. The higher the magnitude of KphC, the lower
the values of t1/2 are obtained (Table 1), and higher percentages of AMX degradation;
therefore the solar photocatalysis reaction in 1 m2 FPR, the experimental magnitude of pH
4.15 and the absence of H2O2, are the best AMX degradation conditions in this work.

3.5. Statistical Analysis on a Reaction Surface of 0.1 m2 FPR

An analysis of covariance (ANCOVA) gave a significance value of p < 0.05, using the
data obtained by the COD analysis in the processes for the 0.1 m2 surface FPR, with COD
removal as the dependent variable. As can be seen in Table 2, the results of these statistical
tests show there are differences between the processes (photolysis and photocatalysis) at 10
min of the reaction, in terms of drug degradation, which may be due to the formation of
by-products [56] and the reaction surface.

Table 2. ANCOVA analysis on the reaction surface of 0.1 m2 FPR.

Time
(min)

Process pH H2O2 pH* H2O2 Radiation COD0

p-Value Probab > F

5 0.1867 0.5454 0.0047 0.7044 0.7547 0.5000
10 0.0401 0.3551 0.0003 0.1696 0.8077 0.0272
15 0.1812 0.1629 0.0046 0.4584 0.5753 0.3224
20 0.8745 0.3401 0.0005 0.3947 0.4950 0.0101
30 0.3531 0.6367 0.0518 0.0689 0.4506 0.0017
45 0.3350 0.1959 0.2378 0.3426 0.2546 0.6667
60 0.8068 0.2376 0.0656 0.3004 0.8335 0.3633

In the case of the different pH levels (3.5, 4.15, 7, and 9), there was no significant
difference for the medium in which the drug is found. Unlike the study conducted by
Tanji et al. in 2023 [57] for the degradation of the malachite green dye by means of a
composite of mineral nature, using a heterogeneous photocatalytic process, we found
significant differences both for the concentration of said material and for the pH level;
in this case, the mean was not statistically significant because only one of the processes
showed degradation of AMX.

Finally, with the application of different doses of H2O2 (nil and 4 mM), it was found
that these influenced the treatments in the first 20 min of the reaction, as well as the
initial COD concentration, where significant differences appear at 10, 20 and 30 min of the
reaction. In 2022, Zaruma et al. [23] observed a similar behavior for the degradation of
methylthionine chloride, where significant differences in the use of H2O2 were found at 10,
20, 30, and 60 min. However, in the aforementioned study, other factors such as the process
and pH levels also showed significant differences throughout the reaction.

Within the ANCOVA, the interaction between the pH levels and H2O2 dose was also
analyzed, however, no significant differences was found.

A Tukey test was also carried out; the results are shown in Figure 7. The groupings
of the means of the different treatments (processes, Figure 7a; pH, Figure 7b; and H2O2
dose, Figure 7c) are represented by letters (A and B), where each letter corresponds to a
group, with B being the one with the smallest difference between their means. As can be
seen, the process (at 10 min) and the different doses of H2O2 (5, 10, 15 and 20 min), show
two groups, confirming what was previously described by the ANCOVA test.
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3.6. Comparative Statistical Analysis between the FPR Reaction Surfaces (1 m2 and 0.1 m2)

Once the optimization experiments for the degradation of AMX were carried out, the
different reaction surfaces (0.1 m2 and 1 m2) were compared. The processes (photolysis
and photocatalysis) were analyzed at pH 4.15, testing both H2O2 doses (0 mM and 4 mM)
for both FPR surfaces, using ANCOVA and Tukey tests.

In the case of the ANCOVA evaluation (Table 3), it can be observed that the reaction
surface influences the degradation of the pollutant during the entire reaction. In the same
way, the Tukey test (Figure 8) showed two groups (A and B), confirming that the FPR
surface (Figure 8a) played an important role in the removal of AMX. Regarding the means
of the processes (Figure 8b), it can only be observed that, in the sampling at 15 min, there is
a significant difference.

Table 3. Comparative ANCOVA between the different reaction surfaces (0.1 m2 and 1 m2) FPR, the
processes (photolysis and photocatalysis), and the H2O2 doses (0 mM and 4 mM) for the degradation
of AMX.

Time
(min)

Area Process H2O2 Radiation CoA

p-Value Probab > F

5 0.0391 0.905 0.0109 0.6574 0.4721
10 0.0352 0.8123 0.0317 0.7009 0.1055
15 0.0013 0.0267 0.0015 0.0417 0.0097
20 0.0029 0.182 0.0025 0.975 0.0389
30 0.0127 0.9033 0.078 0.0843 0.0783
45 0.0154 0.6841 0.0965 0.9074 0.1384
60 0.0139 0.3813 0.0851 0.1305 0.166
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For H2O2 doses (Figure 8c) at pH 4.15, p values < 0.05 can be observed, indicating
that during the first 20 min of the reaction, the use of H2O2 can significantly affect the
AMX degradation result, even when the most favorable treatment was observed without
the addition of this agent, as in this case, confirming what was previously mentioned on
Section 3.5. In 2020, Morones et al. [19] carried out a factorial analysis 23 with repeated
measurements of the degradation of 2,5-dichlorophenol, testing the interaction between
advanced oxidation processes (photolysis and photocatalysis), reactor tilt angle, sample
flow through the system, and experiment time, as well as radiation and temperature
covariates; they found that the interaction between the time of the reaction and the process,
as well as the interaction between the time of the experiment and the radiation, were
statistically significant.

4. Conclusions

The band-gap calculation for TiO2 P25 showed a value of 3.2 eV, lower than the
values shown in other TiO2 semiconductors obtained by the sol-gel method with titanium
tetrabutoxide (TBT) and titanium tetraisopropoxide (TIPT) as precursors. This result
indicates faster activation of the photocatalysts TiO2 P25 to the exposure to high radiation
emission, in this case, solar energy.

For solar photocatalysis with a 0.1 m2 FPR surface, the COD analysis showed a
significant degradation at a pH of 4.15, without the addition of H2O2, obtaining a percentage
of 27% for COD removal, 60 min after the start of the reaction, and 46.9% of the decrease in
COD, in an extended reaction time of 80 min.

At pH 3.5, 7, and 9, no degradation by solar photocatalysis was observed, with or
without H2O2 addition, for both 0.1 and 1 m2 FPR surfaces.

With the use of 1 m2 FPR, a significant percentage degradation by COD was obtained
at pH 4.15, 65% of COD removal with the addition of H2O2 (4 mM) after 60 min of reaction,
and up to 72% when the reaction was extended to 80 min. For the experiments without
adding H2O2. AMX degradation reached 100% of COD removal after 50 min, with no
observable change up to 80 min of reaction.

The results of the chemical kinetics of the AMX degradation in aqueous solution for
the heterogeneous solar photocatalysis process, carried out under pH 4.15, without the
addition of H2O2, show first order reaction (n = 1), on both surfaces of 0.1 and 1 m2 FPR,
with magnitudes of KphC = 0.013 min−1 and KphC = 0.10 min−1, respectively.

A greater exposed reaction surface (FPR 1 m2 = 10 FPR 0.1 m2) favors the degradation
of AMX under similar conditions of the reaction parameters, and also favors the reaction
rate, defining the solar photocatalysis reaction in for a 1 m2 FPR, the experimental magni-
tude of pH 4.15 and the absence (0 mM) of H2O2, as the best AMX degradation conditions
in this work.

The H2O2 doses (nil and 4 mM) showed significant differences within the first 20 min
of the reaction for the 0.1 m2 surface FPR, as well as for the 1 m2 surface by ANCOVA and
by a Tukey test.

The FPR surface showed significant differences in the processes, during the entire
reaction time (from 0 to 60 min), statistically confirming that a greater reaction surface on
FPR favors the degradation of AMX, as well as the speed of the reaction.
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