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Abstract: The importance of performance excellence and operator’s safety is fundamental not only
when operators perform repetitive and controlled industrial tasks, but also in case of abrupt gestures
due to inattention and unexpected circumstances. Since optical systems work at frequencies that are
too low and they are not able to detect gestures as early as possible, combining the use of wearable
magneto-inertial measurement units (MIMUs) with the adoption of deep learning techniques can
be useful to instruct the machine about human motion. To improve the initial training phase of
neural networks for high classification performance, gesture repeatability over time has to be verified.
Since the test–retest approach has been poorly applied based on MIMUs signals in a context of
human–machine interaction, the aim of this work was to evaluate the repeatability of pick-and-place
gestures composed of both normal and abrupt movements. Overall, results demonstrated an excellent
test–retest repeatability for normal movements and a fair-to-good test–retest repeatability for abrupt
movements. In addition, results suggested important information about the application of deep
learning to identify the types of movements: the test showed how to improve reinforcement learning
for the identification of onset gestures, whereas the retest allowed for defining the time necessary to
retrain the network.

Keywords: MIMUs; collaborative robotics; upper limb; human–machine interaction

1. Introduction

The concept of collaborative robotics, introduced by Industry 4.0 and reinforced by
Industry 5.0, involves different levels of human–machine interaction. The most demand-
ing case in terms of safety occurs if humans and robots simultaneously share the same
workspace [1]. Two different approaches can be exploited to guarantee safety, the power
and force limiting (PFL) and the speed and separation monitoring (SSM). PFL combines
methods of passive safety design with an energy control of mobile robotic components,
limiting force, torques and velocity. On the contrary, SSM imposes a protection distance
between the robot and the operator, without specifying any limitations for the robotic
system. In detail, when the operator is inside the shared workspace, SSM approach implies
an online control of the robot to generate alternative paths without collisions. In this case,
systems for the human motion tracking must be adopted to monitor the minimum distance.
Moreover, algorithms for the collision avoidance have to be implemented to update the
robot trajectory in real-time.

Many research works [2–5] have already exploited different technologies to track
human motion and recognize human gestures in case of repetitive and controlled industrial
tasks such as assembly [6] and pick-and-place [2]. However, the operators can perform
abrupt gestures different from normal movements due to inattention and unexpected
circumstances not directly related to the job task. When these situations occur, it is essential
to detect abnormal gestures at their onset, avoiding collisions between the human and the
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machine while maintaining a high efficiency of execution [7]. Some research works have
already studied the characteristics of abrupt movements, the methods for identifying their
occurrence and their effects on the performance of task execution [8–11]. However, attention
devoted to optimizing the detection of abrupt movements as early as possible remains
scant. Optical systems are not adequate for this purpose because they work at too low
frequencies and they are not able to detect abrupt gestures as early as possible. The problem
of frequency can be solved by adopting wearable magneto-inertial measurement units
(MIMUs), which collect data from the triaxial accelerometer, gyroscope and magnetometer
embedded in each sensor [12]. In addition, MIMUs also overcome other limits typical of
optical systems such as occlusion, encumbrance, a limited range of acquisition volume,
heavy weight and high cost. In contrast, the sensor fusion process performed for the
estimation of MIMUs’ orientation can produce problems related to the drift phenomenon
and to ferromagnetic disturbances affecting magnetometer readings. Instead, the problem
of the early detection of abrupt movements typical of optical systems can be approached
through deep learning techniques, which are useful to extract and learn features directly
from raw data and hence to instruct the machine about human motion [13–15]. To guarantee
a high classification performance, deep learning neural networks need an initial training
phase. Considering this scenario, repeatability of the gesture over time has to be verified to
understand whether and after how long it is necessary to retrain the network.

Therefore, a consistency evaluation referring to both the degree of correlation and
the correspondence between measurements has to be assessed through a test–retest. The
estimation of test–retest repeatability based on MIMUs’ signals has been approached in dif-
ferent contexts such as the classification of construction activities in the industrial field [16],
the biomechanical 3D investigation of gait [17], or the improvement of sport training load
quantification [18]. However, since this approach has been poorly applied in the context
of human–machine interaction, the aim of this work was to evaluate the test–retest re-
peatability in a typical industrial gesture. In detail, twenty-six participants performed a
pick-and-place task composed of normal and regularly paced movements interspersed
with abrupt movements caused by randomly generated visual or acoustic alarms. Since the
present work was thought for the industrial context and specifically for identifying suitable
training and testing modalities of deep learning techniques, the time between test and retest
sessions (between 20 and 65 days) was higher than the one typical of other literature stud-
ies [18,19]. Results represent the first step for the optimization of a procedure enabling the
real-time recognition of human activities and hence the improvement of human–machine
interaction in terms of safety and effectiveness when abrupt movements occur.

2. Materials and Methods
2.1. Participants, Experimental Set-Up and Protocol

Twenty-six healthy participants (fourteen males and twelve females) with no muscu-
loskeletal or neurological diseases were recruited for the experiment. Twenty-three subjects
were right-handed; three subjects were left-handed. Their main anthropometric data
(mean ± standard deviation) are reported in the following: age = 27.7 ± 2.3 years,
BMI = 22.2± 2.0 kg/m2, forearm length = 0.29 ± 0.01 m, and upper arm length = 0.34 ± 0.01 m.
The study was conducted in accordance with the Declaration of Helsinki and informed
consent was obtained from all involved subjects.

Two wireless MIMUs (OpalTM APDM, Portland, OR, USA) containing tri-axial
accelerometer (range ± 200 g), gyroscope (range ± 2000 deg/s) and magnetometer
(range ± 8 Gauss) were exploited during the test. As shown in Figure 1a, these units
were positioned on participants’ right (RFA) and left (LFA) forearms, aligning their x-axes
with the longitudinal axes of the corresponding human segments. The communication
between MIMUs and a PC was guaranteed via Bluetooth. The proprietary software
Motion StudioTM V2R, Version 3 (APDM, Portland, OR, USA) was used to acquire data
at 200 Hz.
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A typical industrial task of pick-and-place was realized through the workstation
illustrated in Figure 1b. It was composed of a table, a chair, a box containing 30 golf balls,
and four stations: S0, S1, S2 and S3. Due to the heterogeneity of the tested group in terms
of anthropometric characteristics, it was necessary to adapt the experimental set-up to each
participant. To this purpose, a board with thirty holes (diameter of 6 cm) was realized to
choose the more appropriate distances for S0, S1 and S2 stations. Moreover, a second board
with one hole (diameter of 6 cm) corresponding to the S3 station was added to the set-up at
a fixed height of 30 cm from the table and an adjustable distance from participants.

The task was the same proposed in a previous pilot study [11]. In detail, it was
composed of 30 pick-and-place gestures identified as normal movements. Each of these
gestures consisted of picking a ball at a time from the box and placing it into a specific hole
corresponding to one of the four stations. Participants were asked to place the balls in the
holes following a lighting sequence of green LEDs positioned near each station. In addition,
during the task, sudden visual alarms or acoustic alarms were randomly produced by
lighting red LEDs near each station or switching on a sound buzzer, respectively.

In both cases, participants were asked to perform an abrupt movement as fast as
possible, placing the ball inside the hole corresponding to the activated red LED or vertically
extending the arm in case of the sound buzzer [11]. An Arduino Nano microcontroller
(Arduino, Italy) with the following characteristics was exploited to generate both the
visual and acoustic alarms: processor = ATmega328, clock speed = 16 MHz, and operating
voltage = 5 V. The periodic lighting of the green LEDs (every 3 s = 20 bpm) and the random
lighting of the red LEDs or of the buzzer were controlled by a code written through an
integrated development environment. The Arduino microcontroller was also used to send
a voltage trigger of 5 V to Opal sensors for systems synchronization.

The experimental protocol involved two different sessions, the test and the retest. Both
sessions were performed under the same conditions by all subjects with an intercurrent
period between 20 and 65 days (42.2 ± 11.2 days) depending on the subject. In detail,
two main groups can be identified based on a threshold of 45 days. Fourteen participants
(four males and ten females) performed the retest after less than 45 days from the test:
age = 27.8 ± 2.3 years, BMI = 21.9 ± 2.3 kg/m2, forearm length = 0.28 ± 0.01 m, and upper
arm length = 0.33 ± 0.01 m. Twelve participants (ten males and two females) performed
the retest after at least 45 days from the test: age = 27.6 ± 2.5 years, BMI = 22.5 ± 1.5 kg/m2,
forearm length = 0.30 ± 0.01 m, and upper arm length = 0.35 ± 0.02 m. In both sessions,
each participant repeated the pick-and-place task in three different modalities: (i) with the
right hand and with the trunk frontal with respect to the table (rFR); (ii) with the left hand
and with the trunk frontal with respect to the table (lFR); (iii) with the left hand and with
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the trunk lateral with respect to the table (lLA). Inside each repetition, four random alarms
were emitted: two visuals and two acoustics.

2.2. Data Analysis

Data analysis was conducted with custom Matlab® (MathWorks, Natick, MA, USA)
routines. Raw data of linear accelerations were processed to obtain the accelerations’
magnitude after removing the gravitational acceleration. Single gestures were extracted
from the entire acquisition by means of windows with a length of three seconds, which
was imposed by the regular pace of the green LEDs at 20 bpm. In addition, gestures were
distinguished between abrupt and normal movements based on the occurrence of the visual
and acoustic alarms. Subsequently, values of acceleration root mean square (RMS) were
estimated for each signal considering all the windows within the same movement type.
Accordingly, the analysis differentiated movements into three groups: normal movements,
abrupt movements caused by a visual alarm and abrupt movements generated by the
acoustic buzzer. Since the application of the Shapiro–Wilk test (2-tails, significance level:
α = 0.05) demonstrated a non-normal distribution of data, a non-parametric statistical
analysis was performed on acceleration RMS values with the following tests:

• Mann–Whitney U test (2-tails, significance level: α = 0.05) to verify the eventual
presence of differences between males and females;

• Mann–Whitney U test (2-tails, significance level: α = 0.05) to verify the eventual
presence of differences among the three test modalities (rFR, lFR, lLA);

• Wilcoxon test (2-tails, significance level: α = 0.05) to investigate the eventual presence
of statistical differences among normal movements; visual, abrupt movements; and
acoustic, abrupt movements, for each modality.

As suggested in the literature [20], the test–retest modality can be applied to study
the repeatability of the proposed task over time. Test–retest repeatability was evaluated
using SPSS® V22.0 (IBM, Armonk, NY, USA) statistical package. Accordingly, in this
analysis, the acceleration of RMS values of test and retest were used for the estimation of
repeatability. A common measure of repeatability is represented by the intraclass correlation
coefficient (ICC), which is calculated as the ratio between the true variance and the total
variance of the variable of interest [21]. This dimensionless index assumes values inside
the range [−1, 1], highlighting a higher repeatability the closer it reaches 1. In general,
two slightly different models of ICC are adopted as measures of relative repeatability of a
single measurement [22]. The ICC (3,1) does not consider the effect of any systematic bias
as part of the measurement error. On the contrary, the ICC (1,1) assumes all within-subject
variability to be a part of the measurement error. These two models produce the same
result if no systematic error is present [19]. Another common measure of repeatability is
represented by the coefficient of variation (CV), which is the percentage ratio between the
standard deviation and the mean of a value distribution [23]. The repeatability improves
the lower the CV.

In this work, the test–retest repeatability was evaluated in four conditions:

• Considering all participants (all);
• Excluding the outliers, automatically identified as participants with acceleration RMS

values exceeding 1.5 times the interquartile range above the 75th quartile or below the
25th quartile (no_o);

• Considering only the participants who performed the retest after less than 45 days
from the test (u_45);

• Considering only the participants who performed the retest after at least 45 days from
the test (o_45).

Hence, for each of these four conditions, the test–retest repeatability was assessed
through ICC (1,1), ICC (3,1) and CV estimated for each group of movements (normal;
abrupt, visual alarm; abrupt, acoustic alarm) and for each modality (rFR, lFR, lLA).
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3. Results

Since the acceleration RMS values of males and females did not produce statistically
significant differences for both test and retest of all modalities (p-value > 0.05), the analysis
was conducted without any gender distinctions. On the contrary, the three modalities
(rFR, lFR, lLA) showed statistically significant differences (p-value ≤ 0.05). Hence, the
following analyses continued keeping the three modes separated. Figure 2 represents
the comparison of averaged RMS values for the three modalities separately for the three
types of movements. Single asterisks are related to 0.01 < p-values ≤ 0.05, whereas double
asterisks represent p-values ≤ 0.01.
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Figure 2. Averaged RMS values of forearm acceleration for the three modalities of each type
of movements.

Statistically significant differences among the three types of movements (normal; vi-
sual, abrupt; acoustic, abrupt) were found for both test and retest of the three modalities
(p-value � 0.001). Accordingly, the following repeatability analysis was conducted con-
sidering the three types of movements separately. Figure 3 shows RMS values of forearm
acceleration magnitude recorded during the rFR modality, as an example. The three groups
of movements (normal; abrupt, visual alarm; abrupt, acoustic alarm) are compared. The
scatterplot is with test values on the x-axis vs. retest values on the y-axis. Each point is
related to one participant.
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Figure 3. Acceleration RMS value for all subjects comparing test and retest in rFR modality, as
an example.

Figure 4 represents the outliers identification based on the interquartile range. The
upper and lower values of the colored bands correspond to 1.5 times the 75th quartile and
1.5 times the 25th quartile, respectively. Figure 4 is composed of nine panels related to the
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combination of the three types of movements (rows) and the three modalities (columns).
Each panel shows the scatterplot of acceleration RMS obtained with test values on the
x-axis and the difference between test and retest values on the y-axis. Each participant is
represented by a single point. Outliers are the elements not included in the colored band.
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Figure 4. Outlier identification for each trial and for all groups of movements.

Test–retest repeatability based on the evaluation of ICC and CV is shown in Tables 1–3.
ICC (3,1) and ICC (1,1) results are reported in the tables, including their 95% confidence
intervals. For each type of movement, the three trials are investigated considering all
the subjects altogether (all), subjects after the removal of outliers (no_o), subjects who
performed the retest after less than 45 days from the test (u_45) and subjects who per-
formed the retest after at least 45 days from the test (o_45). Since for both normal and
abrutp_visual movements no outliers were identified, repeatability results are coincident
when considering all participants (all) and participants without outliers (no_o).
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Table 1. ICC (3,1), ICC (1,1) and CV results of normal movements.

ICC (3,1)
Lower Limit

95% CI
for ICC (3,1)

Upper Limit
95% CI

for ICC (3,1)
ICC (1,1)

Lower Limit
95% CI

for ICC (1,1)

Upper Limit
95% CI

for ICC (1,1)
CV (%)

rFR

all 0.37 −0.02 0.66 0.34 −0.05 0.63 11.31
no_o 0.37 −0.02 0.66 0.34 −0.05 0.63 11.31
u45 0.81 0.51 0.94 0.82 0.55 0.94 5.64
o45 −0.20 −0.68 0.40 −0.27 −0.71 0.32 17.92

lFR

all 0.52 0.17 0.75 0.52 0.18 0.75 9.85
no_o 0.64 0.33 0.82 0.65 0.35 0.83 8.60
u45 0.77 0.43 0.92 0.78 0.47 0.93 6.43
o45 0.09 −0.49 0.61 0.11 −0.46 0.62 13.83

lLA

all 0.63 0.33 0.82 0.64 0.34 0.82 8.54
no_o 0.72 0.45 0.87 0.72 0.47 0.87 7.54
u45 0.75 0.38 0.91 0.75 0.39 0.91 6.50
o45 0.44 −0.15 0.80 0.47 −0.09 0.81 10.92

Table 2. ICC and CV results of abrupt movements generated by the visual alarm.

ICC (3,1)
Lower Limit

95% CI
for ICC (3,1)

Upper Limit
95% CI

for ICC (3,1)
ICC (1,1)

Lower Limit
95% CI

for ICC (1,1)

Upper Limit
95% CI

for ICC (1,1)
CV (%)

rFR

all 0.34 −0.05 0.64 0.36 −0.02 0.65 19.08
no_o 0.34 −0.05 0.64 0.36 −0.02 0.65 19.08
u45 0.53 0.03 0.82 0.54 0.06 0.82 15.00
o45 0.14 −0.45 0.64 0.18 −0.40 0.66 23.33

lFR

all 0.45 0.08 0.71 0.46 0.10 0.72 16.31
no_o 0.51 0.16 0.75 0.52 0.18 0.76 15.44
u45 0.62 0.15 0.86 0.64 0.20 0.87 12.86
o45 0.11 −0.48 0.62 0.15 −0.42 0.64 20.33

lLA

all 0.46 0.09 0.71 0.43 0.06 0.70 16.04
no_o 0.71 0.43 0.87 0.68 0.39 0.85 12.22
u45 0.25 −0.30 0.68 0.27 −0.27 0.68 17.71
o45 0.77 0.37 0.93 0.69 0.25 0.90 14.08

Table 3. ICC and CV results of abrupt movements generated by the acoustic alarm.

ICC (3,1)
Lower Limit

95% CI
for ICC (3,1)

Upper Limit
95% CI

for ICC (3,1)
ICC (1,1)

Lower Limit
95% CI

for ICC (1,1)

Upper Limit
95% CI

for ICC (1,1)
CV (%)

rFR

all 0.57 0.25 0.78 0.58 0.25 0.78 13.42
no_o 0.52 0.17 0.76 0.53 0.19 0.76 12.96
u45 0.62 0.16 0.86 0.59 0.12 0.85 15.64
o45 0.53 −0.03 0.84 0.55 0.02 0.84 10.83

lFR

all 0.50 0.14 0.74 0.51 0.16 0.74 13.65
no_o 0.78 0.55 0.90 0.78 0.71 0.95 10.34
u45 0.69 0.27 0.89 0.71 0.32 0.89 13.64
o45 0.08 −0.50 0.60 0.11 −0.46 0.62 13.67

lLA

all 0.61 0.30 0.81 0.62 0.31 0.81 13.19
no_o 0.77 0.54 0.89 0.77 0.54 0.89 10.71
u45 0.68 0.26 0.89 0.70 0.31 0.89 14.14
o45 0.34 −0.26 0.75 0.30 −0.28 0.73 12.08
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4. Discussion

Since abrupt movements are randomly caused by involuntary reactions, their accelera-
tions are greater than those of normal movements, as shown by the comparison between
the green and the other two clusters presented in Figure 3. Moreover, abrupt movements
generated by the acoustic alarm (blue cluster) produce greater accelerations than abrupt
movements generated by the visual alarm (red cluster). This trend can be explained con-
sidering the specific protocol of this study, because the movement required in response
of an acoustic alarm was wider than the one associated with a visual alarm. Overall, the
distribution of the three groups follows the principal diagonal, suggesting a repeatability
between test and retest RMS values (Figure 3).

The definition of a band based on the interquartile range of RMS values allowed
the identification of a number of outliers between 0 and 3 for each combination of the
three types of movements and the three modalities (Figure 4). As reported in Tables 1–3,
the removal of outliers (no_o) before the evaluation of test–retest repeatability did not
produce a significant improvement with respect to the analysis involving all participants
(all). On average, it is possible to note a minimum increase in both ICC (3,1) (normal +0.07,
abrupt_visual +0.10, abrupt_acoustic +0.13) and ICC (1,1) (normal +0.07, abrupt_visual
+0.10, abrupt_acoustic +0.11). Coherently, CV values exhibit a slight reduction (normal
−0.75%, abrupt_visual −1.56%, abrupt_acoustic −2.08%). In industrial scenarios, real-time
should be a key feature for performance optimization. Indeed, an online risk assessment
is suitable to evaluate the biomechanical load in repetitive efforts [24] or manual material
handling [25] to build a warning system for the prevention of musculoskeletal disorders [26]
and to improve assembly workstations [27].

Considering the scenarios of human–machine interaction, a real-time exchange of
information between the operator and the robot improves both the interaction [28,29] and
the robotic control [30,31]. Accordingly, the similarity of repeatability with and without the
outliers (all vs. no_o) represents a positive aspect to approach real-time conditions. Indeed,
the possibility of avoiding the post-elaboration of data guarantees the reduction in time.

Another important aspect highlighted from the results is the influence of the time
occurring between test and retest sessions. Indeed, when this time was < 45 days (u45),
the test–retest repeatability was higher with respect to the analysis related to a test–retest
time ≥ 45 days (o45). On average, a general strong increase can be noticed in both ICC (3,1)
(normal +0.67, abrupt_visual +0.13, abrupt_acoustic +0.35) and ICC (1,1) (normal +0.68,
abrupt_visual +0.14, abrupt_acoustic +0.35). Coherently, an evident reduction involved
CV values (normal −8.03%, abrupt_visual −4.06%). The only exception is represented
by abrupt movements generated by the acoustic alarm with an average increment of CV
(+2.27%) from u45 to o45 despite a strong increase in both ICCs.

In industrial scenarios, deep learning techniques can be involved to provide the robot
with important information about the human motion in real-time. Consequently, these
results suggest updating the network training within around 45 days. Indeed, as reported
in the literature [19], repeatability can be considered poor if ICC < 0.4, fair-to-good if
0.4 ≤ ICC < 0.75 and excellent if ICC ≥ 0.75. Observing results related to u45 condition,
average values of ICCs are 0.78 for normal movements, 0.48 for abrupt movements gener-
ated by the visual alarm and 0.68 for abrupt movements generated by the acoustic alarm.
As expected, normal movements are characterized by an excellent repeatability because
they are repetitive and predictable. Accordingly, when abrupt gestures occur, the involved
higher accelerations cause lesser controlled movements and hence produce lower ICC val-
ues. In particular, even if both values are fair-to-good, the lighting of visual alarms occurs
in different stations, whereas the lighting of the sound buzzer always results in the same
abrupt movement. Consequently, ICC values related to the abrupt_acoustic movements are
higher than the ones associated with abrupt_visual movements. In general, these values of
ICCs also highlight the suitability of MIMUs to conduct this analysis.

The main limitation of this study is represented by the specific nature of the tasks
which the participants are required to perform, despite being one of the most common
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types of tasks in the industrial field. In this regard, current activities also consist of
investigating other typical industrial tasks from other MIMUs positioned on upper arms
and trunks. In order to have a wider and more homogeneous sample of subjects, the same
experimental campaign should be extended to around 100 participants. Considering the
importance of unexpected situations in terms of safety in human–machine interaction,
current efforts also aim to exploit deep learning techniques to distinguish between normal
and abrupt movements. Moreover, great attention is dedicated to the achievement of
real-time processes.

5. Conclusions

The present study aimed at evaluating the test–retest repeatability of a typical indus-
trial pick-and-place gesture composed of normal, regularly paced movements and abrupt
movements caused by randomly generated visual or acoustic alarms. Acceleration RMS
values obtained from MIMUs on forearms were exploited for conducting this analysis.
The proposed study is the first step in optimizing real-time human activity recognition,
and hence, in improving human–machine interaction in terms of safety and effectiveness.
Overall, results demonstrated an excellent test–retest repeatability for normal movements
and a fair-to-good test–retest repeatability for abrupt movements. In detail, the removal of
outliers did not produce significant improvements in repeatability, whereas the reduction
in time between test and retest sessions increased repeatability indices. Considering the
industrial scenarios of human–machine interaction included in this work, the general test–
retest repeatability presented important information about how to optimize deep learning
techniques for the improvement of abrupt movement detection in real-time.
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