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Abstract: The internet of things (IoT) is a complex system that includes multiple technologies
and services. However, its heterogeneity can result in quality-of-service (QoS) issues, which may
lead to security challenges. Software-defined network (SDN) provides unique solutions to handle
heterogeneity issues in large-scale IoT networks. Combining SDN with IoT networks has great
potential for addressing extreme heterogeneity issues in IoT networks. Numerous researchers are
investigating various techniques to resolve heterogeneity issues in IoT networks by integrating
SDN. Our study focuses on the SDN-IoT domain to improve QoS by addressing heterogeneity.
Heterogeneity in SDN-IoT networks can increase the response time of controllers. We propose
a framework that can alleviate heterogeneity while maintaining QoS in SDN-IoT networks. The
framework converts m heterogeneous controllers into n homogeneous groups based on their response
time. First, we examine the impact of the controller’s bandwidth and find that the system throughput
decreases when the controller’s bandwidth is lowered. Next, we implement a simple strategy that
considers both the bandwidth and service time when selecting the peer controller. Our results
show some improvement in the framework, indicating its potential to alleviate heterogeneity while
maintaining QoS and other metrics.

Keywords: software-defined networks; internet of things; quality of service; security

1. Introduction

Heterogeneous networks allow users to communicate with each other despite having
various infrastructures and communication manners that have contrasting properties and
characteristics. IoT is one of the largest heterogeneous networks that allows distinct devices
to communicate with each other, making an extensive network of various devices. The
internet of things (IoT) and the Internet of Everything are now recognized as inevitable
concepts in communication technology. It has gained rapid and vast attention from a
wide range of applications, services, and industries. It is a global network of machines
interconnected with each other and capable of interacting with the real world. In 2014,
Gartner predicted that IoT will reach 25 billion units by 2020, up from 0.9 billion in 2009 [1].
In 2021, according to Statista, there were 21.6 interconnected devices around the globe,
and it is expected to reach 30.9 billion units in 2025 [2]. IoT provides access to information
anytime and anywhere; however, this results in excess traffic. The basic abstract model of
IoT is presented in Figure 1 [3]. This model describes the lower layer, referred to as the
sensing layer, responsible for collecting data from different applications and services. These
collected data are transferred to IoT servers through different paths in a communication
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network referred to as the network layer. IoT servers provide different services and IoT
applications as well. This last upper layer is known as the application layer. This model
describes the basic architecture of IoT and its principal layers.
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Figure 1. IoT abstract model.

Smart cities, intelligent transportation systems, smart farming, and smart homes are
all concepts that have become a reality due to IoT. Despite all the enormous advancements
by IoT in numerous applications, it is still in the development stage. Challenges like
security, standard architecture, scalability, management, and heterogeneity still exist, and
the research community is dealing with challenges to make IoT more efficient. Hence, a
great amount of research is being carried out to improve its technicalities and overcome its
issues. Colakovic et al. [4] discussed open and key challenges and issues in IoT. The authors
categorized research areas in IoT. Standardization is one of the main research areas in IoT
due to the diversity of technology. Currently, there is no single standardization available
for IoT despite many standardization bodies being involved to develop such standards.

An open standard is an important facilitator for the development of IoT systems
because of its availability to the public. IoT architectures should design in such a way
that they provide scalability, interoperability, heterogeneity, and openness. IoT is the com-
plete integration of systems from hardware to software. Hence, the researchers divided
architecture into four categories: general architecture, hardware/network architecture,
software architecture, and process architecture. The general architecture is a conceptual
model for applications, businesses, and services for IoT and operating with other services.
Hardware/network architecture enables heterogeneity among different hardware devices
and communication protocols and methods. Software architecture provides a common set
of services for data collection and processing. IoT application software frameworks are
required to provide easy interface with sensors and communication between different de-
vices. Interoperability in IoT systems between different devices is one of the key issues. At
all layers of IoT, this interoperability causes a problem, and a layered framework standard-
ization architecture is used to cater to this problem. IoT is developed on various existing
communication technologies, and communicating between these different technologies is a
complex task.
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Ahmed et al. [5] discussed the open challenges in IoT regarding service management.
IoT has more diversity in hardware, software, services, and protocols. This diversity raises
issues. The concept of web services with a service-oriented solution is introduced to cater to
this problem. The main idea was to integrate the Web of Things technology with intelligent
devices. The authors in this paper conducted a survey and pointed out some open research
challenges in IoT. Challenges in terms of service management in IoT are categorized into
four areas. Interoperability challenges include connectivity issues between different devices
and protocols, which lead to integrating diverse IoT platforms and how to manage them.
The scalability-related challenge in IoT regarding service and management is also discussed.
Service management issues regarding scalability include the registration of new devices
and upgradation of any software and firmware in a heterogeneous environment.

Various applications are running on the internet. Each application and service has
different requirements for QoS (quality of service). Bandwidth, less delay, and packet loss
are all parameters that indicate the QoS of any service. These parameters vary according to
the QoS with respect to the application’s nature. In a traditional network, it is challenging
to maintain QoS for various applications and services. Many methods have been proposed
to resolve QoS issues, but none of them have had a significant impact due to the nature of
traditional networks.

Heterogeneity, directly and indirectly, impacts every other parameter or challenge
in IoT. QoS (Quality of Service) is one of the most critical factors in IoT. As multiple
domain applications and services are part of the IoT, and their requirements are different,
they require different QoS. However, IoT systems consist of heterogeneous devices, in
which various network connectivity options, communications modes, and protocols are
implemented. Therefore, there is a high degree of heterogeneity in IoT, and there is expected
to be more in the future. QoS is one of the burning topics by researchers. There are various
issues under the QoS, such as interoperability, response time, reliability availability, mobility,
security, and many more defined by researchers [6,7]. All these challenges have direct ties
with heterogeneity. Researchers have seen potential in SDN to resolve challenges in IoT.
Research communities have presented many methods to cater to different challenges in IoT.
The researchers considered the virtualization of networks, implementation of gateways,
and SDN-based frameworks to counter the interoperability and heterogeneity problems.
The authors also discussed some other challenges in IoT related to QoS (quality of service)
that different services require different quality to maintain in large systems. Handling
massive amounts of data and keeping them is another complex issue, as is gathering useful
information from data and delivering services of IoT to apply AI and ML techniques for
better results. Scalability, security, and management are other open research challenges in
IoT [4].

In SD-WAN (software defined–wide area network), the controller becomes over-
whelmed due to a continuous increase in traffic, and it has limited processing capacity.
This impacts the QoS of the network. To cater to this issue, authors in [8,9] presented deep
reinforcement learning (DRL) in SD-WAN. They achieved optimization of load-balancing,
minimizing the average request delay and increasing the survivability of the network.
These studies show the controller capacity’s impact on QoS and how modern techniques
are being used to mitigate these kinds of challenges.

1.1. Motivation

In this subsection, we discuss a problematic scenario and our motivation behind this
topic. As discussed earlier, different IoT applications require different QoS in terms of
availability, low latency, high throughput, etc. Kesvan et al. [10] addressed a scenario
example regarding QoS in IoT. Consider an industrial application of IoT, where QoS plays
a vital role. An intelligent nuclear reactor monitoring system is designed to continuously
monitor reactor temperature through thermal imaging. When any anomaly is detected,
the system should inform in a timely manner. In this IoT example, tracking in real time is
required for safety. In such scenarios, the system should provide data to the station in real
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time accurately and without any delay. These types of services and applications are time
critical, and their traffic is categorized as delay-centric. Issues such as heterogeneity affect
the QoS and could have catastrophic results in some applications.

The SDN controller response time has a huge impact on QoS and the security of IoT
networks. Heterogeneity also involves increasing the response time of the controller, and in
this case, the endpoint security solution will also take time to identify any violation [11]. In
an interconnected nodes network, the heterogeneity of the nodes affects the flow, specifically
QoS, and also impacts security adoption [12]. Heterogeneous networks are less secure as
compared to homogeneous networks because heterogeneity increases the complexity of
the system, which makes it harder to differentiate between normal behaviors from attacks
by the system. The controller response time is a key metric to meet the specification of QoS.
Bandwidth, delay, packet loss, throughput, and others are also important metrics of QoS.
Different applications need different QoS key metrics (e.g., multimedia-type applications
need to maintain bandwidth, real-time monitoring of critical data needs less delay, etc.). It
means that these parameters affect the QoS, and response time plays a crucial part in it.

1.2. Our Contribution

An SDN-based solution has been developed to alleviate heterogeneity in IoT networks.
There are multiple solutions to cater to heterogeneity in IoT and improve QoS. Among
all these solutions, there is one recent and novel solution proposed by Sood et al. [13]
to maintain the QoS by alleviating heterogeneity in the SDN-IoT network, which is also
related to security. Their proposed framework output results show improved QoS by
alleviating heterogeneity. But there are many aspects from which their framework has not
been tested, and they invite the research community to make it more efficient by exploring
those aspects. So, we took one of their limitations as our work. Their framework was
tested in ideal conditions; however, they did not consider the bandwidth of the controller
and network delays, which are the practical parameters that cannot be ignored. Here, we
introduce those parameters and find out new results of the system. After that, we will look
at how to maintain QoS while handling bandwidth requirements. This will improve the
system further.

2. Literature Review

The internet of things (IoT) is a large system of interconnected devices from different
vendors that use various communication protocols. The heterogeneity of these devices
and protocols is one of the characteristics that make IoT popular but also raises issues
and challenges. Colakovic et al. [4] and Ahmed et al. [5] discussed the open challenges
of IoT systems related to quality of service (QoS), scalability, management, standardiza-
tion, architecture, and security, as well as how heterogeneity is linked to all these chal-
lenges. Marques et al. [14] discussed open research issues in IoT with some applications
and showed how heterogeneity impacts QoS and security.

Different QoS metrics are defined in IoT, which defines specific parameters, such
as availability, interoperability, pricing, scalability, and others. Singh et al. [15] defined
IoT QoS in terms of communication, computation, and things, with parameters such as
jitter, bandwidth, delayed QoS, interoperability, accuracy, efficiency, security, privacy, and
response time.

SDN and NFV are two critical technologies that can solve future networking issues
and challenges. SDN separates forwarding and control planes, providing a global view
of the network, while NFV utilizes virtualization technology to perform network func-
tions by software, separating them from hardware dependency. SDN and NFV are de-
veloped independently but can be combined to revolutionize the network domain [16].
Mathias et al. [17] discussed the progression and evolution of SDN, NFV, and their merg-
ing, presenting an architecture of SDN-enabled VNF. Soto et al. [18] compared the three
most popular SDN controllers in terms of network performance.
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SDN has more potential to resolve future network challenges than other solutions,
such as name data networking (NDN) [19] and programmable networks [20].

2.1. Quality of Service in SDN

The internet supports various applications and services, such as online gaming, cloud
gaming, video streaming, cloud computation, video conferencing, e-commerce, etc., each
with its own requirements. Traditional networks based on best-effort models cannot
efficiently handle the diverse QoS demands of these applications [21]. To address this issue,
different QoS architectures have been proposed, including integrated services (IntServ) [22]
and differentiated services (DiffServ) models [23], and multiprotocol label switching (MPLS)
technology [24]. However, these methods have their limitations and do not fully support
all QoS requirements.

Software-defined networks (SDNs), with their decoupled data and control plane, offer
a promising solution to address QoS issues in networks. Researchers have presented
various models to monitor QoS parameters in SDN networks, such as FlowSense [25] and
PayLess [26]. These models focus on parameters such as bandwidth, delay, throughput,
packet loss ratio, jitter, and route tracing to maintain QoS. FlowSense uses a push-based
approach to monitor link utilization in flow-based networks, while PayLess provides
accurate information about the network in real time with less overhead, using a flexible
RESTful API method to collect statistical information at different aggregation levels.

Maintaining quality of service (QoS) in large networks is a significant challenge.
Factors such as scalability, traffic management, and bandwidth have a significant impact
on network quality. Several SDN-based solutions have been proposed to enhance QoS
and address these challenges. The author in [27] presented a reactive approach in the
forwarding application of SDN in ISP networks, aiming to control the number of OpenFlow
messages. Their efficient quantitative model accurately computes the required number of
exchanged OpenFlow messages and bandwidth, as well as the number of flow rules to be
installed on each switch.

Another study by [28] highlighted the performance bottleneck of the control channel
and introduced a prediction model based on seven functions. Their model achieves a 94%
accuracy rate. The load on the SDN controller also affects QoS and other parameters. In [29],
the author proposed a novel scheme for load balancing among multiple SDN controllers
using the SMCLBRT method. The load balancing is based on the controller response time
and load. Additionally, in [30], the author applied a flow redirecting technique to minimize
the maximum response time of the SDN controller and improve QoS. Their model takes
into account flow-table size and link capacity constraints. The test results demonstrate a
50–80% increase in the maximized controller response time. All these studies highlight the
importance of controller response time and capacity in maintaining QoS.

2.2. SDN and IoT

The internet of things (IoT) integrates the physical world with the cyber world, pro-
viding better monitoring and control systems for our physical world from around the
globe. Traditional internet architecture is unsuitable for IoT, as there are different layered
architectures designed for IoT networks. One of them is the simple and easy-to-understand
three-layered architecture. The first layer in this architecture is the application layer, which
takes commands from the user to control actuators or display information in a meaningful
way, gathered from the sensors. The second layer is the network layer, whose main ob-
jective is to provide networking services. The last one is the perception or physical layer,
which deals with sensors and actuators to gather data and control any device or material
thing [31].

The emergence of IoT raises different challenges, like interoperability between devices,
efficient and dynamic network management, scalability, and the mobility of nodes. The
research community has seen the potential of software-defined networks (SDN) to solve tra-
ditional network problems in different technologies. SDN coupled with network functions
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virtualization (NFV) based IoT architecture can resolve or overcome many issues [32]. SDN
and OpenFlow optimization will facilitate the issues of the IoT paradigm. Heterogeneity
in IoT is another vast research issue, where different applications require different quality
of service (QoS). Implementing intelligent routing, scheduling, and virtualization of the
network for slicing can be implemented by SDN to provide QoS according to the IoT
application [33].

Combining SDN with NFV in IoT networks offers great opportunities to increase
performance [34]. NFV allows many network functions to be stored in the cloud, reducing
the load on low-level network devices. The data layer in this architecture has different
network resources converted into virtualized resources due to NFV. NFV is also aware of
SDN and provides new and unique services due to their coupling. The network operator
can easily deploy new services when required. This architecture offers low latency, higher
bandwidth, and other features.

SDN-NFV-based IoT systems show positive results in all domains of IoT. SDN coupled
with NFV-based IoT architecture is shown in Figure 2 [33]. This architecture is distributed,
so no single point of failure is in the system, making it more reliable, secure, and efficient.
Ref. [35] proposed an SDN-IoT-based intelligent public transportation system that uses
context information and the EI technique in IoT-based systems. The proposed system
shows decreased execution time, reduced average delay, increased transportation usage
among people, and better transportation management during critical hours.

Adding SDN and NFV layers in the IoT architecture provides more network flexibility,
and various vendor devices can operate under one application easily. Virtualization in the
network enables many tasks to be automated, reducing operating costs. The addition of
SDN in the network also enhances security. The central controller can implement a global
security mechanism. Traffic filtration, monitoring, and security policies are also applied in
edge switches and routers [36]. Updating security policies is much easier in the SDN-IoT
network. WSN is an essential part of IoT. Implementing SDN and NV in WSN will give
great benefits to IoT systems [37].
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SDN has been applied in WSNs to improve their performance and functionality.
Luo et al. [38] embedded VMs in sensor nodes for increased autonomy and utilized on-
air programming for central control. Galluccio et al. [39] presented a framework that
decouples the control plane from data by utilizing SDN for logic forwarding on nodes. In
IoT networks, Thubert et al. [40] used SDN to translate IoT services into the network for
a better end-to-end delay. Yiakoumis et al. [41] implemented SDN-orchestrated network
virtualization in home network management, using slicing to give full management control
over their networks. Batalle et al. [42] suggested SDN-orchestrated network virtualization
that relieves core network routers and switches of routing functionality. These architectures
demonstrate the potential of SDN in IoT systems while presenting new challenges.

2.3. Recent Work: IoT Systems Using SDN

In the previous subsections, we discussed the heterogeneity issues in IoT and how
SDN-based architectures are being applied to IoT networks. In this section, we review
recent work performed by the research community to address heterogeneity in IoT systems
using SDN-based approaches. We also examine how these approaches handle quality of
service (QoS) in SDN-IoT networks.

IoT devices constantly exchange traffic from the network to the server. Improper
traffic distribution can lead to resource shortages and server overloads [3]. To solve this,
Montazerolghaem et al. [3] proposed a solution that distributes traffic among servers based
on their capacity to maintain the QoS of various IoT services. They implemented an SDN-
based framework using a predictive and proactive heuristic approach based on time-series
analysis. In the controller, they used fuzzy logic rules based on the ratio between the server
memory and CPU capacity. They divided the complex problem into two sub-problems to
handle time complexity.

The controller architecture has a modular structure that clearly distinguishes between
data logic and management. The controller has a global view of all resources, traffic, and
the IoT network. An appropriate path and server are selected for each type of traffic
using the OpenFlow protocol. The first server is selected, and then the QoS path for that
server is chosen. The CPU and memory are essential factors in selecting a server. This
is performed through Flow Agent in the controller, which takes CPU usage and memory
capacity sampling for statistics and stores it in the database for analysis. Time-series
analysis is used for the predictive approach for the controller; they used the normalized
least mean square (NLMS) algorithm. The fuzzy logic control load window is provided to
every server with the help of the NLMS output. The authors observed that the traditional
Kaa load distribution among servers becomes overloaded when traffic increases and the
throughput becomes zero. However, their proposed method improved throughput and
reduced response time. They tested different traffic classes and compared their results
with the integer linear programming (ILP) model in terms of execution time and objective
function. The results show that the SDN-based framework’s execution time is less than that
of the ILP model, and other parameters are very close to it [3].

Tran et al. [43] proposed another SDN-based framework to resolve heterogeneity
issues in IoT. This solution focuses on the dynamic environment with an open distributed
infrastructure. The central controller can self-observe and adapt. This layered controller is a
middleware between IoT devices and the user application level. Observing the user request
ontology helps the controller adapt to new conditions [43]. They used the open-source SDN
controller Floodlight based on Java. As the IoT network is dynamic, every state information,
such as joining nodes, leaving nodes, and network topology, is stored in the database as
state info. The user request is translated into the lower level, and according to the service,
the path and IoT devices are selected. The lower layer is responsible for selecting the path.

Peros et al. [44] proposed an SDN-based architecture for IoT networks that supports
dynamic QoS, unlike previous solutions that focused on static QoS. The architecture has
four subsystems, including a non-IP network, a control layer, and a management layer. The
IoT devices are differentiated based on their communication capabilities, and the control
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layer manages the data plane, while the management layer detects node status, assigns
QoS profiles, calculates QoS paths, allows reconfiguration, and specifies dynamic QoS rules.
The system provides a friendly GUI for users to optimize QoS based on their needs. The
author compared the work with other SDN-based QoS solutions and claimed that their
work provides dynamic QoS in IoT systems and an easy-to-use interface.

Theodorou et al. [45] proposed MINOS, a middleware-based framework for managing
IoT networks using SDN that caters to heterogeneity. It is an operating system that controls
the SDN and provides a GUI interface. Sood et al. [13] proposed an SDN framework for
managing large IoT systems and maintaining QoS. The framework transforms heteroge-
neous controllers into homogeneous groups based on their service rate and provides a
centralized SDN controller that divides the controllers into groups. The authors used RA
and FCFS algorithms to test the approximation model and validated the proof of concept
using the Mininet tool and ONOS as the SDN central controller. Figure 3 [45] shows the
POC test bed view.

The experimentation results showed a direct relation between the controller response
time and the level of heterogeneity, and the throughput of the system was tested by
increasing the number of controllers and IoT flows on each controller using both TCP and
UDP traffic. The author also discussed some limitations of the approach, including network
delay and controller bandwidth.
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Figure 3. POC test bed view.

In this section, we discuss recent studies on alleviating heterogeneity in SDN-IoT and
improving QoS in SDN. Several researchers proposed various and unique techniques in
their study. We provide a brief description of related studies and their limitation in Table 1.

Table 1. Summary of related studies.

S.No. Existing Work Summary Limitations

1 [8]

DRL is applied on SD-WAN for load-balancing
optimization. It combines the deep Q network
(DQN) and deep deterministic reinforcement
learning (DDRL) algorithm to learn and divide the
load among controllers. This strategy shows
significant improvement in
controller performance.

They only consider load-balancing among
controllers, and migrate flow is not considered in
this work. Also, the author identified that we need
to study a large number of controller scenarios.
This approach is designed for SD-WAN; further
research is required for another scenario.

2 [9]

In this system, DRL with multi-agent Q-Network
algorithm is applied in SD-WAN to minimize the
average request delay and increase the network
life. Improvement to these parameters results in
better QoS of the network.

In this study, other parameters of the controller
need to be investigated. This solution works on
the control layer and is tested on intra-domain
routing. The model is only implemented in the
SD-WAN architecture.
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Table 1. Cont.

S.No. Existing Work Summary Limitations

3 [13]

Impact of heterogeneity on QoS is showed by
author. The service time of the controller and flow
arrival time relationship with heterogeneity is
presented. A mechanism is developed to reduce
the response time of the controller and alleviate
heterogeneity by making a cluster of controllers so
it can be treated as homogeneous.

Tested in very ideal conditions, as bandwidth
controller and network delay parameters are not
considered. Other algorithms of schedule are
applied to see any improvement. Combining
security methods with this framework is
not tested.

4 [3]

To maintain QoS in the SDN-IoT network, the best
path is selected between the source and server.
This method makes decisions on server capacity,
available bandwidth, and the classification of
traffic. Fuzzy logic is implemented on the
SDN controller.

This method only focuses on load balance on the
basis of server capacity. It is only applicable for
centralized single controllers, not for
distributed ones.

5 [43]

To overcome heterogeneity in SDN-IoT, a
centralized SDN controller can self-adapt by
self-observing the user request. This approach is
applied by the author to improve QoS. It uses
heuristic routing based on the Lagrange relaxation
theory and ontology created for analyzing
user requests.

This system adapts according to the user’s current
needs. The approach is only tested in a simulation;
the real-world implementation has not yet been
performed. Parameters like controller response
time and capacity are not considered.

3. Methodology

IoT is a heterogeneous network, as it consists of many different devices, and there
can be a change in the number of devices in the network. The interoperability between
these devices is a challenge due to the heterogeneous nature of the IoT network. Security,
QoS, and network performance are all factors that are affected due to heterogeneity in the
IoT network. The implementation of SDN in the IoT network is able to cater to many of
these problems with the right approach. In the future, the degree of heterogeneity will
increase as the size of IoT networks increases. This motivates the research community to
focus on heterogeneity issues and propose methods to resolve them using the SDN-IoT
control plane. In this study, we also focused on this problem with the QoS of SDN-IoT and
its security perspective.

Transferring information on time in a secure manner to the end user is important.
This makes end-to-end performance parameters significantly important in multi-domain
SDN-IoT networks. The controller response time of a flow is one of the key metrics to
maintain QoS requirements and improve security at the same time.

Let us discuss some examples and see how QoS and security are interconnected and
the controller response time has a direct impact on it. Security mechanisms applied on
SDN can be seriously hampered through a huge volume of traffic [46]. In the IoT network,
the response time of the controller may be increased due to the heterogeneous nature of
the network. This impacts the endpoint security solutions, which result in not identifying
violations on time and late responses [47]. It is the responsibility of the controller in an
SDN-IoT-driven network to maintain the resources timely; otherwise, the load on the
controller will increase, and it will affect controller performance and may lead to security
failure [48]. The interconnected node in the network and their nature of heterogeneity
may affect the flow-specific QoS. Also, if the service time of the controller is too high, then
packet loss will be considered in the network, and duplicate packets will flow into the
network upon the request of the switch. This will lead to identical packets in the network
and cause flow update problems [13,49].

Our methodology to alleviate heterogeneity in the SDN-IoT network to maintain
QoS and enhance security is very much inspired by [13]. The proposed method is simple
and feasible. The centralized SDN controller has a universal view of the underlying IoT
network. Therefore, it will receive the service rate of all distributed peer controllers. On the
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basis of these service rates, the central controller divides these distributed heterogeneous
controllers into homogeneous groups. In this approach, the controller belonging to the
same group is treated as one homogeneous controller. Any mathematical module or
theory on homogeneous networks can be implemented here. We implement the pull-
based scheduling approach to collect statistics from the peer controllers. To fetch the
statistics of the service rate from the peer controller, the NBI parser is used in the central
controller. These collected statistics are then forwarded into a sub-module known as the
state-collection module and database. From the collected data in the state-collection module,
the peer controllers are divided into groups. Grouping is performed by group formation
and queuing modules. After forming the groups, the group formation and queuing module
fetch the QoS requirement from the incoming flow. This offloads the flow request towards
a group that satisfies the application or flow-specific QoS requirements. The proposed
framework architecture [13] is presented in Figure 4.

Pu
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Group 1 Group 2 Group n

Request/s

State-collection
module and data base

Group formation and
Queueing based on µ

SDN Controller

NBI parser to collect the
service rate of peers

Distributed peer controllers

Figure 4. The high-level architecture of SDN-IoT to alleviate heterogeneity.

This methodology improves QoS in IoT networks by reducing controller response time
and increasing real-time attack detection while maintaining security. The approach divides
controllers into homogeneous groups based on service rate, transforming heterogeneous
controllers into homogeneous ones. This experimental study builds on [13] by introducing
real-world parameters, such as bandwidth, using a network from the Internet Zoo Topology.
Various simulations were conducted under different conditions, including changes in the
number of hosts and protocols, with results compared to the base paper.

4. Proposed Solution

There have been various approaches proposed to address the challenges faced by IoT
networks. One popular approach involves leveraging SDN to address the issue of hetero-
geneity. However, there are still several open research gaps in SDN-IoT networks. In this
study, we propose an extension to an existing method that aims to alleviate heterogeneity
while maintaining QoS in SDN-IoT networks. We identified a research gap in the method
proposed by [13], which demonstrated the effectiveness of their framework in addressing
heterogeneity and maintaining QoS, as well as improving security. However, their ap-
proach had certain limitations. To address this, we introduce the concept of the controller
bandwidth in the network and evaluate the performance of the improved approach. We
believe that our proposed approach will help fill the identified research gap and provide
valuable insights into the effectiveness of this approach in addressing the challenges faced
by SDN-IoT networks.

In the previous section, we discussed the impact of the service rate of controllers on
the SDN-IoT network’s QoS and security mechanism. To alleviate heterogeneity while
maintaining QoS, controllers with different service rates are grouped together. In our
experimentation, we considered two algorithms: the random algorithm (RA) [50] and the
first come first serve (FCFS) algorithm. The RA algorithm selects a controller randomly
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to serve the incoming flow, while the FCFS algorithm prioritizes the first request in the
queue [51].

There is a central controller and to achieve the closed-form expression of many metrics
of interest, the M/M/1 queuing discipline is selected. It also aligns with the previous
research conducted in this domain. The M/M/1 queue represents a basic system with a
single controller, where the queue length corresponds to the number of incoming IoT flows
following a Poisson distribution. IoT flows are considered two events in our model that
occur in different time periods. Incoming IoT flows follow the Poisson distribution, and
the service rate of each SDN controller follows an exponential distribution. These are the
basics of queuing theory, and M/M/1 is the most suitable choice. To analyze the system’s
performance, we treated the entire IoT network as an M/M/1 queuing discipline [52].
The arrival rate of packets is denoted by λ, while the control flow rate of each individual
controller is denoted by λ. In our heterogeneous network, m controllers are divided into n
homogeneous groups, resulting in a service rate of m.µ for the whole system and n.µ for
each individual controller.

The degree of heterogeneity is determined by the service rate of the controllers, and
we define the system as heterogeneous when h > 2; otherwise, it is homogeneous. Previous
research work related to SDN-IoT networks provided us with important variables and
equations for this heterogeneous system.

Overall, our proposed solution aims to fill the research gaps in the SDN-IoT network’s
heterogeneity issues, while maintaining the QoS and increasing the security performance
and mechanism:

h =

[
µmax

µmin

]
(1)

The service rate is the average time of the packet or flow spent in the queue in waiting
and time spent in utilizing resources of the controller. The average time flow, waiting
time, and service rate of the controller are used to represent the complete network service
rate. These general formulas are given below, and the changes in these formulas are also
presented below with respect to the RA algorithm and the first come first serve algorithm
(FCFS). Table 2 represent a description of variables that are used in formulas.

Generalized formulas of average service rate, the average time of flow remaining in
the system, and per-flow average waiting time:

µc =
m

∑
i=1

p(Ci)× µi (2)

Tq =

1
µ

1− p
=

1
µc − λc

(3)

Tw = Tq

(
λc

µc

)
(4)

Again, these formulas are repeated below with modifications according to the RA
(random algorithm):

µ(cr) =
1
2

µ(h + 1) (5)

Tqr =
1

1
2 µ(h + a)− λc

(6)

Twr = Trq
λc

µcr
=

λc
1
2 µ(h + 1)[ 1

2 µ(h + 1)]− λc
(7)
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Below are, again, these formulas according to the FCFS algorithm (first come first serve):

µc f =
m

∑
i=1

Pf (Ci)µi =
1
3

µ(2h + 1) (8)

Tq f =
1

1
3 µ(2h + 1)− λc

(9)

Tw f = Tq f
λc

µc f
=

λc
1
3 µ(2h + 1)[ 1

3 µ(2h + 1)− λc]
(10)

Table 2. Important notations used in formulas and their description.

Notation Description

m Number of heterogeneous controllers
n Number of homogeneous groups
µ Service rate of whole system
µmin min(µ1, µ2, µ3....µm) minimum service rate among controllers
µmax max(µ1, µ2, µ3....µm) maximum service rate among controllers
µi Service rate of C_i th controller
h Degree of heterogeneous
p Stability of the system
µc Service rate of controller
µcr Service rate of system in RA
µc f Service rate of system in FCFS algorithm
Tq Average time flow remain in system
Tpr Average time flow remain in system using RA
Tq f Average time flow remain in system using FCFS algorithm
Tw Average waiting time
Twr Average waiting time in the system using RA
Tw f Average waiting time in the system using FCFS algorithm
Ci Group of h heterogeneous controller
Pr Probability of one controller chosen in a system when RA is used
Pf Probability of one controller chosen in a system when FCFS algorithm is used
λ Packet or flow arrival rate of the whole system
λc Packet or flow arrival rate of individual controller

In the average service rate formula, the probability of the controller to be assessed is
denoted by p(Ci). In our model, as we discussed above, m heterogeneous controllers
are divided into n groups based on their service rate, where each group consists of
Gn(n = 1, 2, 3, . . . h) controllers. The service rate of each controller is represented by nµ,
thereby changing the system of heterogeneous controllers into an approximate homoge-
neous system.

Our model is based on M/M/1 queue discipline. To compute the average time
of flow that remains in the system, Equation (3) is used.This equation is derived from
the basic formulas of the M/M/1 queue model and the use of Little’s law. The whole
system incoming flow arrival rate is represented by λ, and for individual controllers, it
is λc = λ(1/m), where λ is a heterogeneous controller. For a system to remain in a stable
state, the stability factor is p = λc/µc. In any situation we need, λc ≤ µc or 0 ≤ p ≥ 1. The
per-flow average waiting time is a product of the stability factor, and the average time of
flow that remains in the system, as shown in Equation (4).

After analyzing the whole system, we implement this framework to fill some of its
gaps. The framework is not tested using controller bandwidth and network delay. We
introduce the bandwidth parameter and analyze the result. The term controller bandwidth
refers to the bandwidth of the links between the central controller and peer controllers.
Finally, we apply a simple mechanism to the known available bandwidth of the link, and if
the selected controller’s available bandwidth is more than the threshold point, then another
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controller of that same group is selected to serve the incoming flow. It is used to see whether
this approach has an impact on the system or not.

5. Results and Discussion

This section comprises three sub-sections. The initial sub-section pertains to the
experimental setup and execution, encompassing an extensive discussion of all the tools
and software utilized. The second sub-section presents graphical results, while the final
sub-section compasses a detailed analysis and interpretation of the aforementioned results.

5.1. Experimental Details

The complete detail of the experimental setup and tools are discussed in this section.
This section covers the details of the tools and why they were selected in this experiment.
First, as we know, the main objective of our proposed framework is to convert m hetero-
geneous controllers into n homogeneous groups in an SDN-IoT-based network. First, we
must construct a network with multiple hosts and open-flow switches. In the experiment,
two real-world topologies are created. Figure 5a,b show these networks’ graphical repre-
sentations on the map. The data of these networks are available on Internet Topology Zoo.
The ITZ is a public online source, where data of different network real-world topologies are
stored. The ITZ has many different network topologies which are publicly available from
various network providers around the globe. Around 250 different network topologies’
data are presented as undirected graphs in GraphML format. Extensible markup language
(XML) is used to represent all topologies’ data [53].

(a) ARRNET Network Topology Australia (b) DFN Network Topology Germany

Figure 5. AARNET/DFN network topologies.

The ITZ provides detailed data about each topology in its database. The details about
nodes, their connectivity, bandwidth, and their location in terms of longitude and latitude
are essential to construct the network. The two topologies which we used are AARNET and
DFN. The details about how these data are used to construct the topology in Mininet are
discussed in the next paragraph. Listing 1 shows important topology data in XML format.

There is much information in these structures, but to construct a topology, you need
some important values from this XML structure. We exclude the meta-data and pass the
important values to Mininet to generate the topology through the parser. Every node in the
structure represents a switch, and edges represent a link between these nodes (switches).
Each node has a unique ID number, and every node has some information. The important
information about every node is its longitude and latitude. These are used to calculate
the delay between two connected switches. The information in the edges tells us about
the connection to two switches and their link bandwidth. The topology in Mininet is
constructed through these important values of network topology. We are interested in these
values in parsing Listing 2.
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Listing 1. Important values in XML format of DFN topology.

<?xml version=" 1.0" encoding="utf -8"?>
<graphml ...>

<key attr.name="key" attr.type="int" for
= "edge" id="d36" />
....
<graph edgedefault= "undirected">
<data key="d0">2/01/11</data>
<data key="d1">Germany</data>
<data key="d2">Country</data>
<data key="d3">DFN</data>
...
<data key="d28">1</data>
<node id="0">
<data key="d29">1</data>
<data key="d30">50.83333</data>
<data key="d31">Germany</data>
<data key="d32">0</data>
<data key="d33">12.91667</data>

<data key="d34">CHE</data>
</node>
...
<edge source="0" target="1">

<data key="d35">e52</data>
<data key="d36">0</data>

</edge>
...
</graph>

</graphml>

Listing 2. Mininet Python API transforming listing 1 to construct network topology.

#!/usr/bin/python
from mininet.topo import Topo
...
class GeneratedTop(Top):

def __init__(self, **opts):
#Initialize Topology
Topo.__init__(self, **opts)
# swithces first
CHE = self.addSwithc(’s0’)
...
# add new hosts
CHE_host = self.addHost(’h0’)
...
# add edges between switches and corresponding hosts
self.addLink (CHE, CHE_host)
... # add edges between switches
self.addLink (CHE, LEI, bw=10, delay=’0.348009503ms’)
...

topos = ’generated’ ; (lambda: GeneratedTopo())
...
if __name__ == ’__main__’:

sshd(setupNetwork())
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Mininet is a lightweight emulation tool built for the emulation of networks with the
support of an SDN controller. The bandwidth and delay parameters of the links can be set
in Mininet. In our scenario, the delay between switches is the time a packet takes between
two connected nodes. Latitude and longitude data are used to calculate the delay between
nodes. The following formulas [54] are used to find the delay time between two nodes.
Table 3 shows the important notations used in Equations (11) and (12):

dist(SF, DP) = cos−1{sin(LaDP)·sin(LaSP) + cos(LaDP)·cos(LaSP)·cos(LaDP − LaSP)}·r (11)

tl =
dst(SP, DP)

vl
(12)

Table 3. Important notations used to calculate delay and their description.

Notation Descriptions

Dist Distance

SP Source point (source node)

DP Destination Point (end node)

La Latitude in radians

Lo Longitude in radians

r Radius (6,378,137 m)

vl Velocity of signal (1.97× 108) m/s

The spherical law of cosine is used to calculate the distance of topology in Equation (11).
The radius value is assumed. The nodes are connected via a fiber optic link, so the signal
speed is taken as the speed of light and divided by the reflective factor of 1.52. After the
successful construction of topology in Mininet, a tool is needed to evaluate the topology
through real distributed network traffic.D-ITG (distributed internet traffic generator) is
one tool that replicates real packets of various protocols. Through D-ITG, different packet
streams can be generated, and statistics are collected on the logging server. In D-ITG, there
are different modules responsible for their function.

In the network, one host has to act as a log to collect all the data regarding D-ITG
traffic. The D-ITG log sample information is shown in Figure 6. One host sends a UDP
packet to another host, and in the end, the decoder analyzes the data collected by log.
D-ITG also provides the feature of analyzing information in real time. In our case, we
wrote bash files for TCP and UDP traffic. When Mininet topology is created, every host
also accesses the shell. On another terminal, we ran the bash file of D-ITG so traffic can be
generated in the network.

Finally, let us discuss the SDN controller, the crucial component of the system. The
ONOS controller is selected for our study. The reason is that the author of our base paper
also uses this controller, and it is an open-source controller. The second ONOS controller
is compatible with Mininet. It is an open-source controller providing next-generation
SDN/NFV solutions. There is no major challenge in connecting the ONOS controller with
the Mininet topology. It is recommended for clustering or making groups of controllers, so
in our method we have to create groups of controllers, so this will be the best choice for
this experiment.

In [13], they created VM for every controller, and one VM machine is used as a click
modular router [55], which is used to develop the communication fabric of controllers.
Figure 7 shows the concept; they use Core i7—7700k @4:20 GHz with 64 GB of RAM
for the experiments. Virtual machines are configured with 4-core CPUs and 12 GB of
RAM. Also, the whole experimental network is constructed over a Dell Power Edge M640
Server consisting of two Intel Xeon Gold 6126 @ 2.6 GHz processors and 384 GB (6 × 64)
by [13]. Due to limited computational resources, we changed some experimental strategies.
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It is similar to the original one with a bit of change. We created 20 peer controllers for
the experiment and one central controller. Despite assigning every controller a complete
resource equal to a computer, we made all controllers on one system. All controllers
are connected in topology; between these peer controllers and the central controller, one
OpenFlow switch is connected to provide communication. Figure 7 shows our concept.
This switch is the replacement of the click modular router.

Figure 6. D-ITG log showing information about UDP packet transfer from H1 to H2.

Figure 7. Peer controllers forming groups on the basis of service rate and connected to the central
controller via OpenFlow switch.

At first, the SDN controller collects the service rate of peer controllers. The service rate
to peer controllers is assigned from 1 k to 30 k/s. After collecting the service rate, the central
controller decides whether the network is heterogeneous. It is determined based on the
service rate of peer controllers. If the ratio of maximum and minimum service rates is less
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than two, the network is considered a homogeneous network and heterogeneous otherwise.
If the system is homogeneous, the central controller randomly selects any controller to
fulfill the flow request. In case the system is heterogeneous, then central control forms
groups of peer controllers on the basis of their service rate. Similar service rate controllers
are combined to form a homogeneous group. The central controller first receives the flow
of each packet, then according to the algorithm (RA or FCFS), it selects a peer controller to
process the packet flow. The service rate data of the peer controller are collected through
a parser using JSON format. The service rate is collected after a specific interval of time.
The interval between collections of peer service rate can also depend upon the average
throughput of the system or degree of heterogeneity. We applied both strategies to set
the “service rate collection interval time” in this study. When the interval time of service
rate is dependent upon throughput or degree of heterogeneity, it will vary according to
these parameters. Consider that after collecting the service rate and forming groups, after a
specific interval, it again collects the service rate; now it checks if the system’s throughput
is increased, decreased, or remains the same.In the case of the same time interval, if the
throughput increases, then the interval of time is increased to collect the service rate, being
either doubled or increased by a constant factor. Finally, if the throughput is decreased,
then the interval time is cut down to half of its current value.

We include a minor change in the central controller algorithm to see improvement
in the system. In the last case, the selection of a peer controller also depends upon the
available bandwidth of that controller. The central controller also collects link utilization
and takes the difference between the bandwidth of that link and current link utilization.
The result is the available bandwidth of that link. In this experiment, we only took links
of the peer controller connected with a switch which provides a connection to the central
controller. Link information is gathered through OpenFlow functions, which discover the
topology and provide information.

Last, the controller default forwarding rules are used in the data plane. Most of
the work is on the control plane. The Cbench tool is used to measure the throughput of
controllers. It is a tool designed for OpenFlow switch and SDN controller to emulate their
performance through some benchmarks. Test cases for the experiment are discussed in the
result subsection. Table 4 discusses our experimental setup machine and tools languages.
In the following steps, the central controller Algorithm 1 is described.

Algorithm 1 Controller selection algorithm.
Input: Peer controller service rates µi in JSON format
Output: Selected controller to fulfill incoming flow request

1. Calculate degree of heterogeneity h using Equation (1)
2. If h < 2, then treat the whole system as homogeneous and select any controller to fulfill
incoming flow request
3. Else, form groups on the basis of their service rate and choose the controller using RA or
FCFS algorithm to fulfill the request
4. Use default forwarding rules of the controller to send packets from source to destination

Table 4. Details of hardware and software used in experiment.

Items Description

Computer System Inter Core i7-10700K 11th generation, 3.8 GHz, 32 GB of ram, 500 GB SSD

Operating System Linux (Ubuntu 21.04)

Software Tools Mininet, Cbench

Controller ONOS

Languages, script Python, JSON, XML, Bash

Data collection source Internet Topology ZOO
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5.2. Results: Experimental Setup

In this experiment, we use two real-world topologies, AARNET and DFN. Both
topologies are tested in the proposed framework. TCP and UDP protocols are used in
the experiment. Various test cases are applied in this experiment. The results are based
on various test cases. We have 20 peer controllers in the network. We make their group
according to their service rate. In the experiment, both topologies are tested under different
test cases. First, we divide our result and test case according to the protocol. We use TCP-
and UDP-based protocol traffic. Another variable that we change in our test case is the
number of hosts starting from 500 and reaching 2000 hosts. Cross-traffic and without cross-
traffic conditions are also tested. Another test case we test is forming permanent groups
without changing their service rate. For that, 5, 10, 15 groups are formed to perform this test
case. Without fixing the cluster group number, we also run experiments. In this scenario,
the service rate of the controllers are not fixed, so forming cluster groups can vary. Finally,
we test this framework under different bandwidths of the controller. The bandwidth of
controllers is set at 2 Gbps, 5 Gbps 10 Gbps. We also test a case where random bandwidths
are assigned to different controllers. The last test case is about bandwidth utilization when
a simple mechanism is implemented to test AARNET at a 10 Gbps bandwidth. Below
are the results of the experiment, and an analysis of the result is presented in the next
subsection of this paper.

5.3. Discussion of Experimental Result

Based on the simulation, the experiment’s findings were made. Changing the host
count and bandwidth allowed us to obtain different outcomes. Additionally, a simulation
with a fixed homogeneous group count was conducted. Results of AARNET on both
protocols are shown in Figures 8 and 9. In Figures 10 and 11, the DFN network topology
results for both protocols are shown. First, we analyzed the result of both topologies in both
protocols at 10 GB bandwidth. The results in Figures 8c, 9c, 10c and 11c are very similar
to those obtained by [13]. They consider the unlimited bandwidth of the controller, but in
Mininet, if the controller bandwidth link is not defined, it takes around 10 GB bandwidth
by default. The throughput of both topologies decreases when their controller bandwidth
is decreased. The important point is that in every bandwidth case, the throughput follows
the same linearity means; as the number of hosts increases, the throughput decreases. The
throughput is reduced from 30% to 35% when a 2 Gbps bandwidth is set. For 5 Gbps,
the bandwidth is decreased by 16% to around 20% as compared to the results of Sood
et al. [13]. The 10 Gbps results are approximately the same. Based on the results, it seems
that heterogeneity affects the QoS.

The decrease in throughput is linear, which means that the throughput does not
deviate too much as the number of hosts increases. The other thing we observed is that as
the number of cluster groups is increased in the system, the throughput is greater. When
we fix the service rate and form constant groups, for example, 5, 10 15, the throughput is
increased when the number of groups is greater, which means that this strategy impacts
the heterogeneous network performance.

When we do not fix the number of groups, the throughput is maximal in every test
case. It indicates that grouping based on the service rate and, after some interval time,
changing groups based on their current service rate is the most efficient way. We also
implement one method based on throughput to change the interval time of the service rate,
but it does not show any significant changes in the average throughput of the system. We
need further investigation to see this method’s effectiveness on other controller resources.
When the bandwidth consideration technique is applied, we see some increase in the
throughput when the hosts increase and and decrease in the available bandwidth value
due to more traffic. In this scenario, the throughput is increased from 2% to 4% as shown in
Figure 12 compared to the results of K. Sood et al. [13]. It shows that there is potential in
this framework to become more efficient in terms of QoS while alleviating heterogeneity.
Our proposed model focuses on all traffic, not only on control traffic, as presented in [28,29].
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(a) (b)

(c)

Figure 8. AARNET throughput at different bandwidths TCP. (a) AARNET throughput at 2 GB
bandwidth TCP. (b) AARNET throughput at 5 GB bandwidth TCP. (c) AARNET throughput at 10 GB
bandwidth TCP.

(a) (b)

(c)

Figure 9. AARNET throughput at different bandwidths UDP. (a) AARNET throughput at 2 GB
bandwidth UDP. (b) AARNET throughput at 5 GB bandwidth UDP. (c) AARNET throughput at
10 GB bandwidth UDP.
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(a) (b)

(c)

Figure 10. DFN throughput at different bandwidths TCP. (a) DFN throughput at 2 GB bandwidth
TCP. (b) DFN throughput at 5 GB bandwidth TCP. (c) DFN throughput at 10 GB bandwidth TCP.

(a) (b)

(c)

Figure 11. DFN throughput at different bandwidths UDP. (a) DFN throughput at 2 GB bandwidth
UDP. (b) DFN throughput at 5 GB bandwidth UDP. (c) DFN throughput at 10 GB bandwidth UDP.
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(a) (b)

Figure 12. AARNET throughput at 10 GB bandwidth TCP/UDP with bandwidth utilization tech-
nique. (a) AARNET throughput at 10 GB bandwidth TCP with bandwidth utilization technique.
(b) AARNET throughput at 10 GB bandwidth UDP with bandwidth utilization technique.

In the last test case, we do not fix the same bandwidth of each controller. We randomly
assign different bandwidths to each controller. The result generated in this test case is
changed every time, and there is much variation in the throughput compared to the fixed
bandwidth test cases. It shows a need to understand this situation further and find methods
to stabilize the system’s throughput. After analyzing the whole system for the delay
between controllers, we can say that controller placement is critical in these topologies.

6. Conclusions

In conclusion, the use of SDN to address heterogeneity the in IoT networks shows
great potential for improving QoS and enhancing security. In this study, we developed a
framework that converts heterogeneous controllers into homogeneous ones based on their
service rate, which was tested using the RA FCFS algorithm. Our experiments showed
that when the bandwidth is shared equally across all controllers, there is less throughput
variation. However, further study is required to investigate different bandwidth allocations
to controllers, stability of throughput, and other affected parameters. The inclusion of delay
and bandwidth as metrics may also enhance the framework’s performance.

As for future work, we suggest investigating the delay between controllers, testing
the framework’s performance in actual IoT networks, comparing it with other similar
SDN-based methods, developing bandwidth-on-demand solutions, addressing the central
point of failure issue, implementing traffic-specific flow, and studying the framework for
other parameters of QoS. These efforts would help advance the framework and its potential
applications in the field.
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