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Abstract: Assessing concrete quality as construction goes on provides early warnings of potential
flaws and leads to timely corrections in mix proportioning and placement techniques. Compressive
strength and maturity modeling are among the most common parameters used by the concrete
industry. Past studies indicated that non-destructive methods, NDTs, relate well to maturity and
concrete strength predictions. In this study, the hydration temperature–time history of concrete was
explored in defining “master curves” for concrete maturity for the first time. Well-accepted NDTs,
such as ultrasonic pulse velocity and resonant frequency, were used in this effort. The study findings
indicated that the novel approach of “master curves” for the maturity of concrete can be defined and
follow a generalized logarithmic form. The best fit models relating NDT response and the maturity
temperature–time product provided a high coefficient of determination (i.e., in almost all cases above
0.9 and p < 0.05), thus resulting in a very good fit. The shift factors for each mixture’s maturity
function in relation to the master curve were related to concrete properties. The shifted maturity
functions from the concrete mixtures included in the study had a perfect transition to the master
curve (i.e., all the shifted data overlap the master curve trend line with an R2 = 1). The NDTs’ ability
to capture the hydration temperature-time history was assessed with impeded sensors into the
concrete mixtures. This approach has provided strength prediction models with a high accuracy (i.e.,
good agreement between observed and predicted strength values with R2 = 0.93). The proposed
NDT-based maturity modeling through “master curve” development provides significant benefits
in relation to traditional maturity modeling since it offers the opportunity to: (i) predict strength
without having to repeat maturity testing each time a producer adjusts mixture proportioning to fine
tune mix design; (ii) save testing time and cost due to reduced maturity evaluation from the use of
master curves; and (iii) be able to quickly predict without further testing what the strength gain will
be due to variations in mixture proportioning. The ability to monitor concrete maturity, and thus
strength, with NDTs in reinforced concrete is of particular interest since using cores is problematic
due to the presence of reinforcement.

Keywords: concrete; non-destructive testing; maturity modeling; strength; dynamic modulus; ultrasonic
pulse velocity; master curves; physical properties determination

1. Introduction & Background

Monitoring concrete quality during construction and/or production of pre-cast con-
crete is a critical need to provide early warnings of potential flaws and identify timely
corrections in mix proportion and placement techniques. Compressive strength is among
the most common quality indicators used by the concrete industry. During production,
early detection implies monitoring concrete strength at early ages. Over the years, many
studies have investigated the effect of various parameters (e.g., mixture proportion, cement
type, curing conditions, aggregate, additives, etc.) on concrete strength. The findings
have been well documented and extensively reported in standard concrete references [1–3].
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Overall, aggregate used in concrete should have suitable strength and resistance to abrasion,
chemical attack, and freezing–thawing [1,2]. When chemical admixtures are used, these are
added to water during batching, and—depending on the type used—may affect setting
time, hardening, water demand, workability, and entrained air among other properties [3,4].
The strength of concrete is influenced by the specific properties of all the ingredients and the
water-to-cement ratio (w/c), cement type, and/or the use of supplementary cementitious
materials [5,6]. Concrete permeability and air void structure are also affected by both
chemical admixtures and supplemental cementitious materials, such as fly ash, slag cement,
and silica fume among others [6]. In addition to compressive strength, modulus of elasticity
is also a very important parameter in structural analysis and design of concrete structures.
Thus, over the years, numerous studies have examined the effect of various parameters on
concrete elastic modulus, its relationship to compressive strength, and the development
of predictive relationships [7,8]. With the use of non-destructive testing in concrete, the
relationship between static elastic modulus from destructive testing and dynamic modulus
has been explored for both conventional and alternative concrete mixtures [8,9].

In recent years, the value and potential adoption of non-destructive testing in assess-
ing concrete properties and quality during construction have been emphasized by many
studies and the Federal Highway Administration (FHWA) [10–12]. This has generated
the need to develop this study focused toward the implementation of NDTs in concrete
assessment for QA and, more specifically, in maturity modeling, which is the focus of this
manuscript. The benefits of using NDTs in quality assurance (QA) include faster results in
relation to destructive testing and increase in testing frequency without significant increase
in cost. A larger testing dataset is particularly helpful in developing accurate predictive
and machine learning models. As mentioned earlier, many studies explored the devel-
opment of experimental relationships between parameters obtained from NDTs, such as
ultrasonic pulse velocity (UPV), with compressive strength and modulus [13–16]. The use
of alternative NDTs was also considered in developing models for predicting the static
elastic modulus [17,18]. Amini et al. [19] presented statistical univariate and multivariable
regression models to predict the compressive strength of concrete using UPV and rebound
hammer measurements. The results of this and other studies showed that in some instances
the accuracy of the models when considering multiple NDTs are higher [19,20]. Kewalra-
mani et al. [21] successfully employed linear regression and an artificial neural network
(ANN) to predict the compressive strength of UPV. Similar studies in recent years have
developed alternative machine learning models for predicting compressive strength of
concrete using available mixture optimization data [22,23].

The value of using alternative NDTs and/or blended methods for assessing concrete
properties was highlighted by various researchers [19,20], thus paving the way and em-
phasizing the need for this study. In terms of alternative NDTs, Chávez-García et al. [17]
developed a relationship between static elastic modulus from destructive testing and dy-
namic elastic modulus from non-destructive tests, such as UPV, electrical resistivity, and
resonant frequency testing. Lee et al. [24] performed a series of experimental and numerical
analyses to find the most robust relationship between static modulus of elasticity and
dynamic modulus of concrete obtained from UPV and resonant frequency. The use of non-
destructive testing is advantageous since the same samples and/or concrete members can
be tested again and again for assessing concrete quality in terms of uniformity and strength
gain with regards to the expected values. As concluded earlier, past studies indicated
that ultrasonic pulse velocity (UPV) and the corresponding dynamic modulus of elasticity
relate well to the compressive strength and modulus of elasticity from static destructive
compressive strength testing [25,26]. Thus, such parameters from NDT evaluation can be
used as quality control measures during concrete production [25]. In order to estimate
concrete strength—and thus modulus—with hardening age, the concept of maturity is used
by the concrete community and industry in developing predictive models. Temperature
and time are two important parameters considered in this modeling approach [14,26]. The
Nurse–Saul maturity function (MI(t)) equation presented later in the manuscript represents
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the relationship between concrete temperature, time, and strength gain. The resulting
maturity index (MI) (i.e., sum of the product of time and temperature history during
the hydration process) can be calculated in real time in the lab and/or the field. While
curing conditions during hydration affect strength gain [5,27] according to the maturity
function, concrete of the same mix that has the same maturity index has approximately the
same strength whatever combination of temperature and time is experienced. Maturity
models are mixture-specific since the hydration rate in concrete is dependent on mixture
ingredients and proportioning [26,28–30].

Thus, based on past studies’ shortcomings and recommendations [20,26,28], it was
the objective of this study to explore alternative non-destructive-based testing, such as
ultrasonic pulse velocity and resonant frequency, to model maturity of concrete at young
ages after casting. Maturity represents the effect of time and temperature during hydra-
tion on concrete strength gain. The relationship between concrete quality measures (e.g.,
compressive strength, UPV, or modulus of elasticity) and maturity index (MI) is mixture-
specific [26,28,29,31]. Thus, to overcome the extended maturity testing needed each time
a new mixture is developed, it was the second objective of the study to explore for the
first time ever a novel approach in maturity modeling by developing “master curves” for
a group of concrete mixtures. This novelty in maturity modeling includes (i) the devel-
opment of a representative maturity function (identified herein as “master curve”) for a
group of concrete mixtures with similar ingredients and proportioning and (ii) define the
transfer function between individual mixture MI relationships and the “master curve” in
function of mixture properties. The benefits of developing the novel concept of universal
functions for similar mixtures is driven from the potential benefits to the concrete industry
in predicting strength without having to repeat maturity testing each time a producer
adjusts mixture proportioning to fine tune mix design; being able to quickly predict what
will be the strength gain for small variations in mixture proportioning; and saving time and
testing cost by reducing maturity testing in such conditions. For example, a producer could
assess how variations in material and mixture proportioning will affect (i) fresh concrete
properties, such as unit weight and air content, combined with (ii) UPV response and/or
initial strength at early ages to predict concrete strength and/or dynamic modulus over
time during the hydration at later ages. To achieve this, once the “master curve” and shift
factor equations are defined for a specific set of concrete mixtures, trial batches could be
produced during mix design and/or the concrete optimization phase to assess impact on
fresh concrete properties and NDT response early on in order to estimate strength and
modulus at later ages. This will reduce the need for the traditional ongoing shortcoming of
maturity monitoring requiring extensive testing during concrete hardening and/or hydra-
tion over time when a mixture is modified or a new mixture is explored [14,20,25]. Such
early assessment will also provide early warning on the potential implications of changes
and/or variability in materials and proportioning without having to wait for follow-up
testing during longer periods of hydration [14]. At the same time, such early assessment
will minimize the need for ongoing monitoring of hydration and strength gain during
concrete production, thus saving time and reducing testing needs. Thus, during concrete
production, the use of master curves could minimize quality control testing for (i) assessing
production quality and assess early impact on concrete strength at later ages as well as
(ii) assess whether the 28-day design target strength is expected to be achieved based on
limited testing early on. In terms of field evaluation during construction of a concrete
structure, companion cylinders are often used for monitoring maturity and strength gain
in time, as these are affected by similar field conditions as the structure. Such companion
cylinders, along with the fresh concrete properties regularly monitored during concrete
batching, could be used similarly to the lab testing case to assess from early ages what
will be the follow-up implications in strength and modulus due to potential variability in
production concrete uniformity as construction goes on. Such companion cylinders, and/or
selected structural members, could be tested with UPV for verification as well. These early
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warnings could be beneficial in adjusting concrete mix materials, proportioning during the
construction of the structure, or making sure that targeted values of strength are achieved.

In a previous effort, the relationships between UPV and dynamic modulus with
the temperature–time factor (maturity index) were investigated with a single concrete
mixture [28]. The results showed that such relationships were dependent on mixture
composition. In this study, the results of UPV, resonant frequency, and compressive strength
of eleven concrete mixtures were investigated to identify (i) whether a “master curve” for a
group of concrete mixtures is possible, (ii) the general predictive form of such a curve, and
(iii) whether a transfer function for shifting the individual maturity curves to the “master
curve” can be defined using mixture properties.

It should be mentioned that objective of this study was to (i) propose an NDT-based
maturity approach for the specific and/or typical concrete mixtures encountered in in-
frastructure projects in the region rather than a universal maturity study for all possible
concretes and to (ii) assess whether the novel concept of “master curves” for maturity can by
developed. Since “maturity” is mixture-specific, calibration of maturity models is needed
when other concrete mixtures are of interest (such as fiber-reinforced, low-shrinkage, self-
consolidated, high-volume fly ash, etc.). As mentioned earlier, this second goal represents
a novel approach in maturity modeling for the first time ever suggested by developing
“master curves” and thus overcoming the traditional and extended maturity testing needed
each time when a new mixture is developed with similar concrete ingredients. Additionally,
the successful development of the transfer functions between individual mixture MI rela-
tionships and the “master curve,” in the function of mixture properties, represents a useful
and innovative approach in considering mixture variations and eventually expanding the
suggested modeling approach to other mixture types.

2. Materials and Methods

In this study, two NDTs were used: ultrasonic pulse velocity and resonant frequency.
While UPV can be used in both lab and field conditions, resonant frequency is primarily for
lab samples and is thus a complementary method when further forensic verification may
be of interest.

UPV transducers measure the wave’s propagation time through concrete. Three
modes of testing are possible, direct, semi-direct, and indirect transmission. In the direct
method used in this study, longitudinal compressive stress waves generated by an electro-
acoustic transducer travel through the concrete and are received at the other end by another
transducer, Figure 1a. As per ASTM C597, the pulse velocity is independent of the sample
dimensions when there are no reflected waves from the sample boundaries [32]. This is
assured when the smaller sample dimension exceeds the signal wavelength. With the
distance between the two transducers known, the velocity can be calculated. The velocity
of compression waves in concrete is related to concrete’s elastic properties and density.
Equation (1) provides the relationship between concrete properties and compression wave
velocity [32], while Equation (2) provides the dynamic modulus, Ed, in relation to pulse
velocity and concrete properties:

V =

√
Ed(1− ν)

p(1 + ν)(1− 2ν)
(1)

Ed =
(1 + ν)(1− 2ν)

(1− ν)
ρV2 (2)

where Ed is the dynamic modulus of elasticity, N/m2, ν is the dynamic Poisson’s ratio, ρ is
the density, kg/m3, and V is the ultrasonic pulse velocity, m/s. The UPV configuration
used in this study was in the direct longitudinal mode, Figure 1a.

Resonant frequency testing, RFT, involves determining the fundamental resonant
frequency of concrete samples. Similarly to UPV, the fundamental longitudinal, transverse,
and torsional frequencies can be determined. Two testing alternatives are available—the
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forced and the impact resonance methods. In this study, the impact resonance method
was used in the longitudinal testing mode, in which the specimen is struck with a small
impactor at one end and the response is measured with an accelerometer at the other end
of the sample. The maximum amplitude observed represents the resonance frequency.
RTF is more sensitive to sample size (i.e., cylinders with length-to-diameter ratios equal
to 2 are often recommended even though ASTM C215 recommends a higher ratio). The
resonant frequency is a function of sample’s elastic constants (modulus and Poisson’s ratio),
geometry, and mass density [14,33]. The dynamic modulus of a concrete sample in the
longitudinal mode used in this study is calculated based on the fundamental longitudinal
frequency and a sample shape constant based on Equation (3) [34]:

Ed = DM (n′)2 (3)

where Ed is the dynamic modulus in Pa; n′ is the fundamental longitudinal frequency in
Hz; D is 5.093 ( L

d2 ) in m−1 for a cylinder or 4 ( L
bt ) in m−1 for a prism; and M is the mass in

kg. The configuration of the resonance testing gauge (RTG) used in this study for resonance
frequency evaluation is shown in Figure 1b.
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In this study eleven mixtures were considered, Table 1. Some of these mixtures rep-
resent typical concrete used in the construction of infrastructure projects in the region
(Mixes 1 to 8), reflecting possible fine-tuning in proportioning that a concrete producer
may consider. The remaining mixtures have higher water-to-cement ratios, deviating
from a typical concrete in the region (Mixes 9 to 11). The typical mixtures have to meet
proportioning and acceptance requirements similar to MD7 (Maryland designation 7). The
deviation from MD7 was intentional in order to observe the effect of different parameters
on NDT response and assess the feasibility of the “master curve” concept. A subset of
these mixtures could also represent potential mixture proportioning variability during
production with regards to water-to-cement ratio. The concrete ingredients included a
0.78 mm trap rock #57 aggregate and fine aggregate—meeting ASTM C33, Type I cement,
water, and admixtures such as air-entraining admixture (AEA)—and high-range water
reducer (HRWR), meeting AASHTO M 154 and M194, respectively. Air-entraining ad-
mixtures provide resistance to freeze–thaw, although they lead to a reduction in strength.
High-range water reducers provide the desired concrete strength at a lower water content
with acceptable workability [7].

Cylinders with diameters of D = 100 mm and heights of L = 200 mm were prepared
from each mixture and tested with UPV and RFT and for compressive strength at different
hardening ages. The samples were kept in a water bath at room temperature during curing.
iButton sensors were embedded in companion samples for each mixture for recording the



Appl. Sci. 2023, 13, 7770 6 of 16

temperature history during hydration. The temperature history was then used to calculate
the temperature–time factor using the Nurse–Saul maturity function [35]:

MI(t) = ∑(Ta − To)∆t (4)

where MI(t) is the temperature–time factor at age t, degree days or degree hours; ∆t is time
interval, days or hours; Ta and To are the average concrete temperature during the time
interval ∆t and the datum temperature, respectively, in ◦C. The datum temperature is the
temperature below which the chemical reaction between cement particles and water ceases.
It is the theoretical temperature below which concrete ceases to gain maturity. Even though
a procedure is available in ASTM C1074 to determine such temperature experimentally, the
standard recommends a datum temperature of 0 ◦C for concrete with no special admixtures
or supplemental cementitious materials, as is the case in this study. Thus, the datum
temperature was assumed to be zero [25,26]. The samples were tested with UPV and RFT 1,
3, 7, 14, and 28 days after casting, and compressive strength was tested for three specimens
at each age.

Table 1. Concrete mix proportion and properties.

Mixtures WAEA/Wcement WHRWR/Wcement
Fresh Unit

Weight (kg) w/c Air Content Slump (mm) Average 28-Day Compressive
Strength (MPa)

Mix 1 0.16% 0.11% 2352 0.44 4.0% 25 38
Mix 2 0.40% 0.24% 2418 0.44 3.6% 15 31
Mix 3 0.40% 0.24% 2274 0.45 6.5% 98 31
Mix 4 0.40% 0.24% 2336 0.43 4.6% 111 31
Mix 5 0.40% 0.24% 2287 0.45 5.4% 76 25
Mix 6 0.40% 0.24% 2271 0.45 6.0% 146 22
Mix 7 0.40% 0.24% 2278 0.45 5.8% 105 23
Mix 8 0.40% 0.24% 2271 0.45 6.1% 76 25
Mix 9 0.40% 0.24% 2253 0.48 6.2% 130 19
Mix 10 0.40% 0.32% 2258 0.48 5.4% 175 25
Mix 11 0.40% 0.40% 2232 0.50 5.6% 226 26

Note: HRWR = high-range water reducer; AEA = air-entrainer agent; all mixtures designed based on the
departure concrete mix (i.e., meeting MD7 designation) designed according to ACI 211 and with proportioning
of 1014 and 733 kg of coarse and fine aggregate, respectively, and 378 kg of type I Portland cement per m3 of
concrete. Water and admixture contents were adjusted as reported herein.

Once concrete mixing is complete, the hydration chemical reaction takes place be-
tween concrete ingredients. More specifically, during the initial mixing phase, a reaction
takes place when cement and water particles come into contact [6]. The aluminate com-
pounds react with water molecules to form ettringite. The energy released from such
exothermic reaction causes an initial peak in temperature at early ages and, depending on
the mixture, as early as a few minutes to hours depending on the mixture and concrete
ingredients [14,25,26]. During the next hydration phase, a surface coating of the cement
particles occurs. As this coating keeps increasing, it slows down the hydration reaction.
The amount of hydrated concrete keeps increasing steadily while it stays in a fluid form.
The length of time for this phase depends on the specific concrete mix. In the next phase of
hydration, the tricalcium and dicalcium silicates react, producing an increase in internal
temperature and the formation of silicate hydrate (CSH), associated with strength gain.
This phase is followed by a reduction of unhydrated free particles and thus a slowdown
in temperature increase. After this stage, the hydration process continues to slow until
complete hydration of the remaining unhydrated cement particles is achieved. Hydration
is often not complete when the concrete reaches the desired strength, but it continues—if
curing conditions are favorable—in some cases for more than a year, and under unfavorable
conditions, it stops before reaching completion.

Based on the maturity modeling testing outlined in ASTM C1074 [35], concrete hy-
dration and the development of the Maturity Index, are monitored by using the standard
laboratory curing conditions (i.e., 20 ± 2 ◦C, and relative humidity of 100%). As identified
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in the standard, the definition of maturity is “concrete experiencing the same product
of time-temperature history, no matter what the specific temperature pattern occurred,”
will produce the same MI(t), Equation (4), and thus will produce the same strength. Thus,
whether specific lab and/or field conditions are considered, as far as the product MI(t) is the
same, concrete will have reached the same strength even though the temperature history
might be different. Similarly, since the degree of moisture present will affect hydration
and thus concrete temperature history, such effects are also accounted for. The trend of
time–temperature will only affect how fast in time a specific strength will be achieved in
relation to each case.

3. Results

As mentioned previously, the maturity index (MI) is mixture-specific. While sev-
eral alternative relationships were explored for relating NDT response to the maturity
temperature–time product, it was concluded that the best fit model was of the logarithmic
form y = a ln(x) + b [28]. For all 11 mixtures included in this study, the logarithmic form
also provided the best fit. The corresponding R2 are shown in Table 2. The R2 for almost
all cases was above 0.9 and p < 0.05, indicating (i) a very good fit between NDTs and
the maturity temperature–time product and (ii) consistent model forms for all concrete
mixtures. It should be mentioned that such NDTs provide consistent response in concrete
independent of the sample’s dimensions and shape [33] since these effects are factored
in Equations (1)–(3). Also of note is that for Mixtures 3 and 4, there were not sufficient
compressive strength data to provide reliable relationships. The consistency on the model
form between mixtures implied that the “master curve” concept may potentially be feasible
for UPV and/or dynamic modulus versus MI for a group of similar concrete mixtures.
The shift function for each mixture-specific maturity equation to the generalized form (i.e.,
master curve) was then developed in function of mixture-specific concrete ingredients
and proportioning.

Table 2. R2 for best fit logarithmic models between NDTs and compressive strength with temperature–time.

Mix UPV vs. Temp-Time Ed (RTG) vs. Temp-Time Compressive Strength vs. Temp-Time

1 0.99 0.95 0.97
2 0.95 0.97 0.95
3 0.86 0.97 NA *
4 0.96 0.96 NA *
5 0.92 0.97 0.98
6 0.96 0.96 0.99
7 0.97 0.95 0.92
8 0.92 0.97 0.90
9 0.94 0.95 0.98
10 0.99 0.99 0.99
11 0.95 0.96 0.99

* Limited data; p < 0.05 for all cases.

3.1. Developing Master Curves for UPV and Dynamic Modulus

In order to develop the maturity master curves for UPV and/or dynamic modulus the
following steps were followed:

1. Using the general logarithmic form, y = a ln(MI) + b, the coefficients of ln(MI),
“a” and/or “a′”, were set to a constant value (i.e., a = average of coefficient “a” and “a′”
of all mixture equations). New coefficients “b” and/or “b′” for each mixture were then
calculated. The resulting R2 values are reported in Table 3, while the corresponding
relationships for all the mixes are shown in Figure 2.

2. In the next step, one mixture was selected as the reference mixture. As can be seen
from Figure 2, Mix 5 represents a typical mixture used in Maryland for infrastructure
projects, identified as MD 7, with test results very close to the center of all mixtures.
Therefore, Mix 5 was selected as the reference mixture.
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3. The vertical shift factors, which are the differences between the intercepts of the
governing equations of any mixture and the reference mixture (Mix 5), were calculated.
Examples are shown in Figure 2. The resulting master curves from shifting are shown
in Figure 3 for both the dynamic modulus and UPV.

4. In the next step, the shift factors were related to concrete mixture properties. The
characteristics of a concrete mix most related to the shift factor were identified based
on Pearson’s correlation analysis. Table 4 includes the shift factors of each concrete
mixture along with the concrete properties and the hydration temperatures during
curing. The Pearson’s correlation coefficients are summarized in Table 5. The parame-
ters with higher absolute values of Pearson’s correlation coefficients were selected to
be the best predictors of the shift factors. Linear regression multivariate analysis was
then used to identify the relationship describing the shift factor, Equation (5):

y = β0 + X1β1 + X2β2 + X3β3 + ε (5)

where y is the response variable, x is the independent variable (predictor), β is the un-
known parameter, and ε is the residual. In a linear model, the parameters enter linearly.
However, the predictors themselves do not have to be linear. Here, the objective is finding
→
β (i.e., β0, β1, β2, and β3) in order to minimize the residual error (ε). Further details can be
found in Faraway [36]. Bivariate analysis on the shift factors and each one of these selected
variables indicated that the best relationships have polynomial. To describe the shift factors,
polynomial relationships (second degree) for each shift factor (UPV or dynamic modulus)
are presented in Tables 6 and 7. In selecting the best models, R-squared, p-value, residual
standard error, and simplicity of the model are considered (i.e., highest R-square and
p-value less than 0.05). Residual standard error (RSE), also known as the model sigma, is
a variant of the RMSE (root-mean-squared error) attuned for the number of predictors in
the model. The lower the RSE, the better the model. In practice, the difference between
RMSE and RSE is very minor, especially for large multivariate data. The resulting models
are presented in Tables 6 and 7 and the following equations:

δUPV = 357.91(CS)2 + 229.99CS− 14.4A2 + 176.97A− 54.71T2 + 154.53T − 59.81 (6)

δDM = 4.6(CS)2 + 0.28CS + 0.51(UW)2 − 4.51UW − 1.45WC2 + 0.48WC− 0.55 (7)

where δDM and δUPV are the shift factors for the dynamic modulus, Ed (RTG) and UPV,
respectively; CS is the compressive strength in MPa; UW is the unit weight (Kg/m3); A is
the air content (%); T is the average concrete temperature (◦C) during the curing period; and
WC is the water–cement ratio. As can be observed from the results, the prediction accuracies
for the selected models were 91% and 94% for the UPV and the dynamic modulus shift
factor cases, respectively.

Figure 2. Cont.
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Figure 2. Relationship between (a) UPV and (b) Ed with temp–time factor with constant “a”.

Table 3. Modified equations of best fit for each mixture.

Mix No.
UPV vs. Temp-Time

(y = a * Ln (x) + b)
Ed (RTG) vs. Temp-Time

(y = a′ ** Ln (x) + b′)

b R2 b R2

1 2915.7 0.82 16.86 0.95
2 3243.0 0.95 22.17 0.97
3 3131.8 0.91 18.42 0.96
4 3299.8 0.96 21.44 0.95
5 3089.6 0.92 17.38 0.97
6 3107.0 0.96 16.82 0.96
7 3197.9 0.97 18.42 0.95
8 3128.1 0.92 17.09 0.97
9 3009.0 0.94 13.45 0.95
10 3233.5 0.99 17.73 0.99
11 3288.1 0.95 17.44 0.96

* a = 224.26; ** a′ = 2.5; p < 0.05 for all cases.
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Table 4. Shift factors with concrete properties and hydration temperature.

Mix Shift
Factor (Ed)

Shift Factor
(UPV)

Initial
Temperature Slump Average

Temperature
Air

Content
Unit

Weight W-C Ratio Compressive
Strength

1 0.52 173.90 25.30 25 20.50 0.040 2352 0.44 38.00
2 −4.70 −156.90 26.80 15 22.90 0.036 2418 0.44 30.83
3 −0.98 −38.57 17.00 98 21.99 0.065 2274 0.45 30.96
4 −4.02 −181.88 16.00 111 21.70 0.046 2336 0.43 30.48
5 0.00 0.00 24.00 76 23.38 0.054 2287 0.45 25.26
6 0.56 −21.19 23.30 146 23.43 0.060 2271 0.45 22.42
7 −1.00 −107.98 23.00 105 22.62 0.058 2278 0.45 23.00
8 0.45 −28.90 23.50 76 22.75 0.061 2271 0.45 25.3
9 3.98 77.53 16.50 130 21.80 0.062 2253 0.48 19.24

10 −0.24 −142.04 16.00 175 21.47 0.054 2258 0.48 25.36
11 0.02 −199.82 15.00 226 19.94 0.056 2232 0.50 26.51

Table 5. Pearson’s correlation coefficient for shift factors based on mixture properties.

Mix Properties Shift Factor (UPV) Shift Factor (Ed)

Initial Temperature 0.38 −0.19
Slump −0.42 0.33

Average Temperature 0.03 −0.14
Air Content 0.08 0.60
Unit Weight 0.00 −0.69
W-C Ratio −0.15 0.54

Compressive Strength 0.12 −0.49

Table 6. Models for predicting UPV shift factor.

Model

Coefficients Performance

Intercept
Compressive

Strength Unit Weight Air Content Average
Temperature R2 RSE p-Value

a * b * a b a b a b

1 −59.81 426.79 464.11 134.62 −392.67 −36.75 −42.21 −35.93 395.65 0.95 60.8 0.19
2 −59.81 357.91 229.99 0 0 −14.40 176.97 54.71 154.53 0.91 57.06 0.05
3 −59.81 137.77 −169.0 −349.81 −714.24 479.38 −738.61 0 0 0.81 80.88 0.16

* The equations are in the form of ax2 + bx.

Table 7. Models for predicting dynamic modulus shift factor.

Model

Coefficients Performance

Intercept
Compressive

Strength Unit Weight Air Content W-C Ratio
R2 RSE p-Value

a * b * a b a b a b

1 −0.55 3.72 −1.36 −0.80 −10.80 2.91 −6.30 −1.34 −0.56 0.94 1.32 0.23
2 −0.55 1.73 −5.33 −5.32 −19.85 9.14 −16.97 0 0 0.93 1.01 0.03
3 −0.55 4.6 0.28 0.51 −4.51 0 0 −1.45 0.48 0.94 0.94 0.02
4 −0.55 4.95 −0.41 0.47 −4.82 0 0 0 0 0.91 0.90 0.003

* The equations are in the form of ax2 + bx.

In Figure 4, the predicted shift factors of UPV and dynamic modulus are compared
with the actual values. Since data from eleven mixtures were used in relation to the
number of variables in the shift functions, some deviations from the line of equality (y = x)
were expected. Nevertheless, overall, there is good agreement between predicted and
actual values (values close to the 45◦ line of equality). In fact, this is reflected in the
developed master curves presented in Figure 3, in which all the shifted data are on the
trend lines (R2 = 1).
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3.2. Compressive Strength Modeling

Experimental relationships between compressive strength and NDT response (i.e., UPV
or dynamic modulus) have been explored in past studies included in the literature [13–16,19].
The response of selected models from the literature with the data from this study are
presented in Table 8 along with the corresponding root-mean-squared error (RMSE). The
purpose of the analysis presented in Table 8 was to verify the model form (i.e., non-
linearity) between compressive strength and pulse velocity. It should be mentioned that
some of these models were developed with data from specific mixtures. For example,
Tanyidizi et al. [16] developed the relationship for self-consolidating concrete (SCC). The
lower RMSEs of the Amini et al. [19] and Turgut [15] models indicate that the relationship
between compressive strength and UPV is non-linear, thus confirming earlier findings by
Tharmaratnam et al. [37].

Table 8. RMSE of compressive strength prediction models.

Study Amini et al. (2019) [19] Turgut (2004) [15] Tanyidizi et al. (2008) [16] Qasrawi (2000) [13] Malhotra and
Carino (2003) [14]

Model CS = 0.7237e0.8V CS = 0.0872e1.29V CS =
0.2291V2 + 5.939V + 0.258 CS = 36.72V − 129.077 CS = 33V − 109.6

RMSE 5.16 6.21 9.52 10.52 12.16
CS = Compressive strength (MPa), V = UPV (km/s), n = 41.

In this study, the testing results of the concrete mixtures at different ages were used
to develop a multivariate relationship between compressive strength with UPV, dynamic
modulus from RFT, and the temperature–time product. As mentioned earlier, past studies
also recommended that more robust prediction models may be obtained when the results
from multiple testing methods are combined [19,38]. Linear regression was employed
to identify the best fit considering the following: higher R2, lower p-value, residual stan-
dard error, AIC (Akaike’s information criteria), and BIC (Bayesian information criteria).
AIC and BIC are indices representing the complexity of a model, with higher AIC and BIC
representing higher levels of complexity. Generally, a simple model form may be more
desirable and practical in terms of simple computational calculations. Some of the models
with higher performances are presented in Table 9.

Considering all aforementioned factors, Model 4 seems to be a model better represent-
ing the data, as shown in Equation (8):

CS = 1.36 ln(MI)− 6.76ln (V) + 1.29DM + 30.92 (8)

where CS is compressive strength (MPa); MI is maturity index (temperature–time factor),
◦C-day; V is UPV, m/s; and DM is dynamic modulus of elasticity from RFT in GPa.
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Table 9. Models for predicting compressive strength.

Term Model 1 Model 2 Model 3 Model 4

Coefficient

Intercept −23.01 −49.79 −18.65 30.92
Temp–Time 0.00298 - - -
Ln (Temp–Time) - 1.38 1.35 1.36
UPV 0.00047 - −0.0016 -
Ln (UPV) - −8.76 - −6.76
Dynamic Modulus 1.34 - 1.29 1.29
Ln (Dynamic Modulus) - 40.11 - -

Model Performance

R2 0.92 0.91 0.92 0.93
Standard Residual Error 1.99 2.13 1.91 1.91
RMSE 1.89 2.02 1.81 1.81
p-value 3.73 × 10−20 4.37 × 10−19 7.56 × 10−21 7.21 × 10−21

AIC 178.63 184.10 175.08 174.98
BIC 187.20 192.67 183.65 183.55

Figure 5 presents a comparison between observed and predicted compressive strength
values from Equation (8) using the data from the mixtures included in this study. Overall,
there is very good agreement between observed and predicted strength values (R2 = 0.93),
and most of the values are within the 95% prediction interval. Finally, it can be observed
in Figure 5a that the hypothesis of the randomness of residuals holds. It should be noted
that in some cases, larger deviations from the equality between observed and predicted
values are encountered. Figure 5a thus reflects sources of variability, such as sample to
sample variations of the same concrete mix, testing accuracy, temperature control, and
experimental-related factors. Thus, “master curves” represent mathematical expressions of
experimental data, and any uncertainty in the testing process could cause some variation
between experimental and predicted data.

Figure 5. Cont.



Appl. Sci. 2023, 13, 7770 13 of 16

Figure 5. Compressive strength prediction model, (a) actual vs. predicted values, and (b) model residuals.

Finally, since relationships between static and dynamic moduli have been developed
and proposed in the literature for various mixtures, these can be used to estimate the elastic
parameters from destructive testing. However, if the concrete mixtures of interest are not
represented in the data used to develop such relationships, these must be further validated.

Since, as mentioned on several occasions, “maturity” is mixture-specific, calibration
of any model with data from other mixtures of interest is necessary. Since the objective
of this study was to propose an NDT-based maturity approach for the specific and/or
typical concrete mixtures encountered in infrastructure project in the region, validation of
such models beyond these concretes was beyond the scope of the study. For such cases,
validation will require expanding the study to include materials and proportioning for the
additional concrete mixtures of interest.

4. Discussion

The analysis and findings of this study indicated that the novel approach of establish-
ing “master curves” in maturity modeling proposed by this research for the first time is
feasible and with excellent results. The selected NDTs included in the study can be success-
fully used in concrete maturity. Since the relationship between concrete quality measures
(e.g., compressive strength, UPV, or modulus of elasticity from RFT) and maturity index are
mixture-specific, this study explored the development of a representative maturity function,
identified herein as a “master curve.” The analysis indicated that NDT-based maturity
models provided good fit and were of the same model form (i.e., logarithmic). Specifically:

• The best fit model relating NDT response and the maturity temperature–time product
is of logarithmic form, providing a coefficient of determination in almost all cases
above 0.9 and p < 0.05, thus resulting in a very good fit for these two parameters and
consistent model form for all concrete mixtures that were included in this study.

This led to the development of a “master curve” for maturity. The methodology for
defining the shift for each mixture maturity curve to the generalized form (i.e., master
curve) was obtained through the definition of a transfer function in relation to key concrete
properties, according to the following:

• The “master curve” shift factors were successfully related to concrete mixture proper-
ties. These properties were selected based on Pearson’s correlation analysis. Based on
alternative model fitting, this led to the inclusion of compressive strength, air content,
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and average concrete temperature for δUPV and compressive strength, unit weight, and
average concrete temperature for δDM, respectively. In terms of prediction accuracy, as
it was observed from the results, the prediction accuracies for the selected models were
91% and 94% for the UPV and the dynamic modulus shift factor cases (Tables 6 and 7).

• The shift factor equations were successfully defined using linear regression multivari-
ate analysis, and the “master curves” for pulse velocity and dynamic modulus were
defined providing an excellent fit (R2 = 1, Figure 3).

A compressive strength prediction model was successfully developed in relation to the
maturity index and NDT response, providing a high coefficient of determination (R2 = 0.93,
Equation (8)). In terms of prediction accuracy, Figure 5a presents a comparison between
observed and predicted compressive strength values from Equation (8) using the data from
the mixtures included in this study. Overall, there is very good agreement between observed
and predicted strength values, and most of them are within the 95% prediction interval.

In terms of limitations of the study findings, since MI is mixture-specific, the appli-
cability of this modeling works well for a group of concrete mixtures in which similar
ingredients and compositions are used. This reflects the fact that chemistry kinetics during
hydration follow similar trends. In fact, this research has proven that when mixtures of
similar content and ingredients are used, the “master curves” concept in maturity works
very well. Thus, the development of “master curves” for different types of concretes (such
as self-consolidating and fiber-reinforced concrete or when use of alternative cementitious
materials like fly ash and slag cements are used) should be further validated since chemistry
kinetics may be significantly altered.

5. Summary and Conclusions

Use of NDTs in assessing concrete quality during production and/or construction may
provide significant benefits, including faster results in relation to destructive testing and
increases in testing frequency without significant increase in cost. This study explored the
use of well accepted NDTs for modeling concrete maturity. The results indicated that such
NDTs can be successfully used in concrete maturity, and that NDT-based maturity models
provided good fit, and, of the same model form (i.e., logarithmic). In terms of scientific
novelty, this led to the definition and development of “master curve” maturity modeling for
the first time. Furthermore, the methodology for defining the shift for each mixture maturity
curve to the generalized form (i.e., master curve) was successfully obtained through the
definition of a transfer function in relation to key concrete properties. From the practical
point of view, the benefits of developing universal master curve functions for concretes
of different types include predicting strength without having to repeat maturity testing
each time a producer adjusts mixture proportioning to fine tune mix design, being able to
quickly predict what will be the strength gain for variations in mixture proportioning and
field curing conditions, and saving time and testing cost by reducing maturity testing.

In terms of concrete strength predictions, while the objective of this study was not
to compare models proposed from past studies, a subset of these were considered for
assessing the best model form (i.e., non-linearity) between compressive strength and pulse
velocity. Recognizing that some of these models were also developed for specialized
concrete mixtures, as indicated in the analysis, their prediction accuracy with the data of
this study was inferior to those developed herein, for which very good agreement between
observed and predicted strength values (R2 = 0.93) was observed and for which most of the
values were within the 95% prediction interval.
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