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Abstract: Much of the equipment that is used in the chemical and process industry and for handling
or treating hazardous substances is subject to deterioration. To manage the risk of major accidents
due to this deterioration, the current legislation requires periodic controls that must be carried out
to verify the health conditions (ageing). To support the inspectors performing this task, a virtual
sensor has been designed and developed. It is a system composed of hardware and software that
uses mathematical models and augmented reality to assist in on-field inspections for monitoring
and predicting equipment ageing. Currently, there are no AR devices to perform inspections aimed
at verifying the integrity of equipment. The virtual sensor collects ageing-related information and
returns the corrosion rate, the probability of the critical pit, the corrosion evolution through iso-
contour corrosion maps, and the RUL; finally, it allows visualising the equipment condition through
augmented reality, (e.g., by means of thickness maps and tables that overlay the equipment). The
aim of this paper is to present the graphical interface of the software application, which has been
improved to minimise errors due to human–machine interaction. A large diesel storage tank has
been used to show how the virtual sensor works.

Keywords: equipment ageing; inspection; augmented reality; safety; chemical industry

1. Introduction

Innovative technologies, such as the Internet of Things, artificial intelligence, big data,
cloud computing, cyber–physical systems, interconnectivity, augmented reality, etc., char-
acterise the development of Industry 4.0 by means of the integration of physical and digital
systems. They bring many advantages throughout the industrial sector, which take the
form of increasing efficiency, profitability, innovation, customisation, and performance [1].
Another important aspect to note, as a strength element for Industry 4.0, is the potential
support in the improvement of the safety management, even if, currently, there are only a
few studies that analyse the integration of safety management and Industry 4.0 [2]. Among
them, Gisbert et al. [3] considered that information technology and wireless communication
allow for continuous and effective detection of workplace hazards, while Beetz et al. [4]
stated that the development of robots dedicated to safety may be able to recognise actions
that can cause injury to workers. Podgorski et al. [5] observed that personal protective
equipment (PPE) supplied with automation technology is being adopted in smart factories
to achieve better safety management. Other authors instead highlighted that artificial
intelligence and its applications have a lot of potential, especially as regards predictive
maintenance, for example, by improving the diagnostics of critical equipment failures [6,7]
and of rotating machines [8] or transport systems [9] by reducing or eliminating threats to
the safety of people, goods, and the environment.

Industry 4.0 aims to digitise production by sharing and analysing information as well
as connecting humans and machines [10]. The machine–machine and human–machine
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interactions represent fundamental aspects of this digitalisation process [2], but these are
not free from having disadvantages. Emerging and experimental technologies cause a deep
change in society, which needs time to adapt and normalise itself through new paradigms,
procedures, and labour laws. This requires companies to continuously update, but it often
becomes unsustainable for most of them, especially for small and medium ones. Another
aspect to be considered is that these systems create absolute dependence on the technology
since within these interactions, the machines no longer only represent the arm that carries
out the heavy, repetitive, and/or dangerous work, but increasingly play a decision-making
role [11]. Particular attention must be given to these technologies, especially when they
are involved in safety. In many cases, technology improves safety, but it can also add new
industrial and occupational risks to the traditional ones, in which the human factor can
be considered the main link between both types of risk [12]. Siemieniuch et al. [13] also
highlight that safety management, in the context of Industry 4.0, requires more research
efforts on human factors and ergonomics. In this context, particular attention must be given
to the establishments under the Seveso Directive [14], in which the release of hazardous
materials could be the cause of severe accidents, the so-called major accident hazards
(e.g., fires, explosions, and toxic dispersions) impacting people and the environment.
Seveso establishments include refineries, petrochemical plants, and oil-derived depots. All
these sites feature several large aboveground storage tanks, which are always critical for
the control of major accident hazards.

Some scholars have discussed the potential of smart systems for improving the con-
trol of major accident hazards due to the use of hazardous materials in different indus-
tries (energy, chemical and manufacturing sectors, oil and gas, transportation, etc.) [15].
Some innovative solutions have been presented in the literature: Bragatto et al. [16] de-
fined RFID technology supporting effective risk management in chemical warehouses;
Ancione et al. [17] developed a real-time visual guidance system for cranes to manage
risks due to collisions during the lifting of loads in working places; Gnoni et al. [18]
defined an IOT-based system to prevent injuries in assembling line production systems;
Mennuti et al. [19] used wireless sensor networks based on acoustic emissions to monitor
some damages in various structures. As regards the use of innovative technologies, evi-
dence justifies a particular interest towards augmented reality (AR) in the industrial context.
These works highlight the increasing request to make industrial activities more efficient,
safe, and economic. In this context, coupled with other technologies, AR contributes to the
achievement of this goal.

The literature outlines the main applications of AR, referring to various industrial
sectors. However, there are some limitations that are mainly related to human–machine
interactions [20]. Egger and Masood [21] described the recent spread of AR technolo-
gies and stated that these are not yet ready for industrial implementation in some areas,
whereas they are in other sectors. The most common applications of AR concern training
for the management of operations [22–24] and assisting in the routine maintenance of
industrial equipment by following visual instructions and interactive guides superimposed
on the real equipment for a more effective workflow, even with remote assistance [25–29].
Yang et al. [30] described how AR, combined with instant messaging and image recogni-
tion technologies, could greatly assist chemical plant inspections to solve the problems
associated with low efficiency and poor standardisation.

The use of AR in the inspection sector appears as one of the most important in the
industrial context, where AR represents a promising technique for improving the transfer
of information from the digital to the operator in a smart and non-intrusive way [31,32].
Depending on the industrial sector and the scope, inspections could typically involve
controls to be performed on products [33,34] or equipment; in the first case, it concerns
the detection of design discrepancies, while in the second one, it is used to intercept
possible causes of malfunction. The execution of this activity is therefore essential in
the manufacturing process, especially where many factors, such as the complexity of the
products and the inability of the operator to comply with certain assembly sequences,
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can potentially lead to mistakes or design changes. The control of the equipment for
maintenance purposes or due to malfunctions is important for the production continuity
and safety purposes, especially in the chemical industry due to the reasons discussed above.
A critical aspect related to the inspections concerns the annotation and formalisation of
detected errors and design changes, and the subsequent sharing of the information with
the technical office; these activities require a high mental workload [35].

In the context of major accident hazard industries, it is possible to find applications of
AR for the following scopes:

• to overcome the limit of using paper-based checklists during on-site inspections. The
use of AR technologies makes the inspection more efficient and advanced than the
conventional approaches [36,37];

• to help operators in performing tasks and operations by means of man–machine inter-
action through the addition of information to the real work environment [32,34,38,39]
(such as live video streams, pictures, or instructions);

• to support education for managers and employees with computer-generated 3D
environments [40,41] and train in hazardous materials handling by means of simula-
tions [38].

Therefore, the literature shows that currently, this technology is not mature enough
to perform inspections aimed at verifying the integrity of equipment and visualising the
deterioration level. As part of a recently concluded research project [42], a virtual sensor
has been developed to elaborate and visualise information relating to the deterioration of
critical equipment; it also produces prognostic estimates of the corrosion rate, the critical pit
probability, the evolution of the material corrosion, and the residual useful life (RUL) of the
equipment. The virtual sensor supports on-field inspections by visualising the information
in AR via a mobile device display, such as a smartphone or a tablet or via wearable device
(e.g., smart glasses). During the first phase of the development of this virtual sensor, greater
importance has been given to the optimisation of the processes for the implementation of
the mathematical models that use several different types of input data. In this manuscript,
the investigation of the human–machine interaction (HMI) in using this device is presented;
this work resulted in a user-friendly interface, which improved the usability of the software,
making it accessible even to personnel that are not experts in advanced technologies. The
manuscript is organised as follows. Section 2 provides a short description of the models
and the software that represents the virtual sensor; Section 3 describes the methodology
for the development of a user-friendly interface of the virtual sensor, reducing the errors
due to HMI; Section 4 illustrates the results, discusses them, and presents some future
improvements; finally, Section 5 gives the conclusions of this work.

2. Architecture of the Virtual Sensor

A virtual sensor for ageing management is a tool supporting inspectors in major
accident hazard establishments. Inspectors usually need to understand the actual deterio-
ration level of critical equipment, acquire information that cannot be found with a visual
inspection, and finally, elaborate the metrics related to the ageing status and about the
adequacy of the ageing management.

The system has been designed to collect various information, process the acquired
data, produce prognostic estimates regarding the corrosion rate, the critical pit probability,
the evolution of the corrosion surface, and the RUL of the equipment, and finally, it allows
visualising the results by using AR. Therefore, the sensor is composed of four elements:
the dataset, which is fed through the collection of information about the equipment to
be analysed; the set of the models; the software for the management of the data and the
elaboration of ageing-related metrics; the tool for the visualisation of the results in AR.

The models used by the virtual sensor are:

• the ageing fishbone model for the estimation of the overall adequacy index (also
simply named ageing index) [43];
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• the failure frequency model for the quantification of the failure frequency due to the
equipment deterioration by taking into account the ageing management;

• the model for the identification of the probability of the critical pit, based on the
extreme values theory (Gumbel distribution model) [44];

• the model for the calculation of the residual useful lifetime based on a combination of
the Gumbel distribution and the Bayes theorem [45];

• an advanced spatial interpolation technique of the thickness data to produce corrosion
maps (the kriging interpolation model) [46].

More details about these models are given by Ancione et al. [42].
The virtual sensor is made up of an “App Desktop” that acquires and processes inputs

(the equipment information) and an “App Mobile” for the AR visualisation of the acquired
and processed data.

2.1. Methodology for Ageing Monitoring and Prediction

The methodology for the ageing monitoring and prediction consists of the three steps,
shown in Figure 1. In the first phase, the data for the definition of the ageing conditions of
the equipment are collected from various sources (e.g., thickness measurements of the ma-
terial’s equipment, accelerating and slowing down factors with respect to the ageing, etc.).
After being acquired, these data are pre-processed (second phase) to be ready for the subse-
quent phase (processing). The data processing (third phase) consists of the execution of the
above-mentioned models.
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The outputs of these models can be displayed by using a PC, which is the common
way to view the results, or by means of a smartphone, a tablet, or finally, by a wearable
device, such as smart glasses. A QR code (placed on the equipment) is used as marker for
the equipment identification and to associate the elaborated outcomes. Smart glasses allow
an increased view of the produced information to be displayed by overlapping the iso-level
corrosion maps on the surface of the corresponding equipment (augmented reality); other
outputs are accessible through tables and graphs and shown on the sides of the equipment.
The third phase includes the data storage.

2.2. Hardware

The hardware used for the construction of the virtual sensor includes:

• PC with CPU: Intel® Core™ i5 (3 GHz); RAM DDR4: 16 GB, connectivity: USB Type
C™, Wi-Fi 6, Bluetooth® 5; operative system: Windows 10 pro 64 bit;

• Smartphone with operating system: Android v.11, compatible with Google Play
Service for AR;
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• Smart glasses: Epson Moverio BT-40S.

2.3. Software

The programming language used to create the App Desktop was Python [47], along
with some of its support libraries such as Matplotlib [48] for the creation of graphs,
Numpy [49] and Pandas [50] for data processing, and PyKrige [51] for data interpola-
tion through the kriging technique. Several different types of technology were used to
realise the mobile application:

• Unity 2021.1.13.f1, which is a multiplatform graphic engine, allowed us to create
interactive content and live 3D visualisation [52];

• The C# programming language was used within Unity to make the content dynamic
and allow the user to interact with it;

• Blender 2.93 [53] was used as software for modelling and was chosen to reproduce the
equipment to study and upload the 3D model on Unity.

3. Development of a User-Friendly Interface of the Virtual Sensor

The development of the interface for the virtual sensor is based on a procedure that
aims at the reduction in errors due to HMI. It consists of:

1. Virtual sensor testing;
2. Assessment of human–machine interaction and identification of criticalities in human–

machine interaction;
3. Interface development;
4. Virtual sensor testing.

3.1. Human–Machine Interaction

Figure 2 shows the flow diagram of the interaction between the inspector (user) and
the App Desktop. The dotted line indicates a path that can be omitted, i.e., the case when
the user does not elaborate future estimates but only visualises the corrosion surface and the
parameters related to the current and past inspections. Figure 3 illustrates the interaction
between the inspector and the App Mobile.
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To use the virtual sensor, the inspector starts the App Desktop and enters the equip-
ment ageing data. This requires that he/she uploads:

• the Excel files of the inspection carried out by means the ageing fishbone model [21]
(ageing index method, whose application is suggested by the Italian Ministry of the
Environment);

• the text files containing the thickness measurements sampled during the inspections
with the relative spatial coordinates.

Finally, the inspector can choose whether to elaborate information relating only to the
current state of the equipment, to the past, or to the future, i.e., by referring to the dates of
the previous inspections or selecting from 1 to 5 different future years. He/she can choose
to also produce the estimates of the ageing-related metrics (critical pit probability, RUL,
corrosion rate, etc.) and the corrosion surfaces at the same time.

Then, the application reads and codes these data, processes them according to the
implemented models (see Section 2.1), and creates graphs and tables of the ageing param-
eters for a selected year. Once the processing is complete, the application automatically
stores the documents in the defined path. Next, the inspector can visualise the information
produced to migrate it to the App Mobile, or reset the interface fields to make a new entry
and perform a new process. A further operation that the inspector can perform by using
the App Desktop, after entering the name of the equipment, is the generation of the QR
code to be placed close to the equipment to be examined if it has not been coded yet. The
final step is to exit the App Desktop and then start the App Mobile.

3.2. Interface Testing

To test the virtual sensor, a hydrocarbon storage tank included in a tank farm was
selected. The vessel is an atmospheric tank with a fixed roof made of carbon steel and
containing diesel. It has been operating for over 55 years. Two bottom inspection datasets
from different years were available (1990 was the first inspection year and 2019 the second
one). During both inspections, the thickness was measured at a number of points. The
nominal thickness of the bottom is 8 mm, while the minimum detected thickness was
6.1 mm in 1990 and 2.8 mm in 2019. Figure 4 shows the location of the sampled points on
the tank bottom.
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A 3D model of the vessel was created as a basic support for the AR, and was adapted
to be overlapped on a miniature of the storage tank that is available in the laboratory of
the TREES-MAT (Technology and Research on Energy, Environment and Safety Materials)
Group of the University of Messina. Figure 5 shows the 3D model created.
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Figure 5. 3D model of the atmospheric storage tank.

A safety walk was carried out in order to observe the inside of the tank in AR. A
“safety walk” is an inspection of a unit of an establishment, which has the aim of checking
the conditions from a safety point of view. In this manuscript, the AR results are shown by
overlapping them on a photograph of the tank in its real location.

4. Results
4.1. Identification of Criticalities in Human–Machine Interaction

The tests were carried out by at least 40 users by using the miniature of the tank
described in [42]. The results were homogenous by referring to three groups classified as



Appl. Sci. 2023, 13, 7843 8 of 16

follows: group 1 users with a strong background in computer science but no background in
safety, group 2 users with only knowledge of safety and chemical plants, and group 3 users
with solid experience in computers science and safety. The usability tests were conducted
by carrying out a safety walk in the laboratory and asking participants to list the critical
issues that emerged during the use of the virtual sensor.

The following criticalities were highlighted:

• the migration from the App Desktop to the App Mobile was complex and possible
only for experts in informatics;

• the App Mobile had a very crowded interface, with limited space for AR visualisation;
• the use of a mobile phone to give instructions to the virtual sensor caused the distrac-

tion of the user.

4.2. Interface Development

The critical issues highlighted led to the development of a user-friendly interface.
Figure 6 illustrates a preview of the main elements, included in the interface of both the
desktop and the Mobile applications, in order to manage the criticalities highlighted during
the testing of the virtual sensor.
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The GUI of the App Desktop is used to generate the information, which is subsequently
overlapped via AR. It allows the creation of a dedicated space for the data storage of
the equipment to be inspected, i.e., a folder identified with the name or the code of the
equipment. It has a section dedicated to entering the historical data about ageing, i.e., the
ageing fishbone files and the collected thicknesses at the different points from previous
inspections. A box where it is possible to enter the year (or years) for which the parameters
related to deterioration are expected to be estimated is included, as well as a section
dedicated to the calculation.

The GUI of the App Mobile was designed to be very minimalist to leave as much free
space as possible on the display to frame the objects by means of the camera. This view
also allows other information to be shown by AR.

The App Desktop performs the data processing and management. It enables the user
to load the input data in the system and to migrate them to the model, then to elaborate
and store the outputs.

The interface of the App Desktop (Figure 7a) includes six fields to enter text and
eight buttons acting as described below. The interface of the App Mobile essentially has
only three buttons (Figure 7b), to leave the screen free from useless elements that could
interfere with the AR vision. AR consists of the overlapping of the outputs on the reality
framed by the camera in the right position.
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Table 1 reports the description of the functionalities for each button (or input box)
included in the App Desktop interface.

Table 1. Functionality of the buttons included in the App Desktop.

Button (or Text Box) Functionality Description

Transfer to App Mobile Output migration (together with the 3D model of the equipment) from the App Desktop
to the mobile device.

Help To provide explanation about how to use the app.

Upload fishbone modules Uploading fishbone modules of the equipment. These modules must be uploaded in
chronological order.

Upload sampled points (inspection
data)

Uploading thickness measurements carried out on the equipment associated with the
relative spatial coordinates. Files must be uploaded in chronological order.

Create QR code Generation of the QR code of the equipment.
Compute (on the GUI’s centre) Calculation of the current condition of the equipment.
Compute (on the GUI’s right) Calculate future condition of the equipment.
Reset To remove data from all fields.
Entering ID equipment To enter the name of the equipment being analysed (this text box must always be filled in).
Year for data estimation To enter the years for the prediction of the equipment condition.

Before using the app, other configurations must be made directly in the “config_vs”
file (located in the software folder); these are (i) the substance contained in the equipment;
(ii) the nominal thickness of the equipment material (bottom of the tank), (iii) the knowl-
edge derived from previous inspections of similar equipment (i.e., the parameters of the
probability distribution function, for details see [42]); (iv) the number of inspections carried
out for the tank.

The App Mobile allows the visualisation of the outputs, also in augmented reality, on-
field (during a safety walk). The app permits recognising the equipment and superimposing
the iso-contour corrosion maps, the table containing the ageing parameters, and other
general information about the equipment (such as name, identification code, substance
contained, year of commissioning or reconditioning). As mentioned above, its GUI has
only three buttons, since the sensors of the mobile device (e.g., position sensor, etc.), allow,
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following the physical movement of the inspector, the exploration of the equipment in a
fluid and immersive way. The buttons, on the other hand, permit the selection of the year
for which the inspector wants to know the ageing metrics and the corrosion map, to make
the equipment parts transparent (those not analysed), and finally, to choose the graph to be
visualised.

After the improvement of the GUI, the virtual sensor was tested again by the same
users. The data migration step was automatised and the elements of the App Mobile were
reduced in number and dimensions (according to the users’ suggestions). The users found
the new version very user-friendly. The issue related to the use of a mobile device to give
instructions to the virtual sensor is still not solved because this requires the introduction of
other technologies or a further improvement of the software. (i.e., the finger on the screen
of the mobile device should leave a trace in such a way that the inspector, while looking
at the smart glasses, is aware about the position of his/her finger on the screen). Voice
command could be another potential way to manage the graphical interface. The use of
vocal registrations could be another possible implementation to collect useful information
on-field. The consideration above is not an obstacle to the adoption of the technology for
the proposed scope, but it represents a potential future development of this research.

4.3. Augmented Reality Results

Figure 8 shows some screenshots of the results provided by the virtual sensor during
an inspection made for the case study. The first operation to be carried out to use the
virtual sensor is to frame the QR code of the equipment (Figure 8a). The code is positioned
at a certain distance and at a certain height, depending on the orography of the territory
as well as the arrangement of the unit of the establishment, to allow an easy overview
during the walk of the inspector inside the plant. The device instantly recognises the vessel
and shows the 3D model of the tank on the display in AR (Figure 8b). The colour of the
equipment depends on its ageing state, i.e., the value of the ageing index during the last
inspection; a legend to identify this state is available above the tank. Subsequently, by
clicking on the “Visualizza fondo” (which translates to “View bottom”) button at the top
of the interface (Figure 8c), all the slabs making up the mantle and roof of the 3D model
become transparent, even if the structure of the tank remains visible; at the same time,
an iso-contour map is overlapped on the bottom, which represents the corrosion surface
associated with the last performed inspection. The next step is to choose the year (past or
future) for which the corrosion trend must be estimated (Figure 8d); this can be chosen by
means of a pop-up menu on the bottom left button. For the same year, the ageing-related
metrics (the corrosion rate, the pit density, the RUL, the probability of the critical pit, the
ageing index, and the updated failure rate) and other general equipment information (name
of the tank and the stored substance) are also displayed in a table placed on the right side
of the equipment (Figure 8e). Finally, the last step of the use of the App Mobile concerns
the visualisation of the graphs showing the trend of the ageing index, the corrosion rate,
and the failure frequency vs. the time (year); this can be achieved by using a small pop-up
menu on the “Graphics” button at the bottom right of the GUI (Figure 8f).
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Figure 8. Screenshots of the mobile display visualising augmented reality during a simulated
safety walk in the establishment. (a) holistic view of equipment; (b) overlay 3D model; (c) bottom
thickness map; (d) thickness map enlargement and scrolling of a pop-up menu; (e) table box infor-
mation; (f) example of graph given and scrolling of the graphs pop-up menu. Below the translation
is given for all the words (or phrases) that appear in this Figure: Visualizza fondo = View bot-
tom. Molto carente = Very lack. carente = lack. Migliorabile = Improvable. adeguato = Adequate.
Indice di invecchiamento = Ageing index. Grafici = Graphs. Tra = Between. Anni = Years.
Nome serbatoio = Tank name. Sostanza contenuta = Substance contained. Gasolio = Diesel.
Anno ispezione = Inspection year. Probabilità di pit critico = Critical pit probability.
Velocità di corrosione = Corrosion rate. Indice di pit = Pit index. Chiudi = Close.
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For each movement of the inspector (i.e., the movement of the camera), the AR view
updates according to the movement; for example, it allows zooming when he/she is
approaching the framed area or shrinking if he/she moves away.

The dots that can be observed on the tank bottom maps in Figure 8f are not the
sampled points, but a graphical representation of the pit density, which increases over
time due to the worsening of the material due to the corrosion [42]. The number of points
displayed is correlated with the scale parameter of the distribution probability function
used to model the phenomenon (note that for each 0.1 increment in the scale parameter,
there is an increase of 50 points randomly scattered and displayed on the map).

Some considerations must be made about the image resolution. It is certainly condi-
tioned by the number of sampled points (points where the measurement was made during
the last inspections). To obtain better results, a geostatistical technique (i.e., kriging) was
used to interpolate or predict values at unsampled places in space [54]. This technique
is based on a statistical model that evaluates the spatial autocorrelation of the data and
estimates the value of a variable at a given location by combining nearby measured values
of that variable and assigning them weights based on the spatial correlation between them.
Weights are determined using a variogram or covariance function.

The accuracy of the AR overlay depends on the technique used to implement AR in the
virtual sensor. The tracking Image technique (contained within Unity) was used. For this
purpose, a grid composed of a large set of vertices was created. The grid is a circumference
with its centre at the origin of the axes (0, 0), which coincides with the centre of the bottom
of the tank, and has a radius of 1. The dimensions of the real bottom are readapted to this
grid. This allows the sampled points to be inserted inside the image in the correct position
with respect to the centre.

The accuracy of the RUL estimation is related to the corrosion model. It is derived from
experimental tests when numerous inspection data are not available. These tests reproduce
the conditions inside the tanks for the specific case study (i.e., fuel, impurity, trend of
temperature, bottom material, etc.). The corrosion rate is correlated with the measure of
the thickness of the samples of the bottom tank carried out in the laboratory. A microscope
was used to measure the depth of the pits, but clearly, in a real case (i.e., tank miniature and
large storage tank), it is not possible to use such an instrument and the accuracy is related
to techniques applied (i.e., ultrasound or magnetic flux leakage).

The visualisation of the corrosion map, combined with the estimation of the RUL and
the other ageing-related parameters, allows the inspector to focus attention on the critical
points when he/she is on-field. The whole system (virtual sensor) makes it possible to
combine visual deductions with forecasts obtained from the models in order to understand
the real expected evolution of the phenomenon, also on the basis of how it is managed.

4.4. Discussion

A comparison with other solutions that use AR in the inspection sector has been
made. The virtual sensor allows the equipment integrity to be controlled, while other
widespread systems support checking the correct connection of fittings and performing
routine maintenance by using information superimposed on the equipment. The developed
sensor shows the information that is useful for quantifying ageing metrics and permits
the integration of new information acquired on-field. In this way, new information can
be annotated without using a paper notebook, and such information is included in the
application, which appropriately organises the input file for the models. then, it is also
possible to process input data in order to elaborate ageing indexes and generate iso-
corrosion maps. The advantage is having a lot of information, in tabular and visual form,
through a minimalist and intuitive interface. This availability would not otherwise be
possible on-field because this information is generally archived on paper.

In summary, the comparison with AR solutions reported in the literature shows
similarities with the use of AR in the virtual sensor. These are related to the opportunity
to overcome the limit of using paper-based annotations during inspections and to help
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operators in performing tasks and operations by the addition of information to the real
work environment. This is possible without adding new risks for the worker. As regards
the monitoring and assessment of equipment ageing, the virtual sensor appears to use AR
in an innovative way within the inspection sector.

Based on what has been discussed above, the virtual sensor appears innovative as
there are no AR-based tools for the monitoring and assessment of equipment ageing. This
allows the virtual sensor to be positioned within the broader context of existing systems
but with this specific peculiarity. The virtual sensor helps in running numerical models
for ageing assessment, the application of some of which is useful to the establishment
operator in order to comply with the Seveso legislation. The evaluation of the adequacy
of ageing management is a crucial matter, especially when the equipment is close to the
end of its lifetime. Therefore, having tools that help in the acquisition and management of
input data to the models represents a valid support for the operator. Unfortunately, the use
of these tools requires experimental validation tests in the laboratory to ensure that their
development does not introduce new risks, such as those associated with human–machine
interaction. The test results of the virtual sensor demonstrated the effectiveness of the
support provided by the system to the inspector. This effectiveness was quantified through
interviews with the users. The questions led to the following evidence: (1) the system allows
the operator to be able to manage a lot of information and to combine visual deductions
with forecasts obtained from the models, in order to understand the real expected evolution
of the phenomenon, also on the basis of how it is managed. (2) the developed interface
allows the information to be managed without creating confusion for the user.

5. Conclusions

The scientific literature and websites of various companies developing AR technolo-
gies to support industrial activities do not mention the use of the technology for ageing
inspections of critical equipment. Current AR applications are designed for the training
of workers. In addition, AR is commonly used in equipment maintenance and repair,
which can be through displaying guides and operative instructions concerning assem-
bly/disassembly especially in places that are difficult to access. Based on this evidence, AR
use proposed in this work is definitely innovative.

The virtual sensor is a useful tool for the inspector as well as for the establishment
operator to access information that could be needed on-field during inspections. AR
provides information about the condition of parts of the equipment that cannot be captured
during a visual inspection. Other advantages are related to the elaboration of ageing-
related metrics, and their update and storage. The virtual sensor supports performing these
operations for all the equipment included in the establishment.

In this work, the system, which was developed in a previous version, was improved
to make its GUI more user-friendly. The investigation of the HMI supported the implemen-
tation process and allowed the improvement of the usability of the software by making it
accessible, even to personnel that are not experts in advanced technologies.

Currently, the virtual sensor is designed to inspect very large storage tanks for the
management of the integrity of some parts of this type of equipment. In particular, the
bottom of the tank is not easy to monitor, as its inspection requires the vessel to be emptied
and then cleaned to carry out the thickness measurements. These activities are executed
at long time intervals to avoid extended stops and repeated exposure of the inspector to
unhealthy environments. The use of this system aims to extend the inspection interval by
means of the estimation of the expected conditions. The virtual sensor is a particularly
useful tool for the inspector, who can benefit from further information during a safety walk,
beyond that captured through a direct observation.

In addition, the current experimentation has been carried out in the laboratory. There-
fore, to address how the terrain and the weather conditions could affect the accuracy and
effectiveness of the use of the technology, it is necessary to test it in a real establishment
(future development of the system).
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By means of the laboratory tests, it has been possible to improve the system and its
GUI. However, larger-scale implementation requires further improvements. Using mobile
devices suitable for difficult environments (e.g., explosive atmospheres) and the ability to
work without using wireless connections are both necessary. There may be problems related
to scalability, i.e., related to the framing of very extensive equipment, for which it will be
necessary to study appropriate solutions. The use of more recent models of smartphones
and smart glasses will improve the performance. However, it becomes necessary to update
the part of the software that manages the transfer between the App Desktop and the App
Mobile. As far as costs are concerned, a preliminary estimate suggests a total expense
that includes the cost of smartphones, smart glasses, and software and its maintenance.
There are limitations associated with different types of equipment, mainly related to the
geometry and complexity of the systems, where it may be difficult to distinguish one
piece of equipment from another. The complexity refers to systems with multiple walls
or undulating surfaces or with complex intersections, which causes a crowded view. In
addition, the virtual sensor appears especially significant in cases where it is difficult to
interrupt system operating to monitor a part of it (as in the case of tank bottoms).
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