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Featured Application: Pistachio orchard management using remote sensing with UAVs.

Abstract: Pistachio (Pistacia vera L.) has earned recognition as a significant crop due to its unique
nutrient composition and its adaptability to the growing threat of climate change. Consequently, the
utilization of remote sensing techniques for non-invasive pistachio monitoring has become critically
important. This research was conducted in two pistachio orchards located in Spain, aiming to assess
the effectiveness of vegetation indices (VIs) in estimating nut yield and quality under various irriga-
tion conditions. To this end, high-resolution multispectral and thermal imagery were gathered using a
Micasense ALTUM sensor carried by a DJI Inspire 2 drone in order to calculate the NDRE (normalized
difference red edge index), GNDVI (green normalized difference vegetation index), NDVI (normal-
ized difference vegetation index), and CWSI (crop water stress index). Each orchard underwent
two flights at distinct growth stages, totaling four flights. In June, NDRE-carbohydrates (r = 0.78)
and CWSI-oleic (r = 0.77) showed the highest correlations, while in September, CWSI-carbohydrates
(r = 0.62) and NDVI-iron (r = 0.54) Despite NDVI’s limitations due to saturation effects, all VIs had
significant yield and quality correlations, with GNDVI proving most effective in both flights. CWSI
correlated considerably on both dates in terms of several quality parameters (carbohydrate percent-
age, magnesium, iron, and fatty acids, namely palmitoyl, stearic, oleic, and linoleic), surpassing
non-thermal indices. Finally, it is important to consider the impact of environmental factors, such
as the location of the sun, when interpreting the CWSI, as it modifies the temperature distribution
pattern within the canopy. This study supports the viability of remote sensing and vegetation indices
as potential tools for enhancing the management of pistachio orchards.

Keywords: CWSI; drone; GNDVI; irrigation; multispectral; NDRE; NDVI; nut quality;
Pistacia vera; LWIR

1. Introduction

Pistachios (Pistacia vera L.) have emerged as some of the most nutritionally rich nuts,
distinguished by a protein, essential amino acids, vitamins, and mineral ratio surpassing
that of many other frequently consumed nuts [1]; these nuts have been shown to contain an
array of nutrients including protein, fiber, monounsaturated fatty acids, minerals, vitamins,
carotenoids, phenolic acids, flavonoids, and anthocyanins, all of which contribute to the
antioxidant and anti-inflammatory properties of pistachio [2]. Incorporating pistachios
into the diet has been associated with various health benefits since the consumption of
nuts, pistachios included, positively impacts a range of health outcomes. Pistachio nuts
are nutrient-dense and possess a unique nutrient profile, with a lower fat and energy
content compared to other nuts and a higher concentration of specific vitamins, minerals,
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phytosterols, and antioxidants [3]. Furthermore, pistachios can be consumed raw but they
can also be utilized in derived products of interest to the food industry [4]. Therefore, in the
context of increasing global demand for nutritious and sustainable food sources in recent
years, the pistachio has garnered significant interest due to these aforementioned attributes.

On the other hand, from an agronomical perspective, pistachios show great promise for
addressing the challenges of climate change. Climate change signifies a process of altering
global climatic patterns on Earth. According to the latest report from the Intergovernmental
Panel on Climate Change (IPCC) of the United Nations (UN) published in 2022 [5], our
planetary climate system is undergoing a notable global warming trend, underscored by
increased surface air and sea temperatures, which have on average risen by 0.87 ◦C since
the pre-industrial era up to the decade between 2006 and 2015. This report accentuates
the persistent rise in temperatures, which is causing increasingly frequent heatwaves
and potentially leading to a higher frequency and severity of intense precipitation events
globally. Paradoxically, this trend is anticipated to be accompanied by a higher incidence
of drought in certain regions, such as the Mediterranean, intensifying plant water stress,
increased agricultural water usage, and decreased water availability [6].

The pistachio tree is recognized for its significant drought resilience and its ability to
maintain photosynthesis even under low leaf water potential [7], showing impressive adapt-
ability to challenging environmental conditions and water scarcity [8,9]. An additional
challenge is that reduction in soil water content usually leads to increased salinity [10];
however, pistachios are known for their salinity resistance, albeit only to a certain degree,
because moderate salinity does not hinder the initial growth of these trees but elevated
salinity levels and extended exposure can be detrimental [11]. Depending on the rootstock
used, responses can vary based on different stress resistance mechanisms, thus under-
scoring the importance of rootstock selection in mitigating environmental conditions and
enhancing crop performance [12–14]. Given the potential for a wide array of symptoms, it
is important to have tools that allow for the swift and accurate analysis of crop status and
early symptom onset.

With the remarkable advancements in multispectral and thermal or LWIR (long wave
infrared) imaging technology, there are new and exciting prospects for precision agriculture.
Such imaging technologies allow for the acquisition of precise spectral and temperature
data about crops, thereby aiding in agricultural management through informed decision-
making processes. A popular method in agriculture for leveraging multispectral images is
to calculate vegetation indices (VIs), which are the algebraic combinations of the numerous
information bands provided by the images. The normalized difference vegetation index, or
NDVI [15], is a well-known VI widely utilized for monitoring woody crops [16–18] due to
its direct correlation with the vegetation present in the field [19]. Additional VIs, such as
the green normalized difference vegetation index, GNDVI [20]; the normalized difference
red edge index, NDRE [21]; and the crop water stress index, CWSI [22,23], have proven
beneficial in precision agriculture [24–26]. The CWSI, in particular, which relies on thermal
imagery, provides a comprehensive approach to understanding crop water usage and stress,
identifying temperature variations within and between crop canopies, and offering critical
insights into plant transpiration rates and potential irrigation-related problems [27–29].

Several studies have centered on imaging techniques in relation to pistachios. For
instance, Mohammadi-Moghaddam et al. [30] created models based on Vis/NIR hyper-
spectral imaging and multivariate analysis for predicting the moisture content and textural
features of pistachio kernels roasted under different conditions. Bonifazi et al. [31] assessed
different multivariate classification methods applied to shortwave infrared range (SWIR:
1000–2500 nm) hyperspectral images for identifying contaminants in edible pistachio prod-
ucts. Eksi-Kocak et al. [32] developed a rapid, nondestructive technique to detect green
pea adulteration in pistachio nut granules using Raman hyperspectral imaging, principal
component analysis, and partial least squares regression, and Singh et al. [33] were able to
distinguish between two types of pistachios (Kirmizi and Siirt) commonly grown in Turkey,
using imagery and convolutional neural networks. However, the majority of these studies
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concentrate on post-harvest fruits, showing a knowledge gap regarding the use of images
for managing pistachio cultivation in the field.

Only a few studies have demonstrated the potential of using images for managing
pistachio crops in the field. For instance, Jacygrad et al. [34] exploited the power of
Unmanned Aerial Vehicles (UAVs) to capture the seasonal changes of pistachio tree crowns
in a pistachio orchard, providing valuable insights into tree characteristics. Vélez et al. [35]
developed an innovative method that leverages the shadows cast by the canopies of
pistachio trees to estimate their volume in a cost-effective manner. In a similar vein, Barajas
et al. [36] validated the effectiveness of NDVI as a reliable tool for identifying the vigor of
pistachio trees. Testi et al. [37] found that CWSI served as a sensitive indicator of water
stress in pistachio trees, highlighting clear differences between well-irrigated and deficit-
irrigated trees. Moreover, Bellvert et al. [38] utilized NDVI data derived from Landsat-8
to compute various coefficients linked to pistachio water use, revealing distinct seasonal
variations. While these studies have significantly progressed the field and explored the
potential of imaging technologies in pistachio crop management, there still exists an evident
gap in establishing a robust link between such imagery and two critical aspects of pistachio
cultivation: yield and nut quality.

Therefore, the novel contribution of the present study lies in exploring the relationship
between multispectral and thermal images and the most important agronomic and quality
parameters for pistachio cultivation. The focus of this work centers on harnessing the
potential of UAV-based remote sensing that employs thermal and multispectral imaging
technologies, with the aim of optimizing pistachio crop management, emphasizing three
key factors: irrigation, yield, and quality. Intending to foster sustainable and efficient
agricultural approaches in pistachio cultivation, this study strives to highlight the relation-
ships between remote sensing techniques and the agronomic factors and quality features
of pistachios.

2. Materials and Methods
2.1. Study Site and Plant Material

In 2022, the experimental trials were conducted in two separate pistachio orchards
located in Valladolid, region of Castilla y León, Spain (Figure 1). The orchards were located
in two different areas located in the south of the province, “Moraleja de las Panaderas” and
“La Seca”, respectively.

The planting material utilized in the experimental trials included both 7-year-old and
15-year-old pistachio plants of the cv. Kerman variety, one of the most common female
cultivars, known for its high-quality nuts and adaptability to various environmental condi-
tions [2]. These plants were grafted onto the UCB rootstock, a P. atlantica × P. integerrima
hybrid, and the experimental orchards were arranged in a 7 × 6 m triangular planting
pattern, featuring NE–SW orientation, which optimizes sunlight exposure and promotes
the efficient use of available resources. The variety used as male was cv. Peter. As part of
the standard crop management practices in this region, weeds, insect pests, and diseases
were controlled by applying the recommenced agrochemicals to avoid yield limitations.

2.2. Irrigation Treatments

The pistachio trees in this study (Figure 2) were subjected to two distinct irrigation
treatments during their vegetative cycle. The higher irrigation treatment (H) administered
50% more water compared to the control treatment (C). At the “La Seca” location, the trees
underwent irrigation from January to October 2022, utilizing a computer-controlled drip
irrigation system. This system allowed for precise adjustments to the duration of each
irrigation episode, ensuring the accurate regulation of water quantities. Throughout 2022,
the total volume of irrigation water supplied to the trees in “La Seca” was 2.750 m3 ha−1

for the control treatment (C) and 4.660 m3 ha−1 for the higher treatment (H).
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On the other hand, in “Moraleja”, the trees received irrigation water from May to
October, with the control treatment (C) amounting to 844 m3 ha−1 and the higher treatment
(H) receiving 1.161 m3 ha−1 of water. This controlled variation in water supply enabled the
introduction of variability to examine the effects of different irrigation levels on the growth
and productivity of the pistachio trees.

2.3. Image Acquisition and Processing

Throughout the growing season, a total of four drone flights were conducted, with
two flights in each of the selected orchards, in order to gather comprehensive multispectral
and thermal imaging data. The initial flight was conducted on 24th June (DOY 175,
Flight 1), capturing images during the growth stages of the pistachio nuts (F1–F2 stages),
corresponding to when the mesocarp started to turn yellow, while the subsequent flight
took place on 7th September (DOY 275, Flight 2), providing valuable information on the
progression of plant growth and nut maturity during the later stages of the season (M
stage). All flights were planned and executed automatically at 30 m above the ground level
and 2 m/s speed, under optimal weather conditions, on windless and sunny days with
minimal cloud cover (1 okta cloud conditions). This settings delivered a ground resolution
of 1.29 cm/pixel for the thermal and the multispectral imagery. The UAS system (Figure 3)
employed for data acquisition was composed of a UAV DJI Inspire 2 (DJI, Shenzhen,
Guangdong, China, Table 1), which was equipped with a Micasense ALTUM multispectral
camera (AgEagle Sensor Systems Inc., Wichita, KS, USA, Table 2).
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Table 1. Detailed technical specifications of DJI Inspire 2 drone.

Maximum Take-off Weight and Maximum Speed 9.37 lbs (4250 g), 58 mph (94 kph)

GPS Hovering Accuracy ±1.64 feet (0.5 m) vertically, ±4.92 feet (1.5 m) horizontally

Maximum Flight Time Approximately 27 min

Remote Controller Model GL6D10A

Operating Frequencies 2.400–2.483 GHz, 5.725–5.850 GHz

Maximum Transmitting Distance 2.2 miles (3.5 km) under CE regulations

Battery Capacity, Voltage, Capacity, Power Model TB50, 4280 mAh, 22.8 V, 97.58 Wh, 180 W

Table 2. Detailed technical specifications of the sensor model Micasense ALTUM. FOV: field of View.
GSD: ground sample distance.

Dimensions, Weight (8.20 × 6.70 × 6.75) cm length width and height, 357 g

Pixel Size Multispectral and Thermal Sensor 3.45 µm and 12 µm

Multispectral Resolution, Aspect Ratio 2064 × 1544 pixels (3.2 MP × 5 imagers), 4:3

Thermal Resolution 160 × 120 pixels (0.01 K)

Multispectral and Thermal Focal Length 8 mm and 1.77 mm

Multispectral and Thermal FOV 48◦ × 36.8◦ and 57◦ × 44.3◦

GSD at 60 m Altitude Multispectral: 2.6 cm, Thermal: 41 cm

Spectral Bands: Multispectral and Thermal Cameras
Blue (475 nm), Green (560 nm), Red (668 nm), Red

Edge (717 nm), Near Infrared (842 nm) and
LWIR (11 µm)

Spectral Bandwidth: Multispectral and Thermal Cameras Blue (32 nm), Green (27 nm), Red (14 nm), Red Edge
(12 nm), Near Infrared (57 nm) and LWIR (6 µm)

Bit Depth Multispectral: 12-bit, Thermal: 14-bit

Thermal Sensitivity, Thermal Accuracy Less than 50 mK, +/− 5 K

Moreover, to ensure enhanced geometric accuracy during the image mosaicking
process, a set of five ground control points (GCPs) was employed, positioned in the field
utilizing a highly precise JAVAD Triumph-2 real-time kinematic (RTK) GNSS system.

The acquired images were processed using Agisoft Metashape Professional software
(v1.7.6, Agisoft LLC, St. Petersburg, Russia), adhering to the manufacturer’s recommended
guidelines. Initially, ground control points (GCPs) were identified within the images to
optimize camera positions, orientation data, and enhance orthophoto accuracy. Subse-
quently, calibrated reflectance panel images were located to adjust image data based on
the reflectance values supplied by Micasense. A high-quality dense point cloud was then
generated, preserving the original resolution of the raw images without downscaling.

A digital surface model (DSM) was created using the comprehensive dense point
cloud. This was followed by the automatic classification of ground points, which relied
exclusively on these points to generate the digital terrain model (DTM). Then, these two
layers were employed to calculate the canopy height model (CHM) in order to distinguish
the pistachio tree crowns from the background.

A total of four orthophotos with six spectral bands were created from these flights
and they were subsequently used to calculate a range of the VIs (Table 3), offering valuable
insights into the vigor and overall productivity of the pistachio plants under investigation.
These indices can aid in identifying the status of the vegetation and patterns and trends in
plant growth [19,39], as well as detecting potential issues related to water stress, nutrient
deficiencies, or disease [40–43]. The calculation of the CWSI, the thermal-based VI calcu-
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lated in this study, was conducted in accordance with the established methodology of [44].
This method involved segmenting the tree canopies from the background by utilizing the
CHM and, following this, temperature histograms were computed specifically using pixels
derived from pure pistachio vegetation.

Table 3. Vegetation indices (VIs) employed in this work. R, reflectance in the red (660 nm); NIR,
near-infrared (760 nm); RE, red edge (around 715 nm); Tl, average canopy temperature acquired
using the UAV thermal imagery after removal of ground pixels; Twet, lower canopy temperature; Tdry,
temperature of the upper limit of the canopy.

Vegetation Index Formula Measure References

Normalized Difference
Vegetation Index (NDVI) = (NIR−R)

(NIR+R) (1)
Quantity, quality, and development

of vegetation [15]

Green Normalized Difference
Vegetation Index (GNDVI) = (NIR−Green)

(NIR+Green) (2) Water and nitrogen consumption [20]

Normalized Difference Red
Edge Index (NDRE) = (NIR−RE)

(NIR+RE) (3) Measuring the amount of chlorophyll [21]

Crop Water Stress
Index (CWSI) = Tl−Twet

Tdry−Twet
(4) Relative transpiration rate [22,23,45]

2.4. Harvest Assessment and Nutritional Analysis

At maturity, a total of twenty trees, ten per irrigation treatment and location, were
harvested (October 2022). Several agronomic and quality parameters were determined at
harvest: fresh weight per tree (Yield_FW, kg tree−1), number of bunches per tree (Bunch,
bunch tree−1), and average bunch weight (Yield_raw, kg tree−1). Thereafter, the samples
were peeled and dried for 24 h at 60 ◦C to avoid mycotoxin contamination and weighed
again to obtain the dry weight (Yield_DW, kg tree−1). The size was determined as the
number of pistachios present in one ounce (commercial caliber, 28.35 g). The percentage
of open husk, closed husk, and empty nuts was also determined (Split, Non_Split, and
Blank) and the weight of open husk, closed husk, and empty nuts per tree (DW_split,
DW_non_split and DW_blank, kg tree−1) were calculated at a representative subsample of
twenty five nuts.

Regarding nutritional quality, the numerous parameters of a sample of pistachio
nuts collected from the studied trees were evaluated in the physicochemical laboratory
of the ‘Instituto Tecnológico Agrario de Castilla y León’. On the one hand, the fiber
(g 100 g−1) was calculated using the enzymatic–gravimetric method via sequential enzy-
matic digestion with α-amylase, protease, and amyloglucosidase, and the fat content (Fat,
g 100 g−1) was obtained through petroleum ether extraction using the Ankom sealed bag
system. On the other hand, the protein content (PROT, g 100 g−1) was calculated from ni-
trogen quantification (Dumas combustion method) by multiplying the value obtained with
the coefficient 6.25 [46], and the carbohydrates content (CBH, g 100 g−1) was determined
through the difference of other major components (CBH = 100 − Ash-Humidity-PROT-Fat),
in which ash and humidity content were determined gravimetrically.

Furthermore, macro and micronutrients, such as calcium (Ca, mg kg−1), magnesium
(Mg, mg kg−1), phosphorus (P, mg kg−1), potassium (K, mg kg−1), sodium (Na, mg kg−1),
iron (Fe, mg kg−1), and zinc (Zn, mg kg−1), were determined. To that end, in the ETHOUS
UP microwave digestion system (Milestone, Sorisole, Italy), 500 mg of dry material was di-
gested at 200 ◦C in a Teflon container. The solutions were then cooled to room temperature
and diluted. To conclude, the nutrient content was measured using an Agilent Technolo-
gies Varian 720-ES inductively coupled plasma-optical emission spectrometer (ICP-OES;
Santa Clara, CA, USA).

Finally, after acid digestion via dry route, several fatty acids expressed by percentage
were measured, including palmitic, palmitoyl, stearic, oleic, linoleic, and linolenic, through
gas chromatography with a flame ionization detector (GC-FID).
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2.5. Image, Statistical, and Data Analyses

The data obtained from the study underwent a comprehensive analysis to identify
potential relationships between variables and gain a deeper understanding of the factors
affecting pistachio quality and yield under different irrigation treatments.

To perform this tasks, QGIS software (version 3.22.X, QGIS developer team 2022)
facilitated the processing and visualization of remote sensing data, while the R software
(version 4.3.X, R Foundation for Statistical Computing, R Core Team 2019, Vienna, Austria)
facilitated image, statistical analysis, and data manipulation. The integration of these
software applications and packages enabled the robust and efficient analysis of the complex
data collected during the study.

The analyses involved several R packages, including raster and rgdal, which were
sourced from the Comprehensive R Archive Network (CRAN). The packages factoextra and
FactoMineR were used to extract and visualize the multivariate data analyses (PCA, princi-
pal component analysis), which essentially convert a set of potentially correlated variables
into a smaller, orthogonal set of “principal components”. These principal components are
calculated in such a way that the first few retain most of the variation present in all the
original variables.

A correlation matrix based on Spearman’s correlation was employed to evaluate these
relationships using the function cor() and was visualized using the package corrplot. In
addition, with some of the most correlated variables, linear regressions were carried out in
order to examine their relationship with the function ggplot() in depth and were visualized
with the packages ggplot2 and ggpmisc. The abbreviations for each trait used in the figures
are described above.

3. Results

First, we conducted a visual inspection of the generated VIs maps obtained through
remote sensing (CWSI, NDVI, NDRE, and GNDVI), aiming to gain insights into the patterns
and relationships among the examined VIs (Figure 4).

Upon examining the CWSI values, it was observed that the vegetation values ranged
from 0 to 1 and higher values were present on the south and east sides of the canopy crowns,
due to the position of the sun. On the other hand, when analyzing the non-thermal-based
VIs, the values ranged from 0.5 to 1 and an interesting observation across all maps was the
positive relationship between the canopy size and the values of NDVI, NDRE, and GNDVI.
In contrast, NDRE values were not as high, and there was greater variability within each
canopy crown compared to NDVI. GNDVI, on the other hand, exhibited a pattern similar
to NDRE, indicating that both indices capture comparable information about the overall
vegetation growth.

In our study, we employed principal component analysis (PCA, Figure 5) as a statistical
technique to both reduce the dimensionality of our data and investigate inherent trends
and relationships. Thus, the first component accounted for 33.8% of the total variability
within the data set, which is a substantial proportion, considering it is just one of many
potential components. Meanwhile, the second component contributed to explaining a
further 21.2% of the total variability. Cumulatively, these two components alone were able
to reveal more than half (approximately 55%) of the total variability within the data set.
The visual representation of this PCA reveals clusters that distinguish between different
treatments and geographical locations, showing that the data did not differ according to
irrigation treatments (Figure 5a) but did differ according to plot location (Figure 5b).
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Figure 5. Principal component analysis (PCA) grouping the differences between (a) irrigation
treatments and (b) plot location based on the vegetation indices, agronomic parameters, and nut
quality at harvest. Two locations (“Moraleja” and “La Seca”) under two different irrigation treatments
(control vs. high levels).

In a further exploration of our data, Figure 6 presents a biplot of the principal compo-
nent analysis (PCA), where variables are grouped based on two different factors: irrigation



Appl. Sci. 2023, 13, 7716 10 of 19

and location. Upon conducting this biplot analysis, contrary to our observations from the
previous figure, we noticed a distinct difference in treatment due to the irrigation applied
in “Moraleja” plot. However, the “La Seca” plot maintained its consistent pattern, showing
no discernible differences in relation to the irrigation.
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Figure 6. Principal component analysis (PCA) of vegetation indices, including CWSI (crop water
stress index), NDRE (normalized difference red edge), NDVI (normalized difference vegetation
index), and GNDVI (green normalized difference vegetation index) at two different time points (June
and September). Agronomic parameters include fresh and dry fruit weight per tree (Yield_FW and
Yield_DW), number of bunches (Bunch) per tree, and average bunch weight (Yield_raw). The commer-
cial caliber, the percentage of open husk, closed husk, and empty nuts (Caliber, Split, Non_Split, and
Blank) and the weight of open husk, closed husk, and empty nuts per tree (DW_split, DW_non_split
and DW_blank). Regarding quality, fiber, fat (Fat), carbohydrates (CBH), protein (PROT), calcium
(Ca), magnesium (Mg), phosphorus (P), potassium (K), sodium (Na), iron (Fe), zinc (Zn) and several
fatty acids (palmitic, palmitoyl, stearic, oleic, and linoleic) are included. Data collected from two
locations (“Moraleja” and “La Seca”) and their interaction with the different irrigation treatments
are applied.

Turning our attention to the VIs, we observed that the NDVI in June correlates with
control irrigation in “Moraleja”. This index exhibited a close relationship with the GNDVI
in June and September, as well as the caliber and certain fatty acids, such as oleic and
stearic. Meanwhile, the NDVI in September was also associated with control irrigation, but
here, the NDVI demonstrated a stronger correlation with the NDRE in June, as well as with
the percentage of non-split nuts. Moreover, it maintained the relationship of June with the
commercial size, oleic and stearic. In addition, NDRE in September correlated with calcium
and magnesium content.

On another note, both the CWSI in June and September were related to both control
and high irrigation in “La Seca”. The CWSI in June was more associated with carbohydrate
levels and iron content, whereas the CWSI in September was correlated with linolenic and
linoleic. The high irrigation treatment applied in “Moraleja” did not seem to correlate with
any vegetation index.

Finally, we performed Spearman’s correlation analysis (Figure 7), analyzing individ-
ually the relationships between the various VIs and the yield and quality parameters of
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pistachio crops. Our investigation revealed that VIs bear a considerable correlation with
both the yield and quality of the pistachio harvest. Specifically, the VIs derived from the
first drone flight, which correspond to the development phases of the nut (F1–F2), generally
exhibited strong positive correlations with most yield and quality parameters. The excep-
tion was the percentage of split or blank nuts, which did not show a significant relationship
with these early stage VIs (except for the CWSI, which showed a weak correlation).
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Figure 7. Spearman’s correlation matrix of the irrigation conditions, agronomic, nut quality traits,
and vegetation indices, considering 20 trees at two different locations in the “Castilla y León” region.
Asterisks indicate significant correlations (*, p < 0.05, **; p < 0.01; ***, p < 0.001). Blue indicates positive
correlations between two traits according to the color key and red negative correlations. Vegetation
indices: CWSI (crop water stress index), NDRE (normalized difference red edge), NDVI (normalized
difference vegetation index), and GNDVI (green normalized difference vegetation index) at two
different time points (1, June; 2, September). Agronomic parameters: fresh and dry fruit weight per
tree (Yield_FW and Yield_DW), number of bunches (Bunch) per tree, and average bunch weight
(Yield_raw). The commercial caliber, percentage of open husk, closed husk, and empty nuts (Caliber,
Split, Non_Split, and Blank) and the weight of open husk, closed husk, and empty nuts per tree
(DW_split, DW_non_split and DW_blank). Regarding quality, fiber, fat (Fat), carbohydrates (CBH),
protein (PROT), calcium (Ca), magnesium (Mg), phosphorus (P), potassium (K), sodium (Na), iron
(Fe), zinc (Zn), and several fatty acids (palmitic, palmitoyl, stearic, oleic, and linoleic) are included.

Upon closer inspection, we found that non-thermal VIs demonstrated high positive
correlations with yield, especially for NDVI and GNDVI. However, these indices correlated
less strongly with nutritional parameters, in contrast to NDRE. CWSI displayed a similar
trend to NDRE and, although the correlations with yield parameters were significant,
they were weaker, and CWSI exhibited significant correlations with numerous quality and
nutritional parameters, such as carbohydrate percentage, magnesium, and various fatty
acids, such as stearic, oleic, and linoleic acid.

Turning to the VIs calculated from the images obtained during the second drone
flight, we observed that NDRE did not show significant correlations with the pistachio
traits. In general, only GNDVI showed a significantly strong correlation with agronomic
and quality parameters. Nevertheless, NDVI still maintained significant correlations with
certain quality parameters, such as Fe, CBH, and organic acids. CWSI did not correlate
with agronomic parameters, but it still correlated with quality parameters better than
non-thermal-based vegetation indices.

In addition to Spearman’s correlation analysis, linear regression analyses were carried
out (Figure 8) to show the strongest correlations between VIs and agronomic and quality
parameters of pistachio. The highest correlations in June were found between NDRE and
carbohydrates (r = 0.78), CWSI and oleic acid (r = 0.77), GNDVI and the number of bunches
per tree (r = 0.62), and NDVI and carbohydrates (r = 0.52). On the other hand, the highest
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correlations in September were found between CWSI and carbohydrates (r = 0.62), NDVI
and iron (r = 0.54), CWSI and iron (r = 0.54), and GNDVI and iron (r = 0.52).
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Finally, non-thermal-based VIs were correlated with the thermal-based VI, aiming
to show the potential to estimate the CWSI values in pistachio crops (Figure 9). In this
sense, the highest correlation with CWSI in June was found for NDRE and the highest
correlation in September was found for NDVI. In general, the non-thermal-based VIs were
more correlated with CWSI in September than in June.
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Figure 9. Linear regression analysis between thermal- and non-thermal-based vegetation indices
(VIs). Thermal VI: CWSI (crop water stress index). Non-thermal VIs: NDRE (normalized difference
red edge), NDVI (normalized difference vegetation index), and GNDVI (green normalized difference
vegetation index) at two different time points (June and September).
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4. Discussion

The domain of remote sensing is rapidly evolving and is facilitating profound crop
management possibilities. Nonetheless, methods applicable to certain crops may not
necessarily be suitable or effective for others, highlighting the need for designing and im-
plementing experiments tailored to the specific crop under study. Given the recent surge in
interest around pistachios, numerous researchers have started leveraging unmanned aerial
vehicles (UAVs) for pistachio management, employing aerial imagery for comprehensive
field oversight. In this way, Jacygrad et al. [34] used UAVs equipped with multispectral
imaging to track the crown characteristics (height, size, shape, and NDVI) of pistachio trees
throughout the growing season and compared UAV-derived metrics with the corresponding
measurements taken in the field, highlighting the value of UAV imaging for comprehen-
sive and real-time orchard management. Similar to our research, the study reported the
highest NDVI value in June, when most trees registered between 0.9 and 1, nearing NDVI
saturation. Vélez et al. [35] developed a novel, cost-effective, and rapid methodology based
on segmenting RGB images and subsequently measuring the vegetation planar area along
with ground shadows to estimate the canopy volume of pistachio trees by combining UAV-
acquired imagery and machine learning techniques. They achieved very strong correlations
with the actual canopy shape, demonstrating that is possible to effectively measure the
amount of vegetation using UAV remote sensing. Unlike this study, the authors utilized
spectral data solely for distinguishing soil, vegetation, and shadows, not for computing
the vegetation index values of the pistachio canopies. Gonzalez-Dugo et al. [47] assessed
the spatial variations in water status and irrigation requirements in a large Californian
pistachio farm using high-resolution thermal imagery obtained from an unmanned aerial
system, with the CWSI calculated for individual tree crowns. The authors demonstrated
that CWSI, derived from this thermal imagery, is a beneficial tool for assessing the spatial
variability of crop water status within a commercial pistachio orchard and can be utilized
for precision irrigation. Similarly, we found a high correlation between CWSI in both dates
and pistachio tree irrigation. However, this correlation was slightly lower in the CWSI
of September. Moreover, the correlation existing in June between CWSI and agronomic
parameters disappeared in September. This might be due to the fact that the flight that
occurred in September was nearer to the harvest date. Consequently, we hypothesize
that as the harvest date approaches, the relevance of CWSI in pistachio decreases, while
other VIs that are not reliant on thermal information, except for NDRE, maintain their
effectiveness. Related to CWSI, our study highlights the significant influence of the sun’s
position, emphasizing its role in illuminating specific areas of tree crowns, namely warming
them and, consequently, increasing the CWSI values. This phenomenon underscores the
vital importance of taking the sun’s position into account when interpreting the CWSI in
agricultural research due to its substantial impact on the spatial distribution of the index.
The sun’s position during the day is a key factor that shapes how light interacts with tree
crowns and vegetation, resulting in less illuminated leaves and shadows on the ground and
within the canopy [35,48], which can potentially affect the spectral information gathered
from remote sensing techniques. In fact, Park et al. [49] suggest that there is a time window
for accurate plant water stress mapping via CWSI–UAV thermography. Additional studies
have also emphasized the role of temperature distribution in the CWSI. Camino et al. [50]
highlighted that shadows cast within the crop canopy have a notable influence on the CWSI,
and both the morphological characteristics of the canopy and the angle of the sun during
the drone flight were identified as significant factors that alter the temperature distribution
pattern within the canopy. Moreover, it is not solely the sun’s position that affects the CWSI
but also the presence of clouds. Cloud cover can lead to considerable variations in the
amount of solar radiation reaching the crop canopy [51]. This aspect was duly considered
in the design of the current study, which was conducted under clear skies.

In this study, apparently, larger canopy sizes were associated with higher values of
these VIs, suggesting that more extensive canopies in Pistachio are generally healthier and
more vigorous. However, the differences in NDVI values in the maps were less perceptible
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compared to NDRE and GNDVI. Although some similarities in the patterns were exhibited
by NDVI, NDRE, and GNDVI, some notable differences were also identified. For instance,
NDVI values were consistently high and close to 1 across all canopy crowns, suggesting a
strong and uniform presence of healthy vegetation but also the saturation effect already
observed by other authors [52], which commonly shows up at high biomass levels [53]
and can limit the ability of NDVI to discriminate subtle differences in vegetation among
larger canopies.

Furthermore, all VIs in June exhibited a strong correlation with yield parameters and
a pronounced correlation with the quality parameters that was more or less observed in
September, except for NDRE, confirming other authors’ findings for other crops, which
have also indicated that the VIs can be used to predict yield and quality parameters [54].
On the other hand, regarding nutritional values, a good relationship was observed with
NDRE in June, although this association was not observed in September. Nevertheless,
CWSI showed a strong correlation with thee nutritional values at both time points, espe-
cially CBH and fatty acids, which could help to identify the ideal time for harvesting [55].
However, these correlations were lower in September. In fact, as the season advanced, the
connections between all VIs and pistachio yield parameters vanished, except for GNDVI.
This observation suggests that the management in June is more critical than in September
and, as the growth season progresses, the relationships between VIs and yield may become
less pronounced or more complex. The contrasting outcomes observed in the CWSI com-
pared to other VIs throughout the drone flights highlight the divergent behaviors between
thermal-based and non-thermal-based indices. This fact exposes the importance of the
different bands of the electromagnetic spectrum and emphasizes the critical importance of
carefully selecting appropriate indices based on specific research objectives and data collec-
tion timing. Indices that provide valuable information at one stage of crop development
may not be as informative at another stage and vice versa. This consideration is crucial
for researchers utilizing remote sensing technologies in precision agriculture. For instance,
based on our study findings, the CWSI appears to be particularly valuable for irrigation
assessment and for the quality evaluation of pistachio crops, likely due to its relation to
water stress that affects the plants.

However, non-thermal VIs are more relevant for predicting yield outcomes, probably
because they are more associated with the current status of the crop. GNDVI deserves
special recognition for preserving connections relatively consistently over the year. This
dynamic nature, where different indices hold relevance at different stages of crop growth,
emphasizes the complexity of applying remote sensing to precision agriculture. Neverthe-
less, thermal sensors are not always readily available due to their higher cost compared
to visible light or multispectral-based sensors. Therefore, the correlations observed in this
study pertaining to pistachio VIs can be interesting. In June, the index most correlated with
CWSI was NDRE, while in September, NDVI showed the highest correlation, although
GNDVI also demonstrated a significant correlation. These relationships were echoed in
the results, as NDRE in June showed similar correlations to CWSI with respect to pistachio
parameters, while NDVI and GNDVI showed comparable values in September.

On a more detailed level, the examination of VIs reveals similarities in several patterns
exhibited by NDVI, NDRE, and GNDVI, which aligns with findings from other studies.
These studies observed that NDVI correlated well with biomass and other agronomic
parameters in crops, as did NDRE [56]. However, our research indicated that NDVI
values were consistently higher and near “1” across all canopy crowns, demonstrating less
variability between different tree crowns and within the same crown compared to NDRE
and GNDVI. This can be attributed to the well-known NDVI disadvantage of reduced
sensitivity when crop biomass exceeds a certain threshold, resulting in saturation at high
biomass values [52]. Moreover, in certain circumstances, the NDVI saturation issue may be
exacerbated by eliminating soil background contamination from images and concentrating
solely on the canopy [57], which is often the case when working with high-resolution UAV
imagery, allowing for precise tree crown segmentation, as in this study. Jorge et al. [26] also
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identified differences between NDVI, GNDVI, and NDRE, showing a strong correlation
between NDVI and GNDVI values but not NDRE. Similar to these results, we did not
find correlations for NDRE in September. These authors suggested that utilizing NDRE
instead of the conventional NDVI could be particularly beneficial in detecting growth
inhomogeneities in crops. These differences could be because NDRE is similar in the
calculation to NDVI but incorporates a red-edge band instead of red, making it more
resistant to the saturation problem inherent to NDVI and more sensitive to variations
in chlorophyll content. In fact, Simic Milas et al. [58] emphasized the red-edge band’s
significance as a crucial spectral region for both leaf area index (LAI) and chlorophyll
content, indicating that NDRE is a sensitive vegetation index for mapping both chlorophyll
and LAI. Dong et al. [59] conducted a study in which they found that VIs based on the red-
edge (RE) spectral band exhibit heightened sensitivity to chlorophyll content, facilitating
the creation of empirical models for estimating leaf area index across a diverse range of
crops. Additionally, Li et al. [60] employed four red edge-based indices (CCCI, MTCI,
NDRE, and CIred edge), finding that these indices performed better across bandwidths
for estimating plant nitrogen uptake compared to the NDVI for maize nitrogen status.
Rehman et al. [61] discovered that using the same platform and sensor, NDRE provided
measurements sensitive enough to inform nitrogen fertilizer management in their system,
while NDVI was more limited in assessing nitrogen status and predicting grain yield in
rice cropping systems. Conversely, Lima-Cueto et al. [62] asserted that the effectiveness of
VIs that rely on the RE band is limited when it comes to accurately quantifying vegetation
ground cover, as the utilization of the RE band in VIs leads to a decreased sensitivity in
the quantification of vegetation ground cover. They attributed this to the unsatisfactory
performance of the RE band when employed individually, observing that the RE band
negatively impacts the accuracy of the VIs that incorporate it, such as the NDRE index.

Nevertheless, in our study, we identified that not only NDRE but also GNDVI showed
different patterns than NDVI. Eitel et al. [63] observed similar outcomes, suggesting that
the saturation of NDVI at low Chlab levels is due to its use of red reflectance, as opposed to
GNDVI green reflectance and NDRE red-edge reflectance, which were less impacted by
Chlab absorption. Therefore, intense Chlab absorption in the red band leads to saturation
of red reflectance at lower Chlab concentrations, rendering NDVI less sensitive to Chlab
fluctuations in moderate to high concentrations. This highlights a potential NDVI intrinsic
limitation in detecting vegetation variations in pistachio tree orchards.

Finally, it is worth noting that Figure 5 revealed clusters that distinguish between
different treatments and geographical locations. The location of the plots demonstrated a
pronounced influence on the differences observed between the variables. This suggests
that environmental factors related to location, such as local climate, soil composition,
or micro-environmental conditions, might have a more prominent role in shaping these
characteristics in pistachio trees. This insight could be instrumental in future research and
management strategies, underscoring the importance of considering the specific context of
each location when managing pistachio cultivation. Contrastingly, at first sight, the PCA
revealed that the irrigation treatments we applied did not significantly differentiate the
data points representing individual pistachio trees in our study. However, in the biplot
of Figure 6, a difference is observed in the treatment due to the irrigation applied in the
“Moraleja” plot, but not in the “La Seca” plot, indicating that in the second orchard, the
irrigation treatment did not have a substantial impact on the characteristics we measured.
This difference could be attributed to various factors, such as variations in water supply
between the plots or differences in tree age [64]. This finding suggests that increasing
water supply beyond a certain threshold may not result in changes in VIs. Therefore, it
emphasizes the importance of optimizing water resource management practices. In fact,
irrigation doses had a negative influence on the quality and nutritional parameters of the
nuts, which can be observed in aspects such as non-split nuts, caliber, calcium, magnesium,
potassium, and protein, as well as various fatty acids, such as stearic and oleic. On the other
hand, a positive influence was observed in the case of the percentage of split nuts, iron
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and carbohydrate content, and certain fatty acids, such as palmitoyl, linoleic, and linolenic
(Figure 7). However, analyzing the interrelationship between factors unrelated to the VIs
generated by remote sensing falls outside the scope of the current paper.

The significance of this research is underscored by the fact that it represents the first
established correlation between vegetation indices derived from UAV multispectral and
thermal imagery and the crucial agronomic and quality parameters for pistachio cultivation.
Furthermore, we found that this relationship exhibits variations throughout the year. As the
quality of pistachios is notably impacted by harvest timing [2], remote sensing techniques
that account for variations in VIs could aid in determining the optimal harvest time. Hence,
further investigation is necessary to fully comprehend the intricate association with quality
characteristics, as it appears to be more complex. Additionally, future research endeavors
could greatly benefit from exploring the integration of multiple indices in time series
analysis. This approach would facilitate a more comprehensive understanding of pistachio
trees’ yield and stress and the development of nut quality in agricultural settings.

5. Conclusions

Our research in precision agriculture utilizing UAVs with multispectral and thermal
imaging during two flights (carried out in June and September, respectively) provided
valuable insights into the relationship between various vegetation indices (NDVI, GNDVI,
NDRE, and CWSI) and pistachio yield and quality. Notwithstanding NDVI’s saturation
issues, all VIs demonstrated significant correlations with yield and quality parameters,
particularly during the nut development stages (F1–F2). In June, the highest correlations
included NDRE and carbohydrates (r = 0.78) and CWSI and oleic acid (r = 0.77), and
non-thermal VIs, especially NDVI and GNDVI, correlated well with yield but less well
with nutritional aspects. In this sense, NDRE was more effective. In contrast, September’s
top correlations were CWSI and carbohydrates (r = 0.62) and NDVI and iron (r = 0.54),
and flight imagery revealed that only GNDVI displayed a strong correlation with both
agronomic and quality parameters. Notably, CWSI showed considerable correlations in
both flights with quality parameters like carbohydrate percentage, magnesium, iron, and
several fatty acids (palmitoyl, stearic, oleic, and linoleic), surpassing non-thermal-based
vegetation indices. The different results observed in the CWSI compared to other vegetation
indices highlight the usefulness of all bands of the electromagnetic spectrum caused by
the divergent behaviors between temperature-based and non-temperature-based indices.
Our research highlights the potential for the CWSI to be a key tool for assessing pistachio
quality. The impact of environmental factors, like the sun’s location, is also significantly
emphasized in the study, illustrating the importance of taking these elements into account
when interpreting the CWSI.

Remote sensing techniques not only revealed a significant correlation with yield
parameters but also with nutritional values, specifically fatty acids. This crucial information
could potentially fine-tune the timing of harvest, a critical determinant of pistachio quality.
These correlations changed depending on the time of year at which the drone flight was
conducted (which is linked to the phenological state of the pistachio tree) and on the
vegetation index used, thus underlining the importance of devising a well-planned strategy
that incorporates several aerial surveys throughout the year and investigates multiple
indices for effective pistachio crop management. The complexity of these relationships
requires further research, particularly integrating multiple indices in a time-series analysis
to gain a more extensive understanding of yield and stress evolution in pistachio trees.
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