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Abstract: The analysis of thin sections for lithology identification is a staple technique in geology.
Although recent strides in deep learning have catalyzed the development of models for thin section
recognition leveraging varied deep neural networks, there remains a substantial gap in the identifica-
tion of ultra-fine-grained thin section types. Visual Transformer models, superior to convolutional
neural networks (CNN) in fine-grained classification tasks, are underexploited, especially when
dealing with limited, highly similar sample sets. To address this, we incorporated a dynamic sparse
attention mechanism and tailored the structure of the Swin Transformer network. We initially applied
a region-to-region (R2R) approach to conserving key regions in coarse-grained areas, which mini-
mized the global information loss instigated by the original model’s local window mechanism and
bolstered training efficiency with scarce samples. This was then fused with deep convolution, and a
token-to-token (T2T) attention mechanism was introduced to extract local features from these regions,
facilitating fine-grained classification. In comparison experiments, our approach surpassed various
sophisticated models, showcasing superior accuracy, precision, recall, and Fl-score. Furthermore,

our method demonstrated impressive generalizability in experiments external to the original dataset.
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The role of lithology identification is central in the field of geological engineering [1].
Lithologic information serves as a crucial foundation for geologists, enabling the assessment
of regional geological evolution history, the determination of deep mineral and oil and
gas resource types, and the estimation of various resource reserves [2,3]. Furthermore, it
supplies reference data for the prevention of geological disasters [4]. As such, the ability to

identify rock lithology carries immense engineering and application value swiftly, efficiently,
and accurately.

In practical engineering, the accuracy of onsite manual visual inspection often falls
short, necessitating more precise lithology identification to be conducted within the lab-
This article is an open access article ~ OTatory setting. Typically, this goal is facilitated by equipment such as scanning electron
distributed under the terms and  Microscopes (SEM), X-ray diffraction (XRD), and electron probe microanalyzers (EPMA),
conditions of the Creative Commons ~ Which identify lithology based on characteristics such as rock density, magnetism, conduc-
Attribution (CC BY) license (https://  tivity, and elemental content [5]. Nevertheless, these disparate devices may yield different
creativecommons.org/ licenses/by / types of data [6]. Given the high costs and time-intensive nature associated with most of
40/). this equipment, lithology identification methods based on thin sections as the primary
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approach. Thin sections identification is a traditional method of identifying lithology based
on image recognition. This method involves cutting rock samples to make thin sections and
then determining the rock type, genesis characteristics, and lithology under a polarizing mi-
croscope according to the rock structure and mineral sequence. Usually, this work requires
experienced geologists, so the objectivity and efficiency of the research are limited. If intel-
ligent recognition can be achieved, it would not only reduce the workload of researchers
but also allow more practitioners to obtain efficient and objective identification results.

Thompson [7] applied artificial neural networks (ANN) to identify thin sections of
10 prevalent minerals. Singh [8] utilized a multi-layer perceptron algorithm to establish
feature extraction rules. They extracted features from RGB or grayscale rock images and
classified 140 thin rock sections, achieving an accuracy of 92.2%. Employing color, shape,
and texture features extracted from rock images, Chatterjee [9] fed these features into the
SVM model for rock type identification and reported an accuracy of 96.2%. Zhang [10]
selected the three highest-performing models from five machine learning models for rock
and mineral image identification. They then used stacking to enhance the performance of
these models.

The advent of deep learning technology aimed to heighten the degree of automation
in the identification process and alleviate image processing challenges. Polat [11] utilized
DenseNet 121 and ResNet 50 to identify six categories of volcanic rocks and assessed the
influence of four optimizers on model accuracy. Alzubaidi [12] applied the ResNeXt-50
architecture for identifying rock types in oil and gas well logging core images, reaching a
final accuracy of 93.12%. To augment identification accuracy, Ma [13] proposed the MaSE-
ResNeXt model to bolster the feature connectivity across different channels, achieving an
identification accuracy of 90.89% for three types of thin rock section images.

Li [14] explored the impact of three distinct optimization algorithms and two learning
rate decay methods on identification performance. Utilizing transfer learning, de Lima [15]
identified five types of thin rock sections and compared several advanced convolutional
neural network models, including VGG 19, MobileNet V2, Inception V3, and ResNet 50.
Among these, ResNet 50 recorded the highest accuracy of 95% in their study.

The Ultra-Fine-Grained Visual Classification (Ultra-FGVC) endeavor seeks to identify
objects with heightened precision, distinguishing various subcategories within a single
species. This task represents a formidable challenge due to the inherent complexity in dis-
cerning and delineating these minute visual differences, even for human experts [16]. In the
realm of geology, the objective expands beyond simply determining the type of rock under
investigation. It demands the implementation of subtle, ultra-fine-grained classifications
to thoroughly comprehend the intricate geological attributes of a specific region [17]. The
ultra-fine-grained visual classification of rocks exhibits significant applicability in geologi-
cal studies. However, the field grapples with certain unresolved issues, such as the scarcity
of ultra-fine-grained image datasets and the constraints on sample sizes for each category.
These limitations surpass the processing capabilities of neural network methods that are
dependent on extensive training data [18]. The principal objective of Ultra-FGVC is to
discern considerable intra-class differences and minor inter-class variances among identical
or similar species, such as identifying disparate subtypes of limestone or sandstone rather
than merely determining their overarching category. As depicted in Figure 1, relative to a
standard rock classification task, an ultra-fine-grained visual classification dataset presents
larger intra-class variance and smaller inter-class variance, posing greater challenges to
models tasked with distinguishing between different types of rocks.

This process requires the model to capture both global and local feature informa-
tion concurrently. Nonetheless, current CNN models continue to encounter difficulties
in recognizing global features. Self-attention mechanisms, which excel at processing se-
quential data [19], and the recent Vision Transformer [20], along with its variant model, the
Swin Transformer [21], have demonstrated superior learning capabilities in fine-grained
classification compared to traditional convolutional neural networks [22,23].
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Figure 1. The ultra-fine-grained categories of 10 types of rocks. Due to the slight visual differences
between thin sections of rocks from different categories, it is very challenging to distinguish the
ultra-fine-grained categories of these 10 types of rocks. For example, the visual differences between
quartz debris sandstone and debris sandstone, as well as debris quartz sandstone, are very subtle.

The Swin Transformer employs a window self-attention mechanism that divides the
input image into multiple windows, subsequently performing self-attention computations
within these windows rather than globally. This strategy notably decreases computational
complexity while preserving local information, empowering the model to excel in image-
related tasks. However, when tasked with the ultra-fine-grained classification of rocks, this
method hampers the ability to capture long-range dependencies within the image.

In response to these findings, we propose an enhanced ultra-fine-grained rock classifi-
cation model that incorporates a dynamic sparse attention mechanism based on the Swin
Transformer framework. This model initially captures related information within a broader
area, subsequently processing the fine-grained information within these regions. Conse-
quently, it effectively balances the acquisition of global and local information, ultimately
enabling the ultra-fine-grained classification of rocks.

2. Materials and Methods
2.1. Dataset Source

Currently, no dataset specifically tailored for rock identification tasks exists, and data
for ultra-fine-grained rock identification are even rarer. To ensure the validity and reliability
of our experimental samples, we sourced all thin rock section data from the science data
bank [24-35]. While attempting to minimize disparities and errors in data volume among
different rock types, we selected limestone and sandstone, both possessing substantial data
quantities, as the focal subjects of our study. For limestone nomenclature, we followed
the revision scheme proposed by Embry and Klovan, predicated on Dunham [36,37]. In
contrast, the classification nomenclature for sandstone adheres to the classification method
proposed by Garzanti [38]. Data augmentation, a prevalent pre-processing technique in
various deep learning tasks, enhances the diversity of training samples, reduces overfitting
during the training process, and, consequently, bolsters the generalizability of neural
networks. Upon segmenting the dataset into a training set and a test set, we applied
standard augmentation techniques to the training set, including random cropping, random
rotation, random horizontal flipping, etc. This approach ensured balanced data volumes in
each category within the training set. Additionally, we utilized the dataset [39] published
by Nanjing University in China as the test dataset for the generalization experiment. This
dataset boasts significant hierarchy and extensive type coverage, comprising 108 rock types,
which account for over 90% of commonly used classifications, making it ideal for verifying
the model’s generalizability. The data conditions for this experiment are detailed in Table 1.
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Table 1. Dataset statistics.
Numbers
Dataset ID Class Subclass
Train Test
Number
C1 Debris Feldspar Sandstone 1
C2 Debris Quartz Sandstone 1
C3 Debris Sandstone 1
C4 Feldspar Debris Sandstone 1
C5 Feldspar Quartz Sandstone 1
Co Feldspar Sandstone 1
c7 Quartz Debris Sandstone 1
Dataset] C8 Quartz Sandstone 1 11,353 1360
9 Floatstone limestone 1
C10 Grain Limestone 1
C11 Micritic Limestone 1
C12 Packstone Limestone 1
C13 Quartz Debris Sandstone 1
Cl4 Quartz Sandstone 1
Metamorphic Rock 40
Dataset2 Sedimentary Rock 28 2185 449

e~
o

Volcanic Rock

2.2. Methods

Firstly, we addressed the limitation of the Swin Transformer’s attention operation
within a single local window by implementing a region-to-region approach [40]. Specifically,
we first executed a region segmentation operation, partitioning the input image X (with
a height of H, a width of W, and a channel number of C) into smaller blocks of size H/S.
We assumed H to be equal to W, and S was set to the square root of the number of regions
post-segmentation. The tensor representation is achieved by dividing the space into S x S
distinct regions, each subjected to reshaping operations. This sequential aggregation forms a
new tensor. The ensuing tensor’s dimensions are denoted as (S x S) x (H/S) x (W/S) x C.
For simplification, we can express (S x S) x (H/S) x (W/S) as S% x (H/S) x (W/S) x C.
Further, (H/S) x (W/S) x C may be considered as a new dimension, reformulated as
HW/S? x C. Thus, our resulting tensor shape is S> x HW/S? x C. Here, S? corresponds
to the number of regions, HW/S? quantifies the feature vectors within each region, and C
indicates each feature vector’s channel count. A linear projection on X then generates the
query, key, and value information.

Q=X W1, €))
K = X" WK, )
V=X"W, ©)

where W9, WK, W¥ € RE*C are the respective projection weights of the query, key, and value.

Subsequently, we determined the most relevant regions that require attention for
each given area. By conducting average pooling on Q and K, we computed region-level
queries and keys, denoted as Q" and K'. The region adjacency matrix A" was calculated by
multiplying Q" with the transpose of K'.

Al = Qr (Kr)T. (4)
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Following this, we computed the index matrix I" of the essential routing regions. This
process involved pruning the affinity graph by retaining only the top k connections for
each region.

I' = topkIndex(A"). (5)

Thus, the ith row of I' contains the k indices of the most relevant regions for the ith region.

After obtaining the index matrix I" of the routing regions, we carried out a token-
to-token attention operation on these regions [41]. For each query token in region i, we
gathered all key-value pairs located in the union of k routing regions indexed by I".

K8 = gather (K,I'),V& = gather (V,I'). (6)

Having obtained this information, we applied the T2T attention and further enhanced
it locally through deep convolution processing. This process allowed us to collect global
context information within each region, which we then reassembled into a complete feature
map, ready for input into the next block. The model’s overall framework adheres to the
structure of the Swin Transformer-tiny, incorporating four stages with a block ratio of
2:2:6:2. We replaced the original window multi-head self-attention (W-MHSA) module
in the block with our proposed method. The detailed network structure is depicted in
Figure 2.

r—————————————
}‘\ Classifier ,ll
\ i
\ 3 /
\ / depthwise

|
|
: \ Swin Transformer /
I Attention Vv \ blockx2 / convolution
\ !
| |_4_| \ f ! T2T V-pairs
l SwinTransformer / r'y
Q | | K | \ blockx6 ,_f_‘
\ I
5 X N pp—— I
Q K-pairs
| Linear Projection |

Window Partition R2R

Linear Projection

Swin Transformer
blockx2

A t i

Swin Transformer
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*
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Figure 2. Improved network structure diagram. The diagram on the left represents the attention
module used in each block of the original model, where the operation of each node is confined to
a single local window. The one on the right is an improved module where each node can perform
attention operations within multiple related windows.
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2.3. Experimental Setup and Evaluation Criteria

The experimental procedure is illustrated in the accompanying Figure 3. We selected
three advanced models for our control experiment: ResNet 152 [42], ViT, and Swin Trans-
former. These models were trained using transfer learning to expedite model convergence.
The experiment was implemented within the PyTorch framework, employing an NVIDIA
RTXA4000 GPU with 17 GB of memory, was manufactured by NVIDIA and sourced from
Huainan, China. We adjusted the input image size to 224 x 224 pixels. The cross-entropy
loss function [43] was chosen as the rectifying function for backpropagation, and we set
the batch size to 32. We trained our model using the AdamW [44] optimizer (31 = 0.9,
B2 =0.999) and applied a learning rate scheduling strategy based on ReduceLROnPlateau
(with mode = max, factor = 0.5 and patience = 10). We evaluated model performance using
accuracy, precision, recall, and F1-scores as criteria.

Precision = TP /(TP + FP), (7)
Recall = TP/(TP + EN), 8)
Fl-scores = 2 x (Precision x Recall)/(Precison + Recall). 9)

\ FN TN
F1-score
Recall
. o Precision
Train u entati
e Accurac Accuracy
80% ToTensor => v P FP Recall
rmaliz N loss Precision
_____ E> F1-score
Transfer learning
£V
Resize
Test CenterCrop
1o Slivie Evaluate -
Normalize

Figure 3. Flowchart of the training and evaluation process for each model in this study.

Here, in the N x N confusion matrix, we call those judged as positive samples and are
positive samples as true positive (TP); those judged as positive samples but are negative
samples as false positive (FP); those judged as negative samples but are positive samples
as false negative (FN); those judged as negative samples and are negative samples as true
negative (TN).

3. Results

Table 2 lists the comparison results of the average Top-1 accuracy on Dataset 1. Our
method achieves a Top-1 accuracy of 87.07% on the macro average and 88.04% on the
weighted average. Moreover, as shown in Figure 4, according to the confusion matrix of
different models, our method has the highest recognition accuracy in multiple categories,
especially in the C2 category Debris Quartz Sandstone, where the accuracy reaches 87.67%.

Table 2. The average Top-1 accuracy on Dataset 1.

ResNet152 ViT Swin Transformer Ours
macro avg 86.65% 85.00% 84.50% 87.07%
weighted avg 86.17% 84.45% 86.32% 88.04%

We further conducted a detailed performance analysis of recall, precision, and F1-
scores. The experimental comparison provided in Table 3 shows that our model has the
highest recall, precision, and F1-scores in both the macro average and weighted average.
Compared with the original Swin Transformer, it improves the Fl-scores of all categories
except for C3, C10, and C12.
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Figure 4. Confusion matrices of four models, where (a) is ViT, (b) is Swin Transformer, (c) is ResNet152,
and (d) is our improved model. C1-C14 are named according to the order of rocks in datasetl in
Table 1.

Table 3. Results of recall, precision, and F1-scores on Dataset 1.

Models
Categories Metrics (%)

ResNet-152 ViT Swin Transformer Ours

Precision 0.9018 0.8938 0.8870 0.8898

C1 Recall 0.9266 0.9266 0.9358 0.9633
Fl-score 0.9140 0.9099 0.9107 0.9251

Precision 0.8048 0.7137 0.7552 0.7742

C2 Recall 0.7717 0.8311 0.8311 0.8767
Fl1-score 0.7879 0.7679 0.7913 0.8223

Precision 0.9600 0.9412 1.0000 0.9245

C3 Recall 0.8889 0.8889 0.8889 0.9074
Fl-score 0.9231 0.9143 0.9412 0.9159

Precision 0.5484 0.5200 0.5385 0.7083

C4 Recall 0.4595 0.3514 0.3784 0.4595
Fl-score 0.5000 0.4194 0.4444 0.5574

Precision 0.8544 0.8515 0.8218 0.8700

C5 Recall 0.8381 0.8190 0.7905 0.8286
Fl1-score 0.8462 0.8350 0.8058 0.8488

Precision 0.7407 0.8077 0.8182 1.0000

Cé6 Recall 0.9524 1.0000 0.8571 1.0000
Fl-score 0.8333 0.8936 0.8372 1.0000
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Table 3. Cont.
Models
Categories Metrics (%)
ResNet-152 ViT Swin Transformer Ours
Precision 0.7949 0.8286 0.9333 0.9355
c7 Recall 1.0000 0.9355 0.9032 0.9355
Fl-score 0.8857 0.8788 0.9180 0.9355
Precision 0.9683 0.9828 0.9831 0.9677
C8 Recall 0.9839 0.9194 0.9355 0.9677
Fl-score 0.9760 0.9500 0.9587 0.9677
Precision 0.9500 0.9318 0.9405 0.9659
C9 Recall 0.9500 0.9111 0.9667 0.9444
Fl-score 0.9500 0.9213 0.9534 0.9551
Precision 0.9137 0.8758 0.9026 0.8868
C10 Recall 0.8411 0.8874 0.9205 0.9338
Fl-score 0.8759 0.8816 0.9115 0.9097
Precision 0.7854 0.7895 0.8182 0.8492
C11 Recall 0.8256 0.6923 0.7846 0.7795
Fl-score 0.8050 0.7377 0.8010 0.8128
Precision 0.8958 0.9560 0.9457 0.9556
C12 Recall 0.9247 0.9355 0.9355 0.9247
Fl-score 0.9101 0.9457 0.9405 0.9399
Precision 1.0000 0.9474 0.9444 1.0000
C13 Recall 0.8500 0.9000 0.8500 0.8000
Fl-score 0.9189 0.9231 0.8947 0.8889
Precision 0.8485 0.8594 0.8667 0.8689
Cl14 Recall 0.9180 0.9016 0.8525 0.8689
Fl-score 0.8819 0.8800 0.8595 0.8689
Precision 0.8548 0.8499 0.8682 0.8997
macro avg Recall 0.8665 0.8500 0.8450 0.8707
Fl-score 0.8577 0.8470 0.8549 0.8820
Precision 0.8623 0.8453 0.8626 0.8813
weighted avg Recall 0.8617 0.8445 0.8632 0.8804
Fl-score 0.8609 0.8428 0.8619 0.8790

4. Discussion
4.1. Explainable Analysis with SHAP

The interpretability of machine learning is relatively weak compared to traditional
generalized linear models. Even though some models can train the importance of features,
the scale standards of feature roles are inconsistent and lack intuitiveness; hence, they
are often referred to as “black boxes”. This study uses the SHapley Additive exPlanation
(SHAP) method to interpret the model [45,46]. SHAP analysis is a method of post hoc
model interpretation and can interpret the output of any machine learning model. Based
on the training status of tree models or neural networks, this method unifies the scale of
feature importance for each sample and reflects the importance of features through SHAP
values while also presenting the specific roles of each feature in each sample. We apply the
SHAP method to the interpretive analysis of three types of rock thin-section images. By
calculating the contribution of each pixel to the model’s predictive results, we visualize
the decision-making process of the model in judging the rock. As shown in Figure 5, red
pixels indicate a positive correlation, meaning the larger and darker the red area, the more
favorable the model’s judgment of the rock. Conversely, the larger and darker the blue
pixel area, the more unfavorable it is for the model’s judgment. The results show that our
method can more accurately locate and interpret the key features in the rock compared to
the other three advanced models.
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Figure 5. SHAP interpretability analysis diagrams of the four models for rocks. color intensity
represents the strength of correlation; darker shades of red indicate stronger positive correlations,
while darker shades of blue denote stronger negative correlations.

4.2. Model Complexity Analysis

We compared the average running time on Dataset 1, where the resolution of the input
images is 224 x 224. Table 4 lists the average running time, the number of parameters,
GFLOPs, and model size of the three most advanced models and our model. Please note
that all times are measured on the same computing platform with a single RTXA4000
GPU. Although the number of parameters and GFLOPs of our model is slightly increased
compared to the Swin Transformer, the average running speed is faster. Compared to the
other two models, our model not only performs optimally but also significantly reduces the
number of parameters, greatly reducing the need for storage and computational resources.

Table 4. Detailed parameters of the four models.

Average . .

Models Runtime (MS) Params(M) GFLOPs Input Size Model Size
ResNet152 52.34 58.2 23.20 224 x 224 222.8
ViT 14.84 58.1 22.57 224 x 224 330.3
Swin Transformer 32.39 19.6 5.96 224 x 224 108.2
Ours 23.53 21.9 6.70 224 x 224 108.3

4.3. Generalization Analysis

To verify the generalization ability and robustness of our model, the model trained on
Dataset 1 was tested on Dataset 2. Figure 6 compares the generalization performance of our
model with the three most advanced models. After five rounds, in terms of generalization
capability analysis, our method shows significant advantages. Our model still shows the
highest Top-1 accuracy, performing best among all models. Additionally, according to the
loss curve, our model has better stability.
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Figure 6. Accuracy and loss curves of the four models tested on Dataset 2.

4.4. Limitations

Transformer models use self-attention mechanisms, thereby performing well in captur-
ing long-range dependencies in input data and understanding global structures and local
features in images. Our model has mitigated the problem of sample scarcity in Transformers.
However, compared to CNN models, Transformer models still need more training samples
to extract rich features [47], and the amount of publicly available thin rock section data
is far from sufficient. Furthermore, the incorporation of a nominal quantity of disparate
rock samples aimed at diversifying the dataset could induce a long-tail distribution [48].
This might precipitate an unfair outcome in comparative analysis. Consequently, we de-
liberately omitted igneous rocks from our current investigation. On the other hand, the
significant differences between samples in the source domain and target domain limited the
effectiveness of transfer learning techniques in this experiment. Therefore, the performance
of the Vision Transformer and Swin Transformer is still not as good as that of ResNet-152.
The recognition result of Feldspar Debris Sandstone performed the worst. It can be clearly
seen that due to the lack of training samples, it is difficult for the model to distinguish it
from the extremely similar Debris Feldspar Sandstone.

5. Conclusions

In this research, we enhanced the Swin Transformer’s performance in ultra-fine grain
classification of sandstone and limestone by integrating the region-to-region (R2R) method
and token-to-token (T2T) attention mechanisms. The novelty of our approach lies in its
capacity to extend beyond the constraint of an independent local window for attention
operation, incorporating the most relevant adjacent regions for computation. This strategy
significantly enriches the capture density of global information. We then executed token-to-
token attention operations along with deep convolution operations within these related
regions to capture fine-grained details more effectively. When compared with three other
advanced models, our model consistently outperformed in all four measures—accuracy,
precision, recall, and F1-score—both in macro and weighted averages. The interpretive
analysis based on SHAP reveals that our model can more accurately locate and interpret
key features in thin-section images. Simultaneously, the model has significant advantages
in complexity, with a low number of parameters and computational complexity, and can
provide excellent performance. This makes our method more feasible and sustainable in
practical applications. Furthermore, our model demonstrated robustness in generalization
analysis, signifying its potential as a reference for subsequent ultra-fine grain recognition
tasks across different rock categories. Certainly, experimental research possesses numerous
avenues for further exploration. One critical issue meriting future investigation is the incor-
poration of a broader range of rock samples into the experiments without compromising the
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fairness of results. Future research might focus on several areas. First, in the context of an
expanded array of rock samples, there is a need to investigate strategies for enhancing the
performance of the Visual Transformer model and for addressing the long-tail distribution
issue in rock classification tasks. Second, it is crucial to identify methods that bridge the
performance disparity between the Visual Transformer model and the CNN model on small
datasets. Simultaneously, research should concentrate on how to harness the full potential
of the Transformer model when the sample size is limited.
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