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Abstract: Unconditionally secure quantum bit commitment (QBC) was widely believed to be impos-
sible for more than two decades, but recently, based on an anomalous behavior found in quantum
steering, we proposed a QBC protocol which can be unconditionally secure in principle. The protocol
requires the use of infinite-dimensional systems, so it may seem less feasible in practice. Here, we
propose a quantum optical method based on the Mach–Zehnder interferometer, which gives a very
good approximation to such infinite-dimensional systems. Thus, it enables a proof-of-principle
experimental implementation of our protocol, which can also serve as a practically secure QBC
scheme. Other multi-party cryptographic protocols such as quantum coin tossing can be built upon it
too. Our approach also reveals a relationship between infinity and non-locality, which may have an
impact on the research of fundamental theories.

Keywords: secure multi-party computation; bit commitment; coin tossing; Mach–Zehnder interferometer;
quantum steering

1. Introduction

Quantum cryptography has achieved great success in many fields such as key distri-
bution [1], but there are still other cryptographic problems that remain unconquered. Bit
commitment (BC) [2] is known to be an essential building block for coin tossing [1], oblivi-
ous transfer [3,4], and even more complicated multi-party secure computation protocols [5].
Unfortunately, since 1996, people started to realize that unconditionally secure quantum
BC (QBC) is hard to achieve. The cheating strategy against the QBC protocol in ref. [2] was
first proposed in ref. [6]. Shortly after, it was further asserted that all QBC protocols are
not unconditionally secure in principle [7,8]. Later, refs. [9–14] reviewed the original no-go
proof, with some examples of insecure protocols given in refs. [9,13]. Ref. [11] also extended
the proof to cover ideal quantum coin tossing (QCT). More examples on how to break some
promising BC protocols at that time were provided too [15,16]. Refs. [17–20] proved the
impossibility of some types of BC with a slightly different security criterion. Refs. [21–25]
gave quantitative studies on the security bounds of QBC, with ref. [22] focused on the
protocol in ref. [1], while refs. [23,24] focused on another class of protocols. A very lengthy
proof was first presented in the Heisenberg picture [26], then shortened and rephrased in
the Schrödinger picture [27]. The validity of the no-go result was also studied in a world
subject to superselection rules [28–30] or an epistemic local hidden variable theory [31];
for QBC associated with secret parameters [32,33] or secret probability distributions [34];
or when the participants are restricted to use Gaussian states and operations only [35].
Refs. [36,37] attempted to deduce the impossibility of QBC from the no-masking theorem.
Ref. [38] studied the security of BC under the relativistic setting. Other efforts include
refs. [39–44], which tried to proved the no-go theorem with alternative approaches. These
results, known as the Mayers–Lo–Chau (MLC) no-go theorem, were widely accepted de-
spitesome attempts towards secure QBC (e.g., the references in refs. [45–51]), and were
considered as a serious drawback on the potential of quantum cryptography.
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Nevertheless, the cheating strategy in all these no-go proofs is based on the Hughston–
Jozsa–Wootters (HJW) theorem [52], a.k.a. the Uhlmann theorem [53,54]. Recently, it was
found that, in infinite-dimensional systems, there exists a specific form of quantum states
to which the HJW theorem does not apply [55]. Based on this finding, we proposed a QBC
protocol and proved theoretically that it remains secure against the cheating strategy in
the no-go proofs [56]. Therefore, implementing the protocol in practice will be of great
significance, as it can re-open the venue to many useful multi-party secure computation
protocols that were once closed by the MLC no-go theorem.

As pointed out in ref. [56], since the protocol requires infinite-dimensional systems,
the implementation may be very hard if we want to use physical systems with an infinite
number of energy levels, because it may imply an infinitely high energy. To circumvent the
problem, here, we use the arrival time of photons as a trick, so that infinite-dimensional
systems can be realized using simple optical devices. Consequently, the QBC protocol in
ref. [56] can be implemented with a Mach–Zehnder (MZ) interferometer, which is within
the capability of currently available technology.

2. Results
2.1. The Theoretical Description of the Protocol

Let us begin with a brief review on the definition of BC and the theoretical scheme
in ref. [56]. BC is a two-party cryptography between Alice and Bob, which includes the
following phases. In the commit phase, Alice decides the value of the bit b that she wants to
commit and sends Bob a piece of evidence, e.g., some quantum states. Later, in the unveil
phase, Alice announces the value of b, and Bob checks it with the evidence. The interval
between the commit and unveil phases can be called the holding phase. An unconditionally
secure BC protocol needs to be both binding (i.e., Alice cannot change the value of b after
the commit phase) and concealing (Bob cannot know b before the unveil phase).

Since whether QBC can be unconditionally secure in principle is a very important
theoretical problem, here, we only consider the ideal case without transmission errors,
detection loss, dark counts, or other practical imperfections. In ref. [56], the following
protocol was proposed:

Our theoretical QBC protocol:
The commit phase:
(i) Alice decides on the value of b (b = 0 or 1) that she wants to commit. Then, for j = 1 to s:
She randomly picks an integer ij ∈ {1, 2, . . . , ∞}and sends Bob a quantum register Ψj, which

is an infinite-dimensional system prepared in the state ψb
ij
= (|0〉+ (−1)b

∣∣ij
〉
)/
√

2.
That is, if b = 0 she randomly picks a state from the set:{

ψ0
i ≡ |φi+〉 =

1√
2
(|0〉+ |i〉), i = 1, . . . , n− 1

}
, (1)

or ,if b = 1, she randomly picks a state from the set:{
ψ1

i ≡ |φi−〉 =
1√
2
(|0〉 − |i〉), i = 1, . . . , n− 1

}
, (2)

where |0〉, |1〉, |2〉, . . . , |i〉, . . . are orthogonal to each other and n→ ∞.
Note that, in each round, ij is independently chosen, while b remains the same for all j;
The holding phase:
(ii) Bob stores these s quantum registers unmeasuredly;
The unveil phase:
(iii) Alice announces the values of b and all ij (j = 1, . . . , s);
(iv) Bob tries to project each Ψj into the state ψb

ij
= (|0〉+ (−1)b

∣∣ij
〉
)/
√

2. If the projections
are successful for all registers, Bob accepts Alice’s commitment. Else, if any of the projections fails,
Bob concludes that Alice cheated.
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The key reason that this protocol can be unconditionally secure is the specific forms of the
states in Equations (1) and (2). In general, the cheating strategy in the no-go proofs [6–44] can
be successful in most QBC protocols using other forms of quantum states for the following
reason. Suppose that honest Alice is supposed to send Bob the state ψ′0 (ψ′1) if she wants to
commit b = 0 (b = 1), where ψ′0 (ψ′1) is picked from a set of states described by the density
matrix ρ

β
0 (ρβ

1 ). Since an unconditionally secure QBC protocol needs to be concealing against
dishonest Bob, there should be the following:

ρ
β
0 ' ρ

β
1 (3)

so that Bob cannot discriminate the state himself. Then, the HJW theorem applies. That
is, dishonest Alice can begin the QBC protocol by preparing the system α⊗ β in such a
state that β alone has density matrix ρ

β
0 . Then, she skips the measurement in the commit

phase so that α and β remain entangled. In the unveil phase, since Equation (3) is satisfied,
according to the HJW theorem, there exist two measurements M0 and M1 on α such that, if
Alice applies M0 (M1) on α, then β will collapse to a state belonging to the set described by
ρ

β
0 (ρβ

1 ). Therefore, Alice can unveil b as whatever value she likes in the unveil phase by
choosing between the two measurements M0 and M1.

However, in our protocol, the two sets of states take the forms in Equations (1) and (2).
Suppose that dishonest Alice prepares a bipartite system α⊗ β in the state:

|Ω〉 = 1√
n− 1

n−1

∑
i=1
|αi+〉|φi+〉 (4)

so that she can cheat using the strategy in the no-go proofs. Here, {|αi+〉, i = 0, . . . , n− 1}
is an orthonormal basis of the n-dimensional system α. Let ρ

β
0 and ρ

β
1 be the density

matrices corresponding to the sets
{

ψ0
i = |φi+〉

}
and

{
ψ1

i = |φi−〉
}

, respectively. As shown
in ref. [55], when n→ ∞, Equation (3) is satisfied, so that it seems to meet the requirement
of the HJW theorem. Now, let us see what happens if Alice wants to cheat.

Surely, if she wants to unveil b = 0, all she needs is simply to use {|α1+〉, |α2+〉, . . . ,∣∣∣α(n−1)+

〉
} as the basis of the measurement M0 and apply it on her system α, which will

make Bob’s system β collapse into one of the state in {|φi+〉} so that she can complete the
protocol without being caught. Now, the question is, can she unveil b = 1 successfully?
According to the HJW theorem, there should exist another measurement M1 with the basis
{|α1−〉, |α2−〉, . . . ,

∣∣∣α(n−1)−

〉
}, such that Equation (4) can be expressed as follows:

|Ω〉 ' 1√
n− 1

n−1

∑
i=1
|αi−〉|φi−〉 (5)

so that Alice’s measuring α, in this basis, will make β collapse into a state in {|φi−〉}. To
find the form of {|αi−〉}, following ref. [56], we expand each |φi+〉 in Equation (4) using
{|φi−〉}, and the result is below:

|Ω〉 =
1√

n− 1

n−1

∑
i=1

√
1− 4

n2 |α̃i−〉|φi−〉

+

√
2
n
|α̃n−〉|φn−〉, (6)

where
|φn−〉 ≡

1√
n

(
|0〉+ ∑n−1

i=1 |i〉
)

, (7)

|α̃n−〉 ≡
1√

n− 1

n−1

∑
i=1
|αi+〉, (8)
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and

|α̃i−〉 ≡
1√

1− 4
n2

(
2− n

n
|αi+〉+

2
n

n−1

∑
i′=1,i′ 6=i

|αi′+〉
)

, (9)

for i = 1, . . . , n− 1.
For a given i ∈ {1, . . . , n− 1}, if Alice can project system α to |α̃i−〉, then Equation (6)

shows that system β will collapse to the following:

|φ̃i−〉 ≡ c′


√

1− 4
n2

√
n− 1

(
|φi−〉+

n−1

∑
i′=1,i′ 6=i

〈α̃i− |α̃i′−〉|φi′−〉
)

+

√
2
n
〈α̃i− |α̃n−〉|φn−〉

]

= c′
[√

n2 − 4
n2(n− 1)

(
|φi−〉 −

4 ∑n−1
i′=1,i′ 6=i|φi′−〉

n2 − 4

)

+

√
2(n− 2)

n(n− 1)(n + 2)
|φn−〉

]
, (10)

where

c′ =

√
n(n− 1)(n + 2)

(n2 + 2)
. (11)

Multiplying 〈φi−| by Equation (10), we have the following:

〈φi− |φ̃i−〉 =
√

1− 2n + 2
n2 + 2

. (12)

In the limit n→ ∞, |φ̃i−〉 can be arbitrarily close to |φi−〉. Thus, we know that |α̃i−〉 is
the form of {|αi−〉} that we are looking for.

Nevertheless, by taking the limit n→ ∞ in Equation (9), we find the following:

|α̃i−〉 = −|αi+〉. (13)

Consequently, if Alice wants to collapse β into a state in {|φi−〉} so that she can unveil
b = 1 successfully, then the corresponding measurement M1 is to measure α in the basis
{−|α1+〉,−|α2+〉, . . . ,−

∣∣∣α(n−1)+

〉
}. Since the global negative sign before the state vectors

has no physical meaning, the bases of the “two” measurements M0 and M1 are actually
the same. Consequently, Alice no longer has the freedom to choose between two different
measurements to alter the value of her committed bit b. Thus, the cheating strategy in the
no-go proofs fails in our protocol. (Please see ref. [56] for the complete security proof.)

2.2. The Experimental Implementation

Ref. [56] was devoted to the problem of whether unconditionally secure QBC is
allowed in principle. Thus, it only provided a theoretical description of the protocol
without considering the implementation. To realize the protocol, the most important point
is to find a feasible implementation of the infinite-dimensional systems. Here, we propose
a trick to implement the infinite-dimensional system in each round of the protocol using a
single photon only. The experimental apparatus is illustrated in Figure 1. In each of the s
rounds of step (i) of the protocol, Alice sends a single photon either from the source S0 (for
sending ψ0

i ) or S1 (for sending ψ1
i ), then splits it into two wave packets |x〉 and |y〉 by the

50:50 non-polarizing beam splitter BSA. |x〉 is sent directly to Bob via path X while |y〉 is
delayed by the storage ring SRA (which introduces a delay time τ chosen by Alice secretly)
before sending via path Y. At Bob’s site, |x〉 is delayed by the storage rings SRx and SRB.
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|y〉 is delayed by the storage ring SRy, which is identical to SRx, so that they introduce the
same amount of delay time, then meets |x〉 at the 50:50 beam splitter BSB and interferes.
We can see that when the delay times caused by SRA and SRB are tuned to be equal, the
complete apparatus forms a balanced MZ interferometer, so that ψ0

i (ψ1
i ) will make the

detector D0 (D1) click with certainty in principle.

BSB

BSA

SRA

SRB

S1

S0

D1

D0

MA

MB

Alice

Bob

Path X

Path Y

Holding

phase

SRx

SRy

x

y

Unveil

phase

Figure 1. Diagram of the experimental apparatus of our QBC protocol. Alice sends photons from the
single-photon source S0 (S1) when she wants to commit b = 0 (b = 1). Both BSA and BSB are 50:50
non-polarizing beam splitters, and MA, MB are mirrors. SRA, SRB, SRx, and SRy are storage rings.
The photons are finally detected by the detectors D0 and D1.

Before running the protocol, Bob should set up another set of devices at his own site as
a reference, which is completely identical to that of Alice’s. By sending photons using this
reference set and monitoring his detectors D0 and D1, he can estimate the error rate ε of
the whole system, i.e., the probability that the photon ψ0

i (ψ1
i ) sent from the source S0 (S1)

will mistakenly make the detector D1 (D0) click or simply get lost. For better performance,
if the distance between Alice and Bob is very long, paths X and Y in Figure 1 should be
implemented using optical fibers, instead of letting the photons travel through free space.
Meanwhile, Bob should also have optical fibers of the same length in his reference set
and place them in an environment (e.g., temperature, humidity, etc.) similar to that of the
optical fibers placed between Alice and Bob in the actual set. The purpose is to ensure that
the error rate ε that Bob learns from his reference set is very close to the one in the actual set.
After obtaining ε all by himself, Bob runs the following experimental protocol with Alice.

Our experimental QBC protocol:
The commit phase:
(i) Alice and Bob agree on a maximum delay time τmax and the sending times tj (j = 1, . . . , s)

with t1 < t2 < · · · < ts and τmax < tj − tj−1 (j = 2, . . . , s). Then, Alice decides on the value of b
(b = 0 or 1) that she wants to commit, and for j = 1 to s:

Alice randomly picks τj ∈ [0, τmax]and sets the delay time of her storing ring SRA as τj. Then,
she sends Bob a photon Ψj from the source Sb at time tj;

Note that, in each round, τj is independently chosen, while b remains the same for all j;
The holding phase:
(ii) Bob stores the wave packets of each photon in SRx and SRy unmeasuredly;
The unveil phase:
(iii) Alice announces the values of b and all τj (j = 1, . . . , s);
(iv) For j = 1 to s: Bob sets the delay time of his storing ring SRB as τj. Then, he releases the

wave packets of photon Ψj from SRx and SRy and directs them into his part of the MZ interferometer
(as presented in the green dash-dot box at the right-hand side of Figure 1);

If there are, in total, about (1− ε)s photons (see Appendix A for the tolerable range of statistical
deviations) detected by Db instead of Db̄, then Bob accepts Alice’s commitment. Otherwise, Bob
concludes that Alice cheated.
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2.3. The Relationship between the Two Protocols

Now, we show that, in principle, the above experimental protocol is a faithful imple-
mentation of the theoretical one. In the experimental protocol, following the occupation
number representation widely used in quantum optics [57], at time t if there is a wave
packet of a photon on path X and no wave packet on path Y, the state can be denoted by
|1〉X |0〉Y. Conversely, if there is a wave packet on path Y and no wave packet on path X,
the state can be denoted by |0〉X |1〉Y. To make the time t more explicit, let us write them
as |t〉X |0〉Y and |0〉X |t〉Y, respectively. That is, we use the symbol t in |. . . 〉 to denote the
time that the wave packet of a single photon presents in the path, instead of the number
of photons, and |0〉 to denote that no wave packet is presented in the path at any time.
Obviously, the state |t〉P is orthogonal to |t′〉P (P = X, Y) for any t 6= t′ and they are all
orthogonal to |0〉P. For simplicity, suppose that, except for SRA, SRB, SRx, and SRy, the
time for the photon to travel through all other devices in Figure 1 is negligible. Under this
formalism, when Alice sends the photon Ψj (j = 1, . . . , s) from the source Sb at time tj, the
initial state of Ψj after passing BSA is as shown:

∣∣Ψj
〉

ini =
1√
2
(
∣∣tj
〉

X |0〉Y + (−1)b|0〉X
∣∣tj
〉

Y). (14)

After passing SRA, which introduces the delay time τj to path Y, the state of Ψj that
left Alice’s site is as below:∣∣ψj

〉
A =

1√
2
(
∣∣tj
〉

X |0〉Y + (−1)b|0〉X
∣∣tj + τj

〉
Y). (15)

In the unveil phase, when Bob learns Alice’s delay time τj and sets SRB accordingly,
the final state of the photon Ψj arriving at BSB after passing SRx, SRy and SRB is as follows:

∣∣ψj
〉

f in =
1√
2
(
∣∣tj + τhold + τj

〉
X |0〉Y

+(−1)b|0〉X
∣∣tj + τj + τhold

〉
Y)

=
1√
2
(
∣∣∣t′j〉X

|0〉Y + (−1)b|0〉X
∣∣∣t′j〉Y

), (16)

where τhold is the length of the time that Ψj was stored in SRx and SRy, and

t′j ≡ tj + τhold + τj. (17)

Meanwhile, when combined with BSB, the detectors D0 and D1 serve as the projective
operators:

P0 ≡ |ψ〉0〈ψ|0 (18)

and
P1 ≡ |ψ〉1〈ψ|1, (19)

respectively, where

|ψ〉0 ≡
1√
2
(|tB〉X |0〉Y + |0〉X |tB〉Y) (20)

and
|ψ〉1 ≡

1√
2
(|tB〉X |0〉Y − |0〉X |tB〉Y), (21)

with tB denoting the time that Bob applies the measurement. Therefore, if Bob takes tB = t′j,
then, in the ideal case where the error rate ε is negligible, the detector Db should click with
certainty where b is Alice’s committed bit. Otherwise, he knows that Alice cheated.

To see that the above presentation of the states is equivalent to that in our theoretical
QBC protocol, let us view the time range [0, τmax] (within which Alice picks her delay time
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τj) as a series of time slots T1, T2, . . . , Ti, . . . , Tn−1. Here, 0 ≤ Ti ≤ τmax (i = 1, . . . , n− 1),
and Ti 6= Ti′ for any i 6= i′. When time can be treated as a continuous variable, there is an
infinite number of choices for Ti, i.e., n→ ∞. Now, for each Ψj (j = 1, . . . , s), let us define:

|0〉 ≡
∣∣tj
〉

X |0〉Y (22)

and
|i〉 ≡ |0〉X

∣∣tj + Ti
〉

Y. (23)

It is easy to verify that 〈i′ |i〉 = δi′i. That is, a single photon Ψj can be treated as an
n-dimensional system, with {|i〉, i = 0, . . . , n− 1} being an orthonormal basis.

With these newly defined |0〉 and |i〉, we can see that, in the experimental protocol,
when Alice chooses the delay time as τj = Ti (i ∈ {1, . . . , n− 1}), Equation (15) can be
rewritten as follows: ∣∣ψj

〉
A =

1√
2
(|0〉+ (−1)b|i〉). (24)

This is exactly the state that Alice sends in step (i) of the theoretical protocol for
committing the bit b, as shown by Equations (1) and (2). Thus, it is proven that our
proposed experimental protocol is equivalent to the theoretical one in principle, so that the
security proof in ref. [56] also applies. Consequently, the experimental protocol is secure as
long as time can be treated as a continuous variable so that the condition n → ∞ can be
reached.

2.4. Feasibility

The experimental apparatus shown in Figure 1 is much the same as those of the
quantum key distribution (QKD) and quantum private query protocols in refs. [57–59]. The
only difference is that our protocol requires two more storage rings SRx and SRy. The QKD
protocol in ref. [57] was already realized experimentally in ref. [60]. By comparing our
apparatus with Figure 1 of ref. [60], we can see that the technology in ref. [60] is sufficient
for implementing our protocol too. Detailed description of the actual experimental devices
can be found in Section III of ref. [60].

An important part of the implementation is to find storage rings SRx and SRy with
a sufficiently long delay time because they determine the holding time (the time interval
between the commit phase and the unveil phase) of the protocol. Using 150 km of optical
fiber (which was proven to be able to guarantee sufficiently high key rate for QKD in
practice) to make the storage ring can generate about 500 µs delay time. While such a
holding time seems short, it is already sufficient for practical applications such as quantum
coin tossing, as shown in Appendix B.

2.5. Practical Difficulties

The security of the practical implementation of the protocol, however, is limited by
two difficulties. (1) The length of the classical communications between Alice and Bob has
to remain finite, so that Alice cannot announce the delay times τj (j = 1, . . . , s) with an
unlimited number of digits. (2) The delay time of the storage rings SRA and SRB cannot be
adjusted to an unlimited precision either, so that Alice and Bob cannot set τj precisely to any
desired value. Consequently, the number of choices for the time slots Ti in Equation (23)
(from which τj can be picked) cannot really go to infinite. Instead, when the above two
difficulties limit the precision of time control to ∆τ, the number of time slots within the
range [0, τmax] is as below:

n = τmax/∆τ + 1. (25)

Therefore, the quantum optical method in Section 2.2 actually implements finite
n-dimensional systems, instead of infinite-dimensional ones. That is, though the two
protocols are equivalent in principle, in practice, the experimental scheme is not a faithful
implementation of our theoretical protocol in Section 2.1. Thus, it cannot be as secure as
the latter.
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Nevertheless, making use of this limitation for cheating is technically challenging too.
Suppose that Alice and Bob know the value of ∆τ and therefore know the actual finite n.
According to Section 5 of ref. [56], if Alice wants to cheat, she needs to have the technology
to prepare entangled states in the form of Equation (4) in the commit phase, which is the
quantum superposition of n different states. Moreover, later in the unveil phase, when she
measures system α to complete her cheating, she needs to discriminate her measurement
result between |αi+〉 and |α̃i−〉, where the latter is defined by Equation (9). Multiplying
〈αi+| by it and we yield the following:

|〈αi+ |α̃i−〉|2 = 1− 4
n + 2

(26)

(i.e., Equation (3.10) of ref. [56]). In our experimental protocol, suppose that the storage
rings can achieve a precision of ∆τ = 300 ps; then, for τmax = 500 µs, there is n ' 1.67× 106.
We can see that |〈αi+ |α̃i−〉|2 is so close to 1 that even a tiny amount of noise and error in
Alice’s experimental devices (which is inevitable in practice) could make the discrimination
between |αi+〉 and |α̃i−〉 impossible. On the other hand, if Bob is dishonest and wants to
learn the committed bit b before the unveil phase, according to Section 7 of ref. [56], he
needs to be capable of discriminating the two density matrices ρ

β
0 = ρ⊗s

+ and ρ
β
1 = ρ⊗s

−
where the trace distance between ρ+ and ρ− is below:

D(ρ+, ρ−) =
1√

n− 1
(27)

(i.e., Equation (3.1) of ref. [56]). Again, in the practical setting, such a tiny difference between
the states could be completely drowned by the noise and error in the experimental devices.
Therefore, even with the limited n value achievable today, the experimental protocol in
Section 2.2 can at least be used as a practically secure (instead of unconditionally secure)
QBC scheme, or serve as a proof-of-principle implementation of the theoretical protocol in
Section 2.1.

3. Discussion

In summary, we showed that, as long as time can be treated as a continuous variable,
then each infinite-dimensional system in the unconditionally secure QBC protocol pro-
posed in ref. [56] can be realized using a single photon. Thus, we obtained an experimental
implementation of this QBC protocol which is feasible under currently available technol-
ogy. Other “post-cold-war era” multi-party cryptographic protocols are, therefore, made
possible too, e.g., quantum coin tossing, as elaborated in Appendix B.

The dimension of the systems cannot really be infinite in practice though, making the
current experimental implementation a practically secure QBC only. Nevertheless, it still
has an advantage over many other practically secure QBC protocols (e.g., refs. [61–63]).
While these protocols could be more feasible than ours in practice, their security is based
on certain practical limitations. For example, currently available quantum memory cannot
store the quantum states for a long period of time, so that, as long as the holding phase of
the protocol is longer than this period of time, we can be sure that Alice can no longer cheat
by storing the states and delaying the measurement until the unveil phase. However, as
technology advances, the storage time of quantum memory will increase, making it harder
and harder to keep the corresponding protocol secure. On the contrary, the security of our
experimental protocol is based on the unconditionally secure theoretical protocol in ref. [56].
Practical limitation is the reason that weakens its security so that it can be practically secure
only, not the reason that makes it secure. Therefore, with the advance in the technology on
the precision of the delay time adjustment, we can expect the security of this experimental
protocol to be constantly improved towards that of the theoretical protocol in ref. [56].
Meanwhile, it is also worth studying whether some new technologies can be adopted to
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implement the infinite-dimensional systems to make our protocol even more feasible, e.g.,
the continuous phase noise resulting from gain switching laser operation [64].

Our result may also contribute to the development of fundamental theories. There is a
brilliant idea called the CBH theorem [65], which intends to deduce quantum theory by
using three information–theoretic constraints as fundamental axioms: (I) the impossibility
of superluminal information transfer, (II) the impossibility of perfect broadcasting of an
unknown state, and (III) the impossibility of unconditionally secure BC. The reason for
including the last constraint is that Alice’s cheating strategy against BC requires the use
of entangled states, as can be seen from Section 2.1 of the current work. That is, the
impossibility of unconditionally secure BC entails the existence of non-locality, which is
one of the essential feature of quantum theory. However, in the three QBC protocols we
previously proposed in refs. [45–47], which manage to evade the MLC no-go theorem,
non-locality is necessary even for honest participants. This observation implies that, if
the constraint (III) is wrong, i.e., unconditionally secure QBC exists, then non-locality is
also entailed. For this reason, we tend to believe that the (in)validity of constraint (III)
has nothing to do with the existence of non-locality. The latter has to exist in our physical
world. To complete the deduction of quantum theory from information–theoretic axioms,
we should look for another constraint to replace constraint (III). Nevertheless, the finding
of the unconditionally secure QBC protocol in ref. [56] may blur the above picture at first
glance. This is because the protocol makes use of infinite-dimensional systems instead
of entangled states, so that it seems to indicate that, in addition to non-locality, infinity
should also be taken into account as the quantum resources that need to be entailed if
we want to build quantum theory completely on top of information–theoretic axioms.
Notably, the result in the current work provides a clue to clean this mist. As can be seen
from Figure 1, in our implementation of the infinite-dimensional systems, each photon
state is divided spatially into two wave packets that travel along different paths, so that
non-locality is introduced. Therefore, the current implementation scheme bridges infinity
with non-locality, so that non-locality could still be considered as the only quantum resource
that guarantees unconditionally secure QBC.
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Abbreviations
The following abbreviations are used in this manuscript:

BC Bit Commitment
QBC Quantum Bit Commitment
MLC Mayers–Lo–Chau
HJW Hughston–Jozsa–Wootters
MZ Mach–Zehnder
QKD Quantum Key Distribution
QCT Quantum Coin Tossing

Appendix A. Confidence Interval of the Error Rate

In the last step of our experimental QBC protocol, Bob is supposed to find (1− ε)s
photons detected by Db instead of Db̄ when Alice is honest. However, since ε is only the
statistical average of the error rate of the experimental apparatus, Bob cannot expect to find
exactly (1− ε)s photons detected correctly. A certain range of statistical deviations has to
be allowed. Now, let us estimate the size of this range.

According to Theorem 3.3 of ref. [2] (which is based on Bernshtein’s law of large
numbers), when each of the s photons stands the probability p = (1− ε) to make the
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correct detector Db click, for arbitrarily small positive value δ ≤ p(1− p), the probability
for the case |s′/s− p| ≥ δ to occur satisfies this equation:

Pr(
∣∣∣∣ s′s − p

∣∣∣∣ ≥ δ) ≤ 2e−sδ2
. (A1)

Here, s′ denotes the actual number of photons being detected correctly in a complete
run of the protocol. This inequality means that s′ should be within the range [(1− ε)s−
δs, (1− ε)s + δs], albeit with a probability 2e−sδ2

at the most. For example, when s = 10,000,
ε = 10%, and δ = 5%, we have 2e−sδ2 ' 2.8× 10−11, which is extremely small. As a result,
the number of photons that are actually detected by Bob’s Db should be within the range
[8500, 9500], otherwise he can confidently conclude that Alice is dishonest.

Appendix B. Quantum Coin Tossing as an Application

Although the holding time of our QBC protocol may look short even with state-of-
the-art optical delay devices, it is sufficient for some practical applications. Here, as an
example, we will show how quantum coin tossing (QCT, a.k.a. quantum coin flipping) [1]
can be realized.

The goal of QCT is to provide a method for two separate parties, Alice and Bob, to
generate a random bit value c = 0 or 1 remotely, while they do not trust each other. If the
parties have opposite desired values, e.g., Alice wants c = 0 while Bob wants c = 1, then it
is called weak QCT. Conversely, if their desired values are random, then it is called strong
QCT. Here, we focus on strong QCT. Such a protocol is considered secure if neither party
can bias the outcome, so that c = 0 and c = 1 will occur with the equal probabilities 1/2,
just as if they are tossing an ideal fair coin. Possible application scenarios of QCT may
include the case where divorced and separated couples want to decide how to divide their
property over the telephone. Other more complicated applications such as online gambling
can be constructed through it too.

Strong QCT with an arbitrarily small bias was also considered a hard task if uncondi-
tionally secure QBC is impossible [11], but, when QBC becomes available, QCT can easily
be built upon it as follows.

Strong QCT protocol:
(I) Alice and Bob complete the commit phase of our QBC protocol, where Alice picks the value

of her committed bit b randomly;
(II) During the holding phase, Bob picks a random bit x and announces it to Alice through the

classical channel;
(III) Alice and Bob complete the unveil phase of our QBC protocol. That is, Alice unveils her

committed bit b, and Bob checks whether she is honest or not;
(IV) Both Alice and Bob accept y ≡ b⊕ x as the coin tossing result.
It is trivial to show that, if the QBC protocol is secure (i.e., Alice cannot change b after

the commit phase and Bob cannot know b before the unveil phase), then, the value of
the final tossing result y is completely random. Neither Alice nor Bob can bias it to any
specific value.

In this example, the commit and unveil phases of the QBC protocol are separated
merely by step (II), where only one classical bit x is transferred. Bob can decide the value of
x beforehand but keep it secret from Alice during step (I). Then, step (II) can be performed
automatically under the control of classical computers, which can be performed very
quickly. Therefore, the holding time in our QBC protocol is already long enough for such
operations, so that it can result in a useful QCT protocol in practice.
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