
Citation: Khattak, S.B.A.; Nasralla,

M.M.; Farman, H.; Choudhury, N.

Performance Evaluation of an IEEE

802.15.4-Based Thread Network for

Efficient Internet of Things

Communications in Smart Cities.

Appl. Sci. 2023, 13, 7745. https://

doi.org/10.3390/app13137745

Academic Editors: Muhammad

Babar, Saleem Iqbal and Aftab Khan

Received: 7 June 2023

Revised: 24 June 2023

Accepted: 27 June 2023

Published: 30 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Performance Evaluation of an IEEE 802.15.4-Based Thread
Network for Efficient Internet of Things Communications in
Smart Cities
Sohaib Bin Altaf Khattak 1 , Moustafa M. Nasralla 1,* , Haleem Farman 1 and Nikumani Choudhury 2

1 Smart Systems Engineering Laboratory, Department of Communications and Networks Engineering,
Prince Sultan University, Riyadh 11586, Saudi Arabia; skhattak@psu.edu.sa (S.B.A.K.);
hfarman@psu.edu.sa (H.F.)

2 Department of Computer Science and Information Systems, Birla Institute of Technology and Science Pilani,
Hyderabad 333031, India; nikumani@hyderabad.bits-pilani.ac.in

* Correspondence: mnasralla@psu.edu.sa

Abstract: The increasing demand for Internet of Things (IoT) applications has resulted in vast
amounts of data, requiring the utilization of big data analytics. The integration of big data analytics in
IoT-based smart cities can greatly benefit from the development of wireless communication protocols,
among which the Thread protocol has emerged as a promising option. Thread is IEEE 802.15.4
based and has advanced capabilities like mesh networking, IPv6 support, and multiple gateways
providing no single point of failure. This paper presents the design and evaluation of a low-cost
mesh network using Raspberry Pi, nRF52840 dongle, and OpenThread 1.2 (i.e., an open-source
software implementation of the Thread protocol stack). The research elaborates on the hardware and
software solutions used, as well as the network topologies adopted. To evaluate the performance of
the developed system, extensive real-time tests are performed, considering parameters, such as jitter,
packet loss, and round trip time. These tests effectively demonstrate the effectiveness of the Thread
network. Furthermore, the impact of varying payload size and bitrate on the network is analyzed
to understand its influence. The behavior of the multi-hop network is also examined under link
failure scenarios, providing insights into the network’s robustness. Our findings provide valuable
insights for researchers interested in designing low-cost and efficient mesh networks for various
IoT applications, including home automation, building/campus monitoring systems, distributed
industrial IoT applications, and smart city infrastructure.

Keywords: ad hoc networks; IEEE 802.15.4; IPv6; internet of things; mesh network; smart cities;
thread network; wireless sensor networks

1. Introduction

Advancements in computing technology and networking have given rise to the Inter-
net of Things (IoT), which aims to enable objects to gather and share data over the Internet
using smart devices [1,2]. The IoT was envisioned as a large-scale network of Internet-
connected objects that are uniquely addressable and reachable using standard networking
protocols [3]. It has played a pivotal role in the development of smart cities, where inter-
connected devices and systems work together to enhance the efficiency, sustainability, and
quality of urban life [4]. Some prominent applications include smart energy management
systems [5], building controls [6], and smart transportation [7,8], which have gained signifi-
cant attention from both academia and industry. Many networking protocol stacks have
been designed to meet the specific needs of diverse smart city applications and IoT-based
systems [9]. Zigbee and Bluetooth are widely adopted protocols in smart city applications.
Zigbee is used in various monitoring systems and smart infrastructure [10], while Bluetooth
is employed for occupancy detection, asset tracking, and seamless connectivity in smart
buildings and transportation systems [11].

Appl. Sci. 2023, 13, 7745. https://doi.org/10.3390/app13137745 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13137745
https://doi.org/10.3390/app13137745
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0993-2854
https://orcid.org/0000-0002-6511-1460
https://orcid.org/0000-0003-1947-2270
https://doi.org/10.3390/app13137745
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13137745?type=check_update&version=1

Appl. Sci. 2023, 13, 7745 2 of 23

The majority of IoT applications in the real world make use of single-hop wireless
connectivity to the gateway based on a star topology. Alternatively, the mesh topology has
also been considered that enables each node to communicate with every other node and
gateway, enhancing reliability [12]. While wireless standards such as Bluetooth and ZigBee
are continuously evolving to support mesh networks. To extend the support towards
mesh networks, a new protocol named Thread has been developed using open and proven
standards, such as IEEE 802.15.4 and 6LoWPAN [13].

The Thread is a communication protocol that is maintained by Thread Group [14].
It has been designed to meet the requirements of applications that demand low power
consumption, low data throughput, and a short communication range. Thread protocol is
designed to meet the specific needs of diverse smart city applications, providing secure
and scalable connectivity to a large number of devices in an energy-efficient and reliable
manner. The Thread-based IoT mesh network can be connected to the global Internet using
a gateway called a border router that provides connectivity through Ethernet or Wireless
Local Area Network (WLAN). Thread provides end-to-end encryption, no single-point
failure, and consumes low power. Thread is a relatively new protocol compared to ZigBee
and Bluetooth, so its performance has not been extensively studied, especially in real-world
applications with varying scenarios.

To fill the aforementioned gap, this work is carried out with the objective to develop a
Thread network from off-the-shelf components by analyzing the performance with varying
topologies. In order to do so, a test bed was built to analyze the performance by considering
one hop, two hops, and a multi-hop environment. In the literature, the performance of the
Thread protocol is analyzed by using the Round Trip Time (RTT) parameter, and few have
considered throughput, which is insufficient to assess its functionality. In this work, we
have performed extended experiments by considering various parameters, such as RTT,
packet loss ratio, and jitter. Further, the impact of varying the payload size and bit rate
was also considered to analyze the performance in these varying situations. Moreover,
in order to check the robustness of a network, the test bed was subjected to link failures.
The experiments were performed using Raspberry Pis, manufactured by The Raspberry
Pi Foundation based in Cambridge, UK, as nodes and nRF52840 dongles by Nordic
Semiconductor, a company based in Oslo, Norway, as a transceiver.

The contributions of this paper are the following:

• Comprehensive performance evaluation of the Thread mesh network protocol using a
test bed. While RTT and packet loss performance parameters are commonly examined
in the literature on Thread, we have also specifically investigated the impact of jitter,
thereby providing a more thorough analysis of the network’s behavior.

• A standardized IoT architecture based on Thread mesh technology provides a robust
and scalable network for designing IoT solutions.

• Based on the outcomes of the analysis, this paper provides recommendations for
selecting the most appropriate topology for different situations.

This paper proceeds as follows. Section 2 discusses the related work available in
the literature, and Section 3, provides a comprehensive overview of the Thread protocol
and its key features. Section 4 presents a comparison between Thread and other wireless
personal area networks. Section 5 discusses the experimental setup and implementation
of a mesh network using OpenThread. In Section 6, we evaluate the performance of the
implemented model and in Section 7 we provide recommendations as per the findings.
Finally, concluding remarks are provided in Section 8.

2. Related Work

In the rapidly evolving landscape of smart cities, the seamless integration of IoT
devices has become imperative to enable efficient and reliable communication. Among the
various wireless protocols available, the IEEE 802.15.4-based Thread network has emerged
as a promising solution for IoT deployments in smart cities.

Appl. Sci. 2023, 13, 7745 3 of 23

Recently, several studies have been conducted on various aspects of ad hoc net-
works [15], including the performance evaluation of IEEE 802.15.4 networks [16]. Silicon
Labs, Austin, TX, USA, has conducted a performance analysis of Thread networking stan-
dards through an experimental study in their R&D facility [17]. The analysis evaluated the
performance aspects of multi-hop RTT latency for unicast, and multicast end-to-end latency
on different ranges of networks. Similarly, performance analysis of a large Thread network
was conducted by NXP, which focused on unicast and multicast latency utilizing a precision
time protocol, considering latency and RTT using Internet Control Message Protocol (ICMP)
packets [18]. Silicon Labs also conducted experimental tests on the comparison of Thread,
Zigbee, and Bluetooth mesh networking standards, and found that Thread outperformed
its peers [19]. All these experimental evaluations mainly relied only on RTT measurements,
and the payload size considered was also on a limited scale. Moreover, the performance of
the Thread network did not include the varying bitrate.

In [20], authors present the performance evaluation of Thread-based commercial
lighting systems. They use key performance indicators such as time for complete coverage,
end-to-end latency, packet delivery ratio, and synchronization to analyze the impact on
the user experience. The authors use unicast and multicast measurement results in typical
lighting applications to analyze their impact on the user experience. In [21], a comparison
study of Thread mesh with other widely used wireless protocols for IoT devices, including
Bluetooth Mesh, ZigBee, NB-IoT, Sigfox, and LoRa, is provided. The comparisons made are
without any empirical performance evaluations, instead based on general characteristics.
The study analyzes the requirements for wireless connectivity in smart homes, smart cities,
and rural areas. Moreover, it considers the usability of these protocols in the Internet of
Things, Services, and People (IoTSP) applications. In [22], authors investigated the potential
of Thread protocol in industrial applications, with a focus on the smart factory domain
of Industry 4.0. A pack predictive scheduling system for smart factories was proposed
using Thread protocol. The performance evaluation was performed using the MCU FRDM-
KW41Z board, developed by NXP Semiconductors, Eindhoven, The Netherlands. These
papers also describe the hardware and software for implementation and use case scenarios;
however, they do not provide any performance evaluation statistics.

Authors in [23] proposed a theoretical system-level model to investigate the Thread
network protocol for Proximity Services in building automation and smart homes. The TA
testbed was implemented in a real environment to analyze the latency, and to compare the
experimental findings with analytical results. They also did not use any other parameters
for performance evaluation and limited their analysis to RTT. In [24], authors demonstrate
a new approach of using Thread as a wireless communication protocol, instead of Wi-Fi
or Bluetooth, in vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) platforms and
test it in existing vehicles. This approach greatly reduces the power consumption during
the wireless transmission of information. This work does not provide any information
on the performance evaluation of the Thread network. In [25], a non-NCP (Network Co-
Processor) Thread border router was designed and prototyped based on the OpenThread
implementation using Linux system. The experimental results in terms of performance
evaluation of this work are limited to RTT. Moreover, ref. [26] also provides an analysis of
OpenThread using RTT, regarding several input parameters such as various packet sizes,
node distance, interference situations, and test duration. However, no other performance
metrics were considered in their evaluations.

Keeping in view the performance of the Thread protocol analyzed in the previous
studies, this work extends the experimentation by varying the payload size and bitrate
and its impact on jitter, and packet loss ratio. Moreover, to check the robustness of the
network, link failures were introduced in the network. A standardized IoT architecture
based on Thread mesh technology provides a robust and scalable network for designing
IoT solutions. Based on the outcomes of the analysis, this paper provides suggestions for
selecting the most appropriate topology for different situations. The details of the related
works on Thread performance evaluation are summarized in Table 1.

Appl. Sci. 2023, 13, 7745 4 of 23

Table 1. Comparison between performance evaluation in our work and existing literature.

Reference Parameters Bitrate Range
(kbps)

Payload Size
Range (Bytes) Link Failure

[17] RTT, packet loss No 10–300 No
[19] RTT, packet loss No 10–300 No
[18] RTT No 10–50 No
[20] RTT, packet loss No 10–200 No
[23] RTT No 10–70 No
[25] RTT No 8–1232 No
[26] RTT No 64 (fixed) No

Our Work RTT, packet loss, Jitter 5 to 250 500 to 5000 Yes

3. Thread Protocol Overview

This section provides an overview of the Thread networking protocol. The Thread
is maintained by the Thread Group, which is a working group founded by some of the
most prominent names in the technology industry, including Google, Apple, and Qual-
comm [13]. The Thread was created to offer connectivity for home automation systems,
but now it has received attention from other sectors like remote monitoring and industrial
applications [22,23]. We divide this section into two parts; the first part explains the Thread
network protocol stack, and the second talks about the topology and types of roles played
by the devices based on their functionalities.

3.1. Protocol Stack

The Thread protocol stack is a combination of various standards like IEEE 802.15.4
and 6LoWPAN, etc. [21,25]. It has six different layers, as can be seen in Figure 1. Each of
the layers is described below:

Figure 1. Thread protocol stack [14].

• IEEE 802.15.4 Physical Layer
The physical layer is used for the transmission and reception of packets over a physical
medium. The physical and MAC layers of the Thread are defined according to the
IEEE 802.15.4 standard. In the physical layer, it operates in the 2.4 GHz free ISM
band and is divided into 16 channels numbered from 11 to 26. It offers a data rate of
250 kbps [12].

Appl. Sci. 2023, 13, 7745 5 of 23

• IEEE 802.15.4 MAC Layer
This layer is responsible for message handling and management, congestion control,
and error correction. The MAC layer includes CSMA-CA (Carrier Sense Multiple
Access-Collision Avoidance), allowing Thread devices to utilize the bandwidth effi-
ciently. It has features like beacon management, channel access, Guaranteed Time Slot
(GTS) management, etc. [27].

• 6LoWPAN
It stands for IPv6 for low-power wireless personal area network (6LoWPAN). It
facilitates the Thread network by providing adaptation between the IP layer and the
802.15.4 MAC layer. Packet fragmentation happens here as the packets are assembled
into IPv6 format while passing from the MAC layer to the IP layer and vice versa.
The layer adapts the bigger frames into smaller ones, making it more suitable for
energy-constrained and low-bandwidth devices. 6LoWPAN supports both mesh and
star topologies [9].

• IP Routing
As Thread supports the IPv6 architecture, DHCPv6 is used for router address assign-
ment. The IPv6 frames are 40 bytes long and contain an address field of 128 bits,
allowing more addresses than the IPv4. In IP routing, the mesh local addresses of
routers are maintained in a routing table, ensuring constant connectivity and the
availability of paths. Thread uses the distance vector routing protocol, which aims to
maximize the amount of routing information in a single message. The routing cost is
estimated using the Mesh Link Establishment (MLE) mechanism [14,25].

• User Datagram Protocol
Thread uses User Datagram Protocol (UDP) for messaging between devices. It also
supports TCP-based services for application-layer communication. UDP enables mes-
saging with minimum connection overhead, providing a faster and higher throughput
of messages. Applications requiring a guarantee may use the TCP protocol, assur-
ing reliability by detecting network congestion and packet acknowledgement and
re-transmission [13,14].

• Application Layer
The application layer provides an interface to the network. Thread is application-layer
agnostic and provides the flexibility to choose from a variety of application layers
to enable device connectivity like Message Queuing Telemetry Transport (MQTT),
Constrained Application Protocol (CoAP), etc. [22,24]. Thread, however, provides
multicast and UDP messaging as essential application layer services to allow commu-
nication over IP.

3.2. Device Types and Topology

Thread network supports a connectivity model where the end devices are only con-
nected to their parent nodes while all the routers are connected together, forming a mesh
network. The devices in Thread play different roles based on their functionalities [14,24,25],
as shown in Figure 2. In IEEE 802.15.4 networks, the commonly used terminologies of
coordinator, router, and end device are prevalent. However, the Thread network archi-
tecture introduces specific roles and functionalities that bring added clarity and facilitate
customized network design for IoT applications.

Appl. Sci. 2023, 13, 7745 6 of 23

Figure 2. Basic topology and device types of Thread network [14].

• End Device
These devices have reduced functionalities and are energy-constrained, similar to
their counterparts in other wireless protocols like ZigBee and Bluetooth. However,
Thread provides specific features to optimize energy consumption, such as allowing
end devices to enter sleep mode to conserve energy. Unlike some other protocols,
Thread end devices are always connected to their parent node, which has routing
capabilities and remains continuously active. Thread also introduces the concept of
Router Eligible End Devices (REEDs) that can be promoted to routers for improved
performance. The dynamic up-gradation and down-gradation of devices is managed
both explicitly by the network manager and automatically by the network based on
prevailing conditions.

• Router
Thread routers share similarities with routers in other protocols, such as ZigBee and
Bluetooth, in terms of their routing capabilities. These devices require power through-
out and are also called Full Thread Devices (FTD). All routers in the network are
connected together, forming a mesh, and route the data packets from source to desti-
nation nodes. Additionally, Thread routers also provide joining and commissioning
services to the end nodes. These nodes are also capable of becoming border routers
or leader routers, and if a leader goes down due to some reason, these nodes can be
automatically elected as leaders by the network.

• Border Router
This router connects the Thread network with the outside world and enables data flow
in and out of the network. It can also be termed the gateway of the Thread network to
the global internet or cloud. It can support both WiFi and Ethernet for connection to an
external network. Unlike other networks having a single gateway, in Thread multiple
border routers can also exist in a network, thus avoiding a single point of failure.

• Leader
Any router or border router that manages the Thread network is called a leader. It
has all the functionalities of the router but also has additional responsibilities like
assigning IP, upgrading or downgrading the router status of REEDs, and distributing
the network configuration information to the routers in the network. Unlike other
wireless protocols, such as Bluetooth and ZigBee, which may have central devices or

Appl. Sci. 2023, 13, 7745 7 of 23

coordinators, if the Thread leader goes down, a router is elected as a leader by other
thread routers to perform network management tasks.

4. Thread vs. Competitors

Several wireless communication technologies are used for IoT deployment, depending
upon the application requirements [9,12]. These communication technologies can also be
classified as long and short-range. The most commonly used short-range communication
technologies are, Wireless Fidelity (Wi-Fi), ZigBee, and Bluetooth. The common features among
most applications are low cost, low processing, low power, low storage, and a low bit rate.

Wi-Fi is a wireless protocol from the IEEE 802.11 family that operates over unlicensed
bands of 2.4 GHz and 5 GHz. Its basic purpose was to replace wired Ethernet with wireless.
Wi-Fi is a strong choice for IoT deployments, but due to its higher power consumption, is
not suitable for power-constrained and battery-powered IoT networks [28]. On the other
side, communication technologies like Bluetooth, Zigbee, and Thread require considerably
low power and are more practical for applications like smart cities, health care, home
automation, etc. [29,30]. These applications are not bandwidth-hungry and require a small
number of sensors to provide some parametric data; hence, low-bandwidth technologies
are suitable for such systems. These three short-range communication technologies have a
common characteristic, they all use the 2.4 GHz ISM band. Zigbee is particularly developed
to fulfill the needs of machine-to-machine and IoT networks, providing low-cost and low-
power wireless connectivity, while Bluetooth is short-range wireless and very low-power
but a high-bandwidth connectivity option [12]. As mentioned earlier, the Thread protocol
connects different existing technologies like IEEE 802.15.4, 6LoWPAN, and IETF IPv6
while providing mesh networking and distinguishing itself from its peers. Some of its
distinguishing characteristics are described below

• IPv6 support (highly scalable in terms of connectivity, compatible with existing
IP-based systems)
Resource-constrained devices can achieve device-device, device-mobile, and device-
cloud communication via IPv6. It can employ several IP-based concurrent applications
and ecosystems. End-to-end IP support facilitates customized applications and ser-
vices. It also unifies convergence across PHY/MAC networks [31].

• Highly resilient (auto-configuring and self-healing, no central hub)
The network automatically adapts to changing conditions. The number of routers in
the network can be increased or decreased as REEDs can act both ways. Thread is robust
and has a self-healing mesh network. Every Thread network has a leader node that is
responsible for network management, in the event of failure of this leader node, another
router is elected as a leader without compromising the network performance [14].

• Reliable (mesh network, no single point of failure)
Thread is a mesh network where each router node is connected to all available router
nodes. If a connection breaks down between any two nodes, these nodes can still
communicate as the network reroutes the traffic through another route. Another
distinguishing feature of the Thread network is that it can support multiple border
routers. As described before, these border routers provide connectivity from local
mesh to the global internet, so multiple border routers guarantee connectivity to the
internet and make the network more reliable with no single point of failure [20,24].

• Scalable (suitable for small and large networks)
Thread supports 32 routers, and each router can connect up to 511 devices, reaching
over 16 thousand devices. Multiple border routers also make it more scalable [20].
The Thread has 15 channels for radio communication, which can help achieve smooth
performance in situations with high node density.

• Secure (AES encryption, and secure commissioning)
Thread employs link-layer security, encrypts all network communication, and only
permits authorized nodes to connect to the network. Datagram Transport Layer Security
(DTLS) encryption technology is used for authentication in order to prevent tampering

Appl. Sci. 2023, 13, 7745 8 of 23

and message forging. Depending on the type of program being used and the type of end
device, further application layer-level security may also be applied [14].

• Low latency
The Thread connects devices directly in a mesh, which means lower latency. Nodes that
are not routers and are accessed through parent nodes can also be reached efficiently,
as the network is always looking for the best route, which translates into latency. Tests
conducted by Silicon Labs have shown that Thread outperforms Zigbee and Bluetooth
in terms of latency [19,23].

• Application-layer agnostic
The Thread protocol is application layer agnostic, which means there is no defined
application layer. This enables Thread products to choose freely between available
application layers and can support many IP-enabled application protocols [22,24].

• Low power consumption and low cost
The 6LoWPAN reduces transmission overhead using header compression and link
layer packet forwarding for multi-hop packets [31]. The Thread also supports sleepy
end devices, which keep their radios off and only work when an event occurs [22]. In
routing, Thread uses the best route possible, resulting in low power consumption.

• Open standard and Easy setup
There is also an open-source Thread stack implementation called OpenThread. It simpli-
fies application development, enabling the quick deployment of Thread-based products
to the market [21,31]. Thread stack is an open standard that is based on existing IEEE
and IETF standards and is thus easily understandable by industry and academia.

Thread’s IPv6 support, self-healing mesh network, scalability, low latency, low power
consumption, open standard, and easy setup make it an ideal choice for smart city ap-
plications. Its unique combination of features ensures reliable, efficient, and compatible
communication across a large number of devices and systems.

A comparative analysis of the features provided by various existing wireless com-
munication protocols is presented in Table 2. The information about these standards is
derived from [12].

Table 2. Comparison between various communication protocols used for short range.

Specification Wi-Fi Zigbee Bluetooth Thread

IEEE standard 802.11 802.15.4 802.15.1 802.15.4

Power consumption High Low Low Low

Frequency band 2.4 GHz/5 GHz 2.4 GHz, 868 MHz, 915 MHz, 2.4 GHz 2.4 GHz

Coverage Normally 10–40 m Normally 10–100 m Normally 10–100 m Normally 10–30 m

Bandwidth 1Gbps 250 kbps 1 Mbps 250 kbps

IP support Yes No No yes

Cloud integration Router Gateway Gateway Border router

Network topology Star Mesh Star/Mesh Mesh

Modulation OFDM O-QPSK GFSK O-QPSK

5. System Model and Experimental Setup

This section presents the technical details of the test bed design, such as the hardware
specifications, the environment, and the architecture of the test bed. The test bed comprises
Thread nodes forming a wireless mesh network that can be remotely controlled and
monitored over an Ethernet. The Thread sensor nodes are developed using custom-built
hardware devices that consist of a Raspberry Pi (RPi) 4 model B as the main processing
unit, and a Nordic semiconductor nRF52840 dongle as an IEEE 802.15.4 radio transceiver.
The RPi functions as a router or a Thread device while the nRF52840 dongle is responsible
for data transmission in the network. In addition to Thread, this dongle has support

Appl. Sci. 2023, 13, 7745 9 of 23

for Bluetooth and Zigbee [32]. A Windows-based application named “nRF Connect for
Desktop” can be used to configure the dongle by flashing a binary hex file.

The Thread stack is fully implemented on our testbed. The dongle provides the PHY
and MAC layers, while the host device is a RPi having Raspbian OS, providing the rest of
the layers. The 6LoWPAN runs over the RPi, and it handles IPv6 packet fragmentation
between the layers. Power banks are used to power the Thread devices, as depicted in
Figure 3. Google Nest’s OpenThread is used for implementation. OpenThread is an open-
source implementation of the Thread protocol that offers all Thread network functionalities
and has Git repository access [33]. OpenThread provides a command line interface (CLI) to
configure the individual nodes and the network.

The RPi was installed with Raspbian Operating System while OpenThread repositories
and OpenThread border router (OTBR) settings were installed from Github [34]. To make
the Thread device functional, we need to flash the Nordic dongle, for which relevant
OpenThread binaries are required to be generated through the OpenThread repositories.
After installing OTBR and flashing the dongle, we verify the services and configure the RPi
through CLI commands to build the Thread network. When the first node is configured, it
will initialize itself as the leader and start creating the Thread network. The subsequent
device will follow the same steps and join the existing Thread network. Once the network
is formed, these nodes can communicate with each other using ping and UDP.

Figure 3. Thread node based on Raspberry Pi 4B, Nordic nRF52840 dongle, powered by a power bank.

The test bed was set up in an office environment with various physical obstacles such
as concrete walls, furniture, and human occupancy. The office area also had other wireless
communication sources, such as WLAN access points and other Bluetooth devices, in the
background which makes the testbed more realistic. The Thread network had a maximum
capacity of 32 active routers, and router-eligible end devices (REEDs) could be promoted
to routers if the network had fewer than 32 routers. The role of REEDs can be adjusted in
the network according to the requirements. They can become child nodes and delegate the
routing tasks to their parent nodes. We evaluated the network performance by considering
three different topologies.

In Topology 1, we considered two thread devices, a leader and a router, as depicted in
Figure 4. The network was extended in Topology 2, where a child node was added to the

Appl. Sci. 2023, 13, 7745 10 of 23

network as shown in Figure 5. The child node could only communicate with the leader
through the router and has no direct link between them. This scenario was designed to test
the Thread network in situations where a child node had to relay data to the leader node
via an intermediate device. To further evaluate the network performance we considered a
network having complex topology in terms of mesh network. In Topology 3 we have three
child nodes, three routers, and one leader, as shown in Figure 6. These typologies and roles
of individual nodes are verified on the OpenThread web interface, as shown in Figures 7–9.
It provides a graphical user interface that enables users to configure various parameters.

Figure 4. Topology 1 setup.

Figure 5. Topology 2 setup.

Appl. Sci. 2023, 13, 7745 11 of 23

Figure 6. Topology 3 setup.

Figure 7. Topology 1: OpenThread web interface.

Appl. Sci. 2023, 13, 7745 12 of 23

Figure 8. Topology 2 : OpenThread web interface.

Figure 9. Topology 3: OpenThread web interface.

6. Performance Evaluation

The performance of the Thread network was analyzed by conducting different exper-
iments using the iperf testing tool. To measure the network’s performance, iperf uses a
server and client structure. This tool can provide detailed information about the network’s
behavior. The metrics used for performance evaluation are as follows:

• Jitter: It is the variation in time for a packet to travel across a network and is usually
measured in milliseconds (ms). A high jitter negatively impacts network perfor-
mance and causes irregularities in data transfers. This degraded quality of service
is highly undesirable, especially for real-time applications, such as voice and video
communications, where a consistent and predictable delay is crucial.

• Packet loss ratio: Furthermore, known as packet drop ratio, represents the number of
lost packets to the total number of packets sent. It represents the percentage of packets
that did not reach their intended destination due to various network issues. It is an

Appl. Sci. 2023, 13, 7745 13 of 23

important metric to evaluate the reliability and performance of a network. Its higher
percentage means loss of data and reflects degraded network performance.

• Round Trip Time: It refers to the time taken for a packet to travel from a source to a
destination and then back to the source, measured in milliseconds (ms). It is considered
an important metric in networking to measure the quality of a network and is commonly
used to diagnose the reliability of the network. A long RTT in a network is undesirable
and can negatively impact the performance of real-time applications.

While jitter is often associated with RTT and packet loss, in this paper, we treat it as an
independent parameter to analyze its impact on the network performance. It is important
to note that their behavior is interrelated. When network delays are stable and consistent,
the RTT tends to be low, indicating efficient packet delivery and low jitter. Conversely, if
the network delays exhibit variability and fluctuations, the RTT will be high, leading to
increased jitter. High jitter, in turn, can elevate the probability of packet loss. Consequently,
understanding and analyzing jitter as a separate parameter enables us to gain insights into
the network’s stability, consistency, and overall quality of service.

We conducted different experiments for UDP traffic, where each experiment had a
different scenario for varying bitrate and payload size. The details of the experimental
scenarios can be found below:

• Varying Network Topology
To assess the scalability of a network and gauge its performance as it expands, we
generate diverse network topologies by modifying the number of devices and their
assigned roles. This enables us to examine the network’s capacity for growth and measure
the effects on the network’s performance after changing the roles of individual devices.

• Varying Payload Size
We conduct a network performance analysis by varying the payload size. This enables
us to measure the jitter and packet loss ratio against each communication.

• Varying Bitrate
We conduct a performance analysis of the network by varying the bitrate, enabling us
to observe and evaluate the network’s performance under these modified conditions.

• Link Failure
To check the robustness of the network, link failure was introduced between a router
and a leader. Traffic was generated in the topology to check the network response to
link failure.

In our experiments, we have configured the network by varying the bitrate and pay-
load size. The UDP packet size is 1208 bytes by default and 250 kbps is the theoretical
maximum data rate provided by Thread, however, we conducted experiments by system-
atically varying the metrics, as presented in Table 3. This section is divided into several
subsections, each discussing specific experiments that aim to analyze and evaluate different
aspects of network performance under various scenarios. The first experiment identifies
the network bottleneck for each topology. The next two experiments examine the impact
of varying bitrate and payload size on jitter and packet loss for all three topologies. The
fourth experiment focuses on the network’s response to link failure and finally the fifth
experiment investigates the RTT for all topologies.

Table 3. Details of the performance evaluation parameters.

Performance Metric Details

Topology 3 topologies (2 nodes, 3 nodes, 7 nodes)

Bitrate range 5–250 kbps

Payload range 500–5000 Bytes

Appl. Sci. 2023, 13, 7745 14 of 23

6.1. Experiment 1: Bottleneck Scenario

In the context of computer networks, a bottleneck refers to a situation where the data
flow experiences degradation, either in terms of delays or packet loss [35]. It occurs when
the system delivers more data than the existing capacity of the network. Identifying network
bottlenecks can prevent traffic congestion and significantly improve network performance.

The network’s performance and potential bottlenecks were analyzed through com-
prehensive testing on all three topologies. We performed the tests for various payload
sizes by varying the bitrates, and the results showed that in Topology 1, at all payload
sizes (i.e., 500–5000 bytes), without packet loss communication is observed with bitrates
lower than 100 kbps, which can be seen in Figure 10. While for Topology 2, where the child
node communicates with the leader node through a router, this level drops to 40 kbps, as
shown in Figure 11. It indicates that the network’s performance is highly dependent on the
network topology; direct communication between two routers experiences less packet loss
and can be more suitable for certain scenarios. This experiment helps to understand the
network’s performance and highlights the need for proper network design according to
the requirements of the scenario.

Figure 10. Bottleneck for Topology 1.

Figure 11. Bottleneck for Topology 2.

Appl. Sci. 2023, 13, 7745 15 of 23

Similarly, this experiment was repeated for Topology 3 for two different scenarios.
In the first scenario, child-to-leader communication is observed, where all three nodes
are sending data to the leader node, making the network congested. Figure 12 shows
that in such a congested environment the bottleneck drops to 10 kbps. This drop occurs
because due to high congestion and high bitrate, the packet loss will be more frequent.
Similarly, on the same topology, another communication is also observed where child-to-
child communication is observed. In this scenario, the communication takes place over
three hops, as shown in Figure 13. It is worth noting that the bottleneck occurred at 30 kbps.
In this particular scenario, the network environment was not congested as other nodes did
not participate in any communication. It is evident that the bottleneck condition occurs
beyond that of the congested communication scenario, despite the two-hop communication.
However, it still exhibited lower performance compared to the two-hop communication
scenario employed in Topology 2.

Figure 12. Bottleneck for Topology 3 (Child to Leader).

Figure 13. Bottleneck for Topology 3 (Child to Child).

6.2. Experiment 2: Jitter with Increasing Bitrate and Payload Size

In this experiment, we varied the bitrate and payload size in the network and evaluated
its impact on the jitter. Increasing the bitrate and payload size caused an increase in
jitter, causing a significant impact on the network’s performance. This can be seen in

Appl. Sci. 2023, 13, 7745 16 of 23

Figures 14 and 15 in detail for Topology 1 and Topology 2, respectively. This experiment
highlights the importance of carefully selecting the bitrate and selecting an appropriate
payload size to avoid excessive jitter in the network. The jitter increases with the increase in
bitrate as the number of datagrams being sent also increases, making the network congested.
After a certain level of increase in the bitrate, the jitter starts to decrease. This decrease in jitter
is due to high packet loss, as the number of datagrams exceeds the capacity of the network.

Figure 14. Toplogy 1: Jitter with increasing bitrate and payload size.

Figure 15. Toplogy 2: Jitter with increasing bitrate and payload size.

As can be seen in Figure 14, overall in Topology 1, the optimal performance in terms
of jitter is achieved with a packet size of 1000 bytes with a 100 kbps bitrate and 2.507 ms
jitter. It could transfer the data with 0% packet loss as 100 kbps is before the bottleneck
occurs. It can be observed from the results as shown in Figure 15 when the number of hops
increases, there can be a significant increase in jitter. Both the topologies represent a similar
trend, as the bitrate increases, the number of datagrams also increases, which leads to an
increase in jitter. The optimal performance in Topology 2 is also achieved by a 1000-byte
packet size with a 40 kbps bitrate. It could transfer data with 0% packet loss as the bitrate is
not beyond the bottleneck scenario and 3.527 ms jitter.

The detailed representation of the experiments performed for evaluation of the Thread
network on varying the bitrate can be seen in Table 4. The results in Table 4 are generated
from Topology 1 where a router node communicates with the leader node, for the default
packet size of 1208 bytes in UDP transmission. It can be seen in the table that there are no
packet losses till the provided bitrate reaches the bottleneck of 100 kbps. We can also see
that with the increasing bitrate, the number of datagrams increases leading to congestion

Appl. Sci. 2023, 13, 7745 17 of 23

and ultimately packet losses. The same experiment is repeated for Topologies 2 and 3 to
check the network performance in terms of jitter and packet loss with different packet sizes.

Table 4. Detailed performance analysis of the network with 1208 byte packet size and varying bitrate
for Topology 1.

Bitrate (kbps) Bitrate at
Receiver (kbps)

Data Transferred
(KBytes)

Data Received
(KBytes) Datagrams/s

Lost/Total
Datagrams in

30 s (%)
Jitter (ms)

5 5 18.9 18.9 0–1 0/16 (0%) 3.694

10 10 37.8 37.8 1 0/32 (0%) 3.861

20 20 74.3 74.3 2–3 0/63 (0%) 4.424

30 30 111 111 3–4 0/94 (0%) 3.02

40 40 147 147 4–5 0/125 (0%) 3.269

50 50 184 184 5–6 0/156 (0%) 5.405

60 60 221 221 6–7 0/187 (0%) 3.167

70 70 257 257 7–8 0/218 (0%) 2.758

80 80 294 294 8–9 0/249 (0%) 3.427

90 90 330 330 9–10 0/280 (0%) 2.597

100 100 367 367 10–11 0/311 (0%) 3.180

110 101 403 380 11–12 20/342 (5.8%) 12.383

120 99.1 440 373 12–13 57/373 (15%) 29.222

130 101 477 379 13–14 83/404 (21%) 30.814

140 100 513 379 14–15 114/435 (26%) 32.180

150 101 550 379 15–16 144/465 (31%) 31.43

160 101 586 379 16–17 175/496 (35%) 28.481

170 99.9 623 376 17–18 209/528 (40%) 23.737

180 100 659 376 18–19 240/559 (43%) 19.349

190 99.9 696 376 20–19 271/590 (46%) 10.582

200 101 733 380 20–21 299/621 (48%) 4.219

210 100 769 378 21–22 332/652 (51%) 6.471

220 100 806 376 23–22 364/683 (53%) 13.338

230 97.3 842 366 24–23 402/712 (56%) 17.172

240 100 880 378 25 425/745 (57%) 18.644

250 101 917 379 26–25 455/776 (59%) 18.653

The impact of varying bitrate and payload on jitter has also been observed on Topology 3,
in both child-to-leader with network congestion and child-to-child communication scenarios.
The network performance of these scenarios can be seen in Tables 5 and 6, respectively. It
can be clearly seen that the jitter is much higher in the network congestion scenario of two
hops communication, as compared to three hops communication. The “0 ms” jitter values in
Table 5 indicate that no contact was made. This happens due to high bitrate, as the network
becomes even more congested and communication becomes impossible.

Table 5. Impact of increasing bitrate and payload size on Jitter for Topology 3, child to leader
communication scenario.

Bitrate (kbps)
Jitter (ms)

500 Bytes 1000 Bytes 1208 Bytes 1500 Bytes 2000 Bytes 3000 Bytes 4000 Bytes 5000 Bytes

10 75.195 61.541 120.082 84.122 70.342 72.946 66.989 69.525

Appl. Sci. 2023, 13, 7745 18 of 23

Table 5. Cont.

Bitrate (kbps)
Jitter (ms)

500 Bytes 1000 Bytes 1208 Bytes 1500 Bytes 2000 Bytes 3000 Bytes 4000 Bytes 5000 Bytes

40 95.888 134.741 117.504 208.674 223.109 214.725 142.883 0

50 90.146 143.145 151.893 249.356 219.242 228.315 191.704 0

100 78.488 115.648 133.618 241.004 206.343 160.182 173.23 0

150 80.819 104.642 125.031 249.36 216.368 203.016 138.337 0

200 86.399 138.047 178.823 270.122 228.178 234.024 138.879 0

250 88.512 113.075 141.16 250.633 215.769 0 0 0

Table 6. Impact of increasing bitrate and payload size on Jitter for Topology 3, child-to-child commu-
nication scenario.

Bitrate (kbps)
Jitter (ms)

500 Bytes 1000 Bytes 1208 Bytes 1500 Bytes 2000 Bytes 3000 Bytes 4000 Bytes 5000 Bytes

10 13.556 23.152 20.476 15.984 15.452 22.931 20.516 16.034

30 16.063 29.477 29.517 18.706 22.888 21.814 43.364 37.447

50 58.153 92.737 95.823 57.955 89.803 111.824 88.274 61.679

100 21.978 102.889 88.78 92.665 99.548 96.881 44.413 58.958

150 27.559 114.324 47.554 100.601 113.415 109.067 53.171 63.605

200 25.147 49.905 28.365 78.821 103.424 84.324 57.556 73.589

250 22.653 56.107 59.016 55.98 65.889 46.945 59.008 73.88

6.3. Experiment 3: Packet Loss with Increasing Bitrate and Payload Size

In this experiment, we observed packet loss in the network across different bitrates
and payload sizes. The results showed that increasing the bitrate and payload caused an
increase in packet loss, significantly impacting the network’s performance. The results for
Topologies 1 and 2 can be seen in Figures 16 and 17, while the results of two scenarios
of Topology 3 are reflected in Tables 7 and 8. This is because of the same reason, when
the bitrate is increased, more datagrams are transmitted, which leads to congestion and,
eventually a high packet loss. This experiment highlights the importance of carefully
selecting the bitrate and payload size keeping in view the use case scenario, to avoid
excessive packet loss in the network. It has been further discussed in Section 7 in detail.

Figure 16. Topology 1: Packet loss with increasing bitrate and payload size.

Appl. Sci. 2023, 13, 7745 19 of 23

Figure 17. Toplogy 2: Packet loss with increasing bitrate and payload size.

Table 7 shows that due to high congestion, there is an increase in packet loss which
can even cause a complete 100% packet loss. The results in this table can also be matched
with that of Table 5, where we observed a “0 ms” jitter due to no communication. For the
child-to-child communication scenario, it can be seen in Table 8 that till 30 kbps bitrate,
we can achieve communication with zero packet loss, but as the bitrate and payload is
increased, we observed high packet losses.

Table 7. Impact of increasing bitrate and payload size on packet loss ratio for Topology 3, child-to-
leader communication scenario.

Bitrate (kbps)
Packet Loss Ratio (%)

500 Bytes 1000 Bytes 1208 Bytes 1500 Bytes 2000 Bytes 3000 Bytes 4000 Bytes 5000 Bytes

10 0 0 0 0 0 0 0 0

40 56 54 56 78 88 90 92 100

50 65 63 60 86 94 94 96 100

100 83 82 82 96 97 98 97 100

150 88 88 87 98 98 98 98.5 100

200 90 91 92 99 99 99 99 100

250 93 93 92 99 99 100 100 100

Table 8. Impact of increasing bitrate and payload size on packet loss ratio for Topology 3, child-to-
child communication scenario.

Bitrate (kbps)
Packet Loss Ratio (%)

500 Bytes 1000 Bytes 1208 Bytes 1500 Bytes 2000 Bytes 3000 Bytes 4000 Bytes 5000 Bytes

10 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 0

50 42 36 33 58 78 86 89 92

100 67 71 68 84 97 97 98 97

150 78 79 78 96 98 98 98 98

200 84 84 83 99 99 99 98 99

250 88 87 87 99 99 99 99 99

Appl. Sci. 2023, 13, 7745 20 of 23

6.4. Experiment 4: Link Failure Scenario for Topology 3

In this experiment, we also analyzed the response of the Thread network to link failure.
We performed this experiment over Topology 3, where the connection between Router 1 and
Leader was broken. In a network that is not based on mesh, this link failure would leave
Child 1 and Router 1 isolated. As Thread is a mesh-based topology, it routes the traffic from
Child 1 through Router 1 to another router as per Thread’s routing algorithm. This makes
Thread more reliable and resilient, providing a better choice for sensitive applications
which can not tolerate link breakage. Figure 18 shows the network performance when
the communication is set up between Child 1 and the Leader under both normal and link
failure conditions. We can see that the jitter is increased in the link failure scenario as the
traffic has to be routed through the network taking a longer route than its original path. We
observed that the jitter decreased as the payload size increased, this happens because, with a
small packet size, more datagrams are transmitted and the network becomes congested, as
discussed in Section 6.2 in detail. We also analyzed the performance of the network in terms
of packet loss, as shown in Figure 19. Even with a link failure, it can be observed that the
network is still able to transfer data; however, it will experience more packet losses due to
longer routes.

Figure 18. Jitter in link failure scenario for Topology 3.

Figure 19. Packet loss in link failure scenario for Topology 3.

Appl. Sci. 2023, 13, 7745 21 of 23

6.5. Experiment 5: Round Trip Time

As discussed in Section 2 and shown in Table 1, RTT is the most common performance
evaluation metric for networks and also have been used in Thread-related literature. We
also evaluate our network based on this metric for all three topologies as previously
discussed. We analyzed the network response on these topologies using standard ICMP
ping. Figure 20 shows that the RTT increases with an increase in the number of hops and
the lowest RTT is observed with one-hop communication, i.e., less than 20 ms.

Figure 20. RTT for the three topologies.

7. Recommendations

In networks using the Thread protocol, the choice of the communication system (one
hop, two hops, or multi-hop) depends on the specific application requirements. On the
basis of the results, we have identified a few recommendations regarding the appropriate
topology utilization. The one-hop topology is suitable for applications that need low latency
and direct communication between a leader node and a router, such as remote control and
sensors to the base station. The two-hop topology is beneficial for applications that need
extended coverage or communication between the leader node and child nodes located
further away, such as home automation, building/campus monitoring systems, distributed
industrial IoT applications, and neighborhood area networks. While the multi-hop topology
which is based on mesh topology, is ideal for applications that need robustness, scalability,
and redundancy, such as industrial monitoring and control, wireless sensor networks, smart
city infrastructure, and large-scale deployments. The choice of a communication system will
consider factors, such as jitter, packet loss ratio, and round trip time by considering varying
bitrate, payload, and link failure to match the specific requirements of each application.

Overall, the performance evaluation results indicate that the Thread network based on
OpenThread and the Raspberry Pi is capable of providing a low packet loss ratio and jitter.
The Thread protocol has been tested in various varying conditions to check its performance.
One-hop and two-hop topologies perform better than the multi-hop topology having less
jitter and packet loss ratio. However, all topologies provide acceptable performance in
terms of packet loss rates. Based on these observations, we believe the Thread system can
be used for a wide range of applications, as mentioned previously.

8. Conclusions and Future Work

This work presented a detailed implementation of a Thread-based network using
OpenThread, the Raspberry Pi, and the nRF52840 dongle. It provides a clear description of
the Thread protocol stack layers and network topology. The assessment of system perfor-

Appl. Sci. 2023, 13, 7745 22 of 23

mance, along with configuration parameters, such as jitter and packet loss, demonstrates
the effectiveness and reliability of the implemented Thread network in one-hop, two-hop,
and multi-hop communication. Furthermore, the investigation examines the network’s
performance by considering link failure situations. The performance assessment results
not only highlight the system’s capabilities but also emphasize the potential of Thread
for efficient and dependable communication in IoT networks. The findings from our ex-
periments can serve as useful guidance for optimizing the network’s performance under
various traffic conditions.

Our future work will focus on incorporating mobility into the network and exploring
its performance in various real-world scenarios, such as smart homes, smart buildings,
agriculture, and industrial automation.

Author Contributions: Conceptualization, S.B.A.K. and M.M.N.; Methodology, S.B.A.K., M.M.N.
and H.F.; Validation, S.B.A.K., M.M.N. and H.F.; Formal analysis, M.M.N.; Investigation, S.B.A.K.
and N.C.; Data curation, M.M.N.; Writing—original draft, S.B.A.K.; Writing—review & editing,
H.F.; Visualization, H.F.; Supervision, M.M.N. and N.C.; Project administration, M.M.N.; Funding
acquisition, M.M.N. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the research grants [SEED-2022-CE-106]; Prince Sultan
University; Saudi Arabia [grant number SEED-2022-CE-106].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to acknowledge Prince Sultan University and Smart Systems
Engineering lab for their valuable support. Furthermore, the authors would like to acknowledge the
support of Prince Sultan University for paying the Article Processing Charges (APC) of this publication.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Khattak, S.B.A.; Jia, M.; Marey, M.; Nasralla, M.M.; Guo, Q.; Gu, X. A Novel Single Anchor Localization Method for Wireless

Sensors in 5G Satellite-Terrestrial Network. Alex. Eng. J. 2022, 61, 5595–5606. [CrossRef]
2. Ilyas, A.; Mahfooz, S.; Mehmood, Z.; Ali, G.; ElAffendi, M. Two-way approach for improved real-time transmission in fog-iot-

based health monitoring system for critical patients. Comput. Syst. Sci. Eng. 2023, 46, 3815–3829. [CrossRef]
3. Elfouly, F.H.; Ramadan, R.A.; Khedr, A.Y.; Yadav, K.; Azar, A.T.; Abdelhamed, M.A. Efficient Node Deployment of Large-Scale

Heterogeneous Wireless Sensor Networks. Appl. Sci. 2021, 11, 10924. [CrossRef]
4. Jan, H.; Yar, H.; Iqbal, J.; Farman, H.; Khan, Z.; Koubaa, A. Raspberry Pi Assisted Safety System for Elderly People: An Application of

Smart Home. In Proceedings of the 2020 First International Conference of Smart Systems and Emerging Technologies (SMARTTECH),
Riyadh, Saudi Arabia, 3–5 November 2020; pp. 155–160. [CrossRef]

5. Tekler, Z.D.; Low, R.; Yuen, C.; Blessing, L. Plug-Mate: An IoT-based occupancy-driven plug load management system in smart
buildings. Build. Environ. 2022, 223, 109472. [CrossRef]

6. Zhuang, D.; Gan, V.J.; Tekler, Z.D.; Chong, A.; Tian, S.; Shi, X. Data-driven predictive control for smart HVAC system in
IoT-integrated buildings with time-series forecasting and reinforcement learning. Appl. Energy 2023, 338, 120936. [CrossRef]

7. Low, R.; Tekler, Z.D.; Cheah, L. Predicting commercial vehicle parking duration using generative adversarial multiple imputation
networks. Transp. Res. Rec. 2020, 2674, 820–831. [CrossRef]

8. Jan, B.; Farman, H.; Khan, M.; Talha, M.; Din, I.U. Designing a Smart Transportation System: An Internet of Things and Big Data
Approach. IEEE Wirel. Commun. 2019, 26, 73–79. [CrossRef]

9. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications. IEEE Commun. Surv. Tutorials 2015, 17, 2347–2376. [CrossRef]

10. Allahham, A.A.; Rahman, M.A. A smart monitoring system for campus using Zigbee wireless sensor networks. Int. J. Softw. Eng.
Comput. Syst. 2018, 4, 1–4. [CrossRef]

11. Tekler, Z.D.; Low, R.; Gunay, B.; Andersen, R.K.; Blessing, L. A scalable Bluetooth Low Energy approach to identify occupancy
patterns and profiles in office spaces. Build. Environ. 2020, 171, 106681. [CrossRef]

12. Orfanos, V.A.; Kaminaris, S.D.; Papageorgas, P.; Piromalis, D.; Kandris, D. A Comprehensive Review of IoT Networking Technologies
for Smart Home Automation Applications. J. Sens. Actuator Netw. 2023, 12, 30. [CrossRef]

13. Unwala, I.; Taqvi, Z.; Lu, J. Thread: An IoT Protocol. In Proceedings of the 2018 IEEE Green Technologies Conference (GreenTech),
Austin, TX, USA, 4–6 April 2018; pp. 161–167. [CrossRef]

http://doi.org/10.1016/j.aej.2021.11.061
http://dx.doi.org/10.32604/csse.2023.036316
http://dx.doi.org/10.3390/app112210924
http://dx.doi.org/10.1109/SMART-TECH49988.2020.00046
http://dx.doi.org/10.1016/j.buildenv.2022.109472
http://dx.doi.org/10.1016/j.apenergy.2023.120936
http://dx.doi.org/10.1177/0361198120932166
http://dx.doi.org/10.1109/MWC.2019.1800512
http://dx.doi.org/10.1109/COMST.2015.2444095
http://dx.doi.org/10.15282/ijsecs.4.1.2018.1.0034
http://dx.doi.org/10.1016/j.buildenv.2020.106681
http://dx.doi.org/10.3390/jsan12020030
http://dx.doi.org/10.1109/GreenTech.2018.00037

Appl. Sci. 2023, 13, 7745 23 of 23

14. Thread Network Fundamentals, White Paper. September 2022. Available online: https://www.threadgroup.org/support
(accessed on 27 April 2023).

15. Al-Shareeda, M.A.; Manickam, S. A Systematic Literature Review on Security of Vehicular Ad-Hoc Network (VANET) Based on
VEINS Framework. IEEE Access 2023, 11, 46218–46228. [CrossRef]

16. Nakura, K.; Ishibashi, N.; Masaki, H.; Mizutani, K.; Harada, H. Experimental Evaluation of IEEE 802.15.4 OFDM for Wireless
IoT Communication Systems. In Proceedings of the 2022 IEEE 33rd Annual International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC), Kyoto, Japan, 12–15 September 2022; pp. 1159–1164. [CrossRef]

17. Silicon Labs. Thread Mesh Network Performance. Available online: https://www.silabs.com/documents/login/application-
notes/an1141-thread-mesh-network-performance.pdf (accessed on 27 April 2023).

18. NXP Semiconductors. Thread Large Network. AN12099. 2017. Available online: https://www.nxp.com/docs/en/application-
note/AN12099.pdf (accessed on 27 April 2023).

19. Silicon Labs. Benchmarking Bluetooth Mesh, Thread, and Zigbee Network Performance. Available online: https://www.silabs.
com/wireless/multiprotocol/mesh-performance (accessed on 27 April 2023).

20. Sistu, S.; Liu, Q.; Ozcelebi, T.; Dijk, E.; Zotti, T. Performance Evaluation of Thread Protocol based Wireless Mesh Networks for
Lighting Systems. In Proceedings of the 2019 International Symposium on Networks, Computers and Communications (ISNCC),
Istanbul, Turkey, 18–20 June 2019; pp. 1–8. [CrossRef]

21. Rzepecki, W.; Ryba, P. IoTSP: Thread Mesh vs. Other Widely used Wireless Protocols—Comparison and use Cases Study.
In Proceedings of the 2019 7th International Conference on Future Internet of Things and Cloud (FiCloud), Istanbul, Turkey,
26–28 August 2019; pp. 291–295. [CrossRef]

22. Tupas Castro, C.M.; Sharma, A.; Kumar, D.S.; Abidi, K.; Kim, N. The implementation of Thread Network for a Smart Factory.
In Proceedings of the 2022 IEEE Symposium Series on Computational Intelligence (SSCI), Singapore, 4–7 December 2022;
pp. 253–260. [CrossRef]

23. Lan, D.; Pang, Z.; Fischione, C.; Liu, Y.; Taherkordi, A.; Eliassen, F. Latency Analysis of Wireless Networks for Proximity Services
in Smart Home and Building Automation: The Case of Thread. IEEE Access 2019, 7, 4856–4867. [CrossRef]

24. Chitanvis, R.; Ravi, N.; Zantye, T.; El-Sharkawy, M. Collision avoidance and Drone surveillance using Thread protocol in V2V
and V2I communications. In Proceedings of the 2019 IEEE National Aerospace and Electronics Conference (NAECON), Dayton,
OH, USA, 15–19 July 2019; pp. 406–411. [CrossRef]

25. Herrera, T.; Núñez, F. Design and Prototyping of a Thread Border Router Based on a Non Network-Co-Processor Architecture.
IEEE Access 2020, 8, 60613–60625. [CrossRef]

26. Grohmann, A.I.; Nophut, D.; Sobe, M.; Perez, A.B.; Fitzek, F.H.P. Interference resilience of Thread: A practical performance
evaluation. In Proceedings of the 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC),
Las Vegas, NV, USA, 9–12 January 2021; pp. 1–4. [CrossRef]

27. Kurunathan, H.; Severino, R.; Koubaa, A.; Tovar, E. IEEE 802.15.4e in a Nutshell: Survey and Performance Evaluation. IEEE
Commun. Surv. Tutorials 2018, 20, 1989–2010. [CrossRef]

28. Khattak, S.B.A.; Fawad, M.M.; Nasralla, M.A.; Mostafa, H.E.; Jia, M. WLAN RSS-Based Fingerprinting for Indoor Localization: A
Machine Learning Inspired Bag-of-Features Approach. Sensors 2022, 22, 5236. [CrossRef] [PubMed]

29. Latif, S.; Driss, M.; Boulila, W.; Jamal, S.S.; Idrees, Z.; Ahmad, J. Deep Learning for the Industrial Internet of Things (IIoT): A
Comprehensive Survey of Techniques, Implementation Frameworks, Potential Applications, and Future Directions. Sensors 2021,
21, 7518. [CrossRef] [PubMed]

30. Choudhury, N.; Nasralla, M.M.; Shrivastav, A.; Hazarika, A. DDAS: Distributed Delay Aware Scheduling for DSME based IoT
Network Applications in Smart Cities. In Proceedings of the 2022 IEEE 23rd International Symposium on a World of Wireless,
Mobile and Multimedia Networks (WoWMoM), Belfast, UK, 14–17 June 2022; pp. 535–540. [CrossRef]

31. Rzepecki, W.; Iwanecki, Ł.; Ryba, P. IEEE 802.15.4 Thread Mesh Network—Data Transmission in Harsh Environment. In
Proceedings of the 2018 6th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW), Barcelona,
Spain, 6–8 August 2018; pp. 42–47. [CrossRef]

32. nRF52840 Dongle. Available online: https://www.nordicsemi.com/Products/Development-hardware/nrf52840-dongle
(accessed on 27 April 2023).

33. OpenThread. Available online: https://openthread.io/ (accessed on 27 April 2023).
34. OpenThread Git Repository. Available online: https://github.com/openthread (accessed on 27 April 2023).
35. Singh, N.; Vardhan, M. Multi-objective optimization of block size based on CPU power and network bandwidth for blockchain

applications. In Proceedings of the Fourth International Conference on Microelectronics, Computing and Communication Systems: MCCS
2019–2021; Springer: Singapore, 2021; pp. 69–78.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.threadgroup.org/support
http://dx.doi.org/10.1109/ACCESS.2023.3274774
http://dx.doi.org/10.1109/PIMRC54779.2022.9978097
https://www.silabs.com/ documents/login/application-notes/an1141-thread-mesh-network-performance.pdf
https://www.silabs.com/ documents/login/application-notes/an1141-thread-mesh-network-performance.pdf
https://www.nxp.com/docs/en/application-note/AN12099.pdf
https://www.nxp.com/docs/en/application-note/AN12099.pdf
https://www.silabs.com/wireless/multiprotocol/mesh-performance
https://www.silabs.com/wireless/multiprotocol/mesh-performance
http://dx.doi.org/10.1109/ISNCC.2019.8909109
http://dx.doi.org/10.1109/FiCloud.2019.00048
http://dx.doi.org/10.1109/SSCI51031.2022.10022228
http://dx.doi.org/10.1109/ACCESS.2018.2888939
http://dx.doi.org/10.1109/NAECON46414.2019.9058170
http://dx.doi.org/10.1109/ACCESS.2020.2983734
http://dx.doi.org/10.1109/CCNC49032.2021.9369625
http://dx.doi.org/10.1109/COMST.2018.2800898
http://dx.doi.org/10.3390/s22145236
http://www.ncbi.nlm.nih.gov/pubmed/35890915
http://dx.doi.org/10.3390/s21227518
http://www.ncbi.nlm.nih.gov/pubmed/34833594
http://dx.doi.org/10.1109/WoWMoM54355.2022.00083
http://dx.doi.org/10.1109/W-FiCloud.2018.00013
https://www.nordicsemi.com/Products/Development-hardware/nrf52840-dongle
https://openthread.io/
https://github.com/openthread

	Introduction
	Related Work
	Thread Protocol Overview
	Protocol Stack
	Device Types and Topology

	Thread vs. Competitors
	System Model and Experimental Setup
	Performance Evaluation
	Experiment 1: Bottleneck Scenario
	Experiment 2: Jitter with Increasing Bitrate and Payload Size
	Experiment 3: Packet Loss with Increasing Bitrate and Payload Size
	Experiment 4: Link Failure Scenario for Topology 3
	Experiment 5: Round Trip Time

	Recommendations
	Conclusions and Future Work
	References

