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Abstract: Detailed information on system operation is recorded by system logs, from which fast
and accurate detection of anomalies is conducive to service management and system maintenance.
Log anomaly detection methods often only handle a single type of anomaly, and the utilization
of log messages could be higher, which makes it challenging to improve the performance of log
anomaly detection models. This article presents the LTAnomaly model to accomplish log anomaly
detection using semantic information, sequence relationships, and component values to make a
vector representation of logs, and we add Transformer with long short-term memory (LSTM) as our
final classification model. When sequences are processed sequentially, the model is also influenced by
the information from the global information, thus increasing the dependence on feature information.
This improves the utilization of log messages with a flexible, simple, and robust model. To evaluate
the effectiveness of our method, experiments are performed on the HDFS and BGL datasets, with the
F1-measures reaching 0.985 and 0.975, respectively, showing that the proposed method enjoys higher
accuracy and a more comprehensive application range than existing models.

Keywords: anomaly detection; deep learning; log analysis

1. Introduction

Currently, large-scale systems have been applied everywhere and provide diverse
services in many situations. The quality of services greatly affects the user experience, but
unstable software and hardware can cause many kinds of errors. The current network
environment is complex, and novel attacks on computer systems often emerge, exposing
service providers to security threats and economic losses. Therefore, the detection of
large-scale system anomalies is necessary.

Large-scale systems generate many log files to record runtime states, including mes-
sages from users, applications, or the system itself [1]. Logs can be used for the timely
detection of system anomalies, and output logs offer a possible means to detect abnormal
system states [2–4]. However, logs are usually recorded in natural textual language, which
is typically unstructured and requires manual analysis. Traditional log anomaly detec-
tion methods are based on such factors as the developer’s domain knowledge, manual
checks, and writing rules. The above methods have many drawbacks, such as experts
with limited knowledge, a large number of logs, high costs to select features, and poor
adaptability. The growth of deep learning has provided novel ideas to solve these prob-
lems. Researchers have proposed a series of initially effective schemes for log exception
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detection. Log anomaly detection can represent logs by counting log events [5–8] or cap-
turing log event semantic information [2,9] using support vector machine (SVM) [7,10],
principal component analysis (PCA) [5], invariant mining (IM) [6], long short-term memory
(LSTM) [8,11], and Transformer [12] for anomaly detection. However, these solutions
also have the following problems. For example, SVM [7,10] requires log mass tagging.
PCA [5] is prone to false positives. Only log sequence exceptions can be detected by IM [6].
DeepLog [8] only takes into account one type of exception. LogRobust [9] and
HitAnomaly [12] have high computing costs. DeepSyslog [13] does not consider the
potential dangers caused by abnormal component values.

To solve the above problems, we designed a log anomaly detection model, LTAnomaly,
which uses LSTM and Transformer structures to model log semantic information, sequence
relationships, and component information. In order to analyze logs more accurately,
Word2Vec generates word vectors, and term frequency–inverse document frequency (TF-
IDF) supplies weighted feature vectors of log sequences and component values. This
method fully uses the potential relationships between semantic information, temporal
information, and other features and solves the problem of high abnormal false alarm
rates caused by potential information omissions. Both features are combined and fed
to LTAnomaly for further detection. The Transformer embedded with LSTM has strong
generalization and low time consumption. The primary objective of this article is to enhance
the efficiency of system anomaly detection by improving the quality of automated services.
In order to achieve this, innovative deep learning techniques are employed to improve
the ability to detect anomalies in system logs, enabling accurate and swift prediction of
abnormalities and defects in advance. This approach satisfies the demands for timely,
efficient, and precise security detection in real-world scenarios. The main contributions of
this article are as follows:

1. This paper presents a novel log representation considering component values. This
approach precisely collects the component value information of the log and the
semantic information captured on the log sequence. The potential relationships of
multiple features are fully considered, improving the utilization of log information
and anomaly detection accuracy.

2. This paper proposes LTAnomaly, a model for log anomaly detection based on LSTM
and Transformer. LTAnomaly models the temporal dimension through LSTM and
captures global contextual information using the attention mechanism in Transformer.
When the model processes the sequence sequentially, it receives the influence from
the global information, which improves the feature information dependency. This
method is progressive and effective in log anomaly detection.

3. We conduct comparative experiments with LTAnomaly and six baseline models on the
public log data sets HDFS and BGL and conduct two groups of ablation experiments.
The experimental results show that our model is superior to other log anomaly
detection methods in terms of detection accuracy and time performance.

The remainder of this article is structured as follows: Section 2 presents work related
to log anomaly detection. The LTAnomaly model is described in Section 3. Section 4
discusses our experiments and their results. Section 5 discusses our conclusions and
suggests future work.

2. Related Work
2.1. Log Parsing and Preprocessing

Since log messages are unstructured texts, log parsing aims to extract a set of event
templates for logs and perform a structured analysis. Current methods of log parsing can
be divided into offline and online methods, where offline methods are further split into rule-
or clustering-based. Shiwen Cheng et al. [14] presented a method to identify log templates
using regular expressions. However, it becomes more difficult to create and update regular
expressions as the log volume increases. The first clustering-based log parsing algorithm,
the Simple Logfile Clustering Tool (SLCT) [15], extracts log templates by clustering the
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word sets occurring more frequently than a threshold in logs. Makanju et al. [16] proposed
the IPLoM algorithm based on hierarchical clustering, which clusters logs by iterating their
message length, token location, and mapping relationships layer by layer. Unlike SLCT, no
threshold setting is required. A limitation of offline methods is that offline parsing cannot
perform real-time anomaly detection and must be retrained for newly emerging log types.
Online methods that can be parsed in real-time for timely subsequent anomaly detection
have been proposed to meet industrial needs. Du et al. [17,18] proposed Spell, an algorithm
based on the longest common sub-sequence method to cluster logs online, dynamically
extracting log templates from incoming logs. The Drain algorithm [19] uses a deep fixed
tree-based idea for clustering logs and can parse logs with stream processing and a just-in-
time approach, which greatly reduces running time. Zhang et al. [20] established a frequent
template tree (FT-Tree) to obtain log templates by extracting the longest combination of
words with high frequency. Studiawan et al. [21,22] modeled event logs as graphs and
utilized a graph clustering method to group log entries. Zhu et al. [23] evaluated multiple
log parsing algorithms and found that the Drain method performed best. We choose Drain
for log parsing due to its characteristics of high resolution and efficiency.

Feature extraction [24] is a crucial step in anomaly detection. Identifying and extracting
the most useful features from data enables models to develop a better understanding of the
information and generate more effective input for subsequent tasks such as classification
and clustering. Extracting these key features allows models to process more accurate data,
leading to improved overall performance. Feature extraction methods for detecting log
anomalies can be based either on log event counts [5–8] or log event semantic information [2,9].
The first type extracts log events from log messages and converts them to a message count
feature space, leaving out the order of log events and the semantic information in the log
messages, and therefore it cannot accurately perform log parsing. The latter type models
log streams as natural language sequences, using word embedding to convert log events
to vectors, based on which the authors train the model. However, existing methods of
word-vector-weighted aggregation do not focus on word order relationships, and there
is no guarantee that logs will have a unique representation. Moreover, the method is
confined to the semantics of log events and can easily overlook other key values in the
log for exception detection. Some exceptions do not necessarily manifest as deviations
from the normal sequence of log events but rather as potential threats, such as component
values that behave as exceptions. Therefore, the values of some specific parameters can be
considered important factors in the log-based exception detection mode.

2.2. Anomaly Detection

Anomaly detection [25] is widely employed in scenarios such as financial fraud [26],
post-disaster situation analysis [27], social media event monitoring [28], and network
traffic [29]. It can detect system anomalies in a timely and effective manner, thereby
ensuring network security. Various machine learning [30] and deep learning methods are
currently used in anomaly detection research.

Log anomaly detection was first proposed using machine learning, using either super-
vised or unsupervised learning. Many supervised learning methods have been applied to
log anomaly detection. Liang et al. [10] used an SVM classifier to detect log event anomalies.
Chen et al. [31] presented a detection method based on a decision tree. Farshchi et al. [32]
introduced an approach for regression-based analysis that found a correlation between
activity logs of operations and the impact of operational activities on cloud resources,
enabling the discovery of anomalies in operational cloud application logs. Zhang et al. [33]
proposed the PreFix framework, which uses a random forest algorithm to model tem-
plate sequences that can intervene and “fix” potential failures. Bertero et al. [34] used
Word2Vec for vector representation of logs and applied a classifier to detect whether they
were anomalous. However, this approach is limited by its reliance on the quality of the
dataset labels.
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Subsequently, more unsupervised learning methods have been applied to anomaly
detection in logs. In practical studies, the quantity of abnormal data is much less than
that of normal data, and anomaly logs are generally unlabeled. Thus, the advantages of
unsupervised learning can be better utilized. Lou et al. [6] proposed IM, which can detect
more anomalous messages in distributed systems, and then, execution anomalies can be
tested effectively. Xu et al. [5] utilized PCA to identify abnormal events and visualize the
final results. Yang et al. [35] proposed LogOHC, which has high extraction efficiency in
multi-source log datasets. Unsupervised learning with high automation saves labor costs,
but most detection uses clustering and correlation analysis, and the degree of automated
correlation between these methods is not high. Therefore, deep learning methods have
been applied by more studies to jointly analyze events and automate the discovery of
potential security threats.

Deep learning methods have ushered in a boom in research and application in recent
years, with good results in various fields. Ruff et al. [36] and Pang et al. [37] sum-
marized the use of deep learning models in anomaly detection. Deep learning models
provide new methods for log anomaly detection. Zhang et al. [11] applied LSTM for fault
prediction in a log system, grouping logs with similar formats and content and process-
ing rare marker data in training to capture long-term dependencies across log sequences.
Du et al. [8] proposed DeepLog, which models logs as natural language sequences, enabling
the automatic learning of log patterns from normal execution and discovering anomalies
when log events deviate from the trained model under normal execution. However, the
model can only be trained with large amounts of normal data. Attention-based RNN
was proposed by Brown et al. [38] and focuses on log events and overlooks contextual
relationships in the log sequence. Unstable log data can be dealt with by LogRobust [9].
An attention-based Bi-LSTM neural network grasps contextual information. This method
can automatically analyze the significance of log events. However, large log data volumes
result in slow speeds and high calculation costs. Marta Castillo [39] proposed AutoLog,
which periodically samples logs, calculates numerical scores, trains a semi-supervised
deep autoencoder, and uses the encoder for classification. Huang et al. [12] proposed
HitAnomaly, which uses log template sequences and parameter values to represent logs
and simultaneously applies a Transformer structure for anomaly detection. Recent studies
have shown that LSTM outperforms Transformer in some tasks, but Transformer [40–42]
replaces recurrent neural network models in some cases, such as LSTM. The performance
of both LSTM and Transformer can be further improved by the semantic information of
logs, so they can be integrated into a whole to deal with the instability of log anomaly
detection with lower computational expenses, enhanced accuracy, and higher efficiency of
anomaly detection.

3. Proposed Models
3.1. Overview

Figure 1 shows an overview of LTAnomaly. Log parsing is performed to convert
semi-structured logs into log templates and log component parameters. Then, the logging
template and logging component parameters are input to the LTAnomaly model. Log
template content is put into Word2Vec to obtain the word vector. Combined with TF-IDF,
the feature vector of the log event sequence can be obtained. Then, according to the TF-IDF
of the component parameter sequence, the feature vector of the log component sequence
is obtained. The feature vector matrices of the log event and log component sequences
are spliced to realize the final feature matrix. With the final eigenvector matrix, the log
anomaly model based on LSTM-Transformer can detect the logs.
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Figure 1. LTAnomaly framework. Drain is used for log parsing, and semantic relationships and log
component values are captured from the log sequence to generate a log feature matrix. Transformer
is combined with LSTM for anomaly detection. Note: ⊕means a connection. * denotes a variable.

3.2. Log Parsing and Preprocessing
3.2.1. Log Parsing

Log parsing aims to fetch variables from unstructured logs and save invariant variables
as log templates. Before log anomaly detection, it is necessary to parse the unstructured
and free-text log so that the obtained log can be passed to the anomaly detection model.
Drain is characterized by high parsing accuracy and efficiency. Therefore, logs parsed by
Drain meet the requirements of the proposed model. This study uses the Drain method to
parse all log data. As shown in Figure 2, Drain builds a fixed-depth parsing tree. The log
is preprocessed by a simple regular expression according to domain knowledge. The log
group is first distinguished by the length of the log message (the number of tokens), after
which the tokens in front of the log are identified. Then, token similarity is calculated to
find the best match, and finally, the parsing tree is updated.
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Figure 2. The log parsing process for Drain. Note: * denotes a variable.

Figure 3 shows that the log message is converted to a log template. For example,
the log “081109 203615 148 INFO dfs. DataNode$PacketResponder: PacketResponder 1
for block blk_38865049064139660 terminating” is parsed by Drain into the log template
“PacketResponder <*> for block <*> terminating”, where “<*>” is the wildcard character.
The log template is composed of fixed text strings.

Figure 3. Example of log parsing. Note: * denotes a variable.
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3.2.2. Log Sequence Feature Matrix Generation

• Log sequence vector: Each dataset has a unique identifier. In the HDFS dataset, the
block_id is set as the identifier for a specific sequence of operations. Log events are
grouped on the strength of these identifiers, or log items generated by concurrent
processes are broken into separate and single-threaded sequential sequences. Each row
in Figure 4 refers to a log execution sequence, and each number (ID) in the execution
sequence indicates a log. All logs in each log execution sequence have the same
block_id. Logs with identical block_ids are arranged together in order to form a log
sequence vector. All of these efforts help detect exceptions when the log execution
sequence is incorrect.

Figure 4. Log sequence vector example.

• Word vector: Word2Vec is an effective method of embedding words that takes the
context of the words into account during training to establish a language model f(x)
= y between the goal word (x) and its context (y). In this way, the targeted word
is obtained according to the context word or vice versa. Word2Vec is performed in
LTAnomaly to effectively process semantic information in log messages.
Word2Vec requires words as input, so we need to first split the log template content.
The log can be separated by spaces or other methods. For instance, “PacketResponder
<*> for block <*> terminating” is divided into four words: “PacketResponder”, “for”,
“block”, and “terminating.” Then, we use Word2Vec to predict targeted words from
context words. As shown in Figure 5, one-hot encoding was performed on the top
n words and the bottom n words of the target word. Next, the hidden and softmax
layers are used to predict the targeted word, obtaining a word vector for each word.
The word vectors of all words form a word vector matrix V∈ Ra×b according to their
order of appearance in the log sequence vector.

• Word sequence weight matrix: TF-IDF is a popular weighting technique implemented
in both information search and data mining. The importance of words in a sentence
can be measurable by TF-IDF, which meets the demand for high resolution. A word’s
weight tends to grow according to its quantity in the log sequence. However, if a word
occurs frequently, the weight of the word decreases. For instance, if the word “Block”
occurs regularly in a log event, then the word may better describe the log event. In
contrast, if “Block” occurs in whole log events, then it is not possible to distinguish
log events based on this word, so its weight should be reduced. Therefore, we denote
significance with the term frequency (TF) and measure the occurrence of log events by
the inverse document frequency (IDF). These are calculated as

TF(wordi) =
ni

∑k nk
, (1)

and

IDF(wordi) = log
(

si
s + 1

)
, (2)

where ni is the number of occurrences of wordi, ∑k nk is summed over words in whole
log sequences, and s and si, respectively, denote the sum of log sequences and the
sum of log sequences with wordi. The TF-IDF weight W of each word is computed as
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TF×IDF. The TF-IDF weights of the log sequences constitute a word sequence vector
weight matrix W∈ Rc×a.

Figure 5. Word2Vec model structure.

• Log sequence feature matrix: To produce the log sequence feature matrix, we multiply
the word vector matrix V by the word sequence weight matrix W to obtain the log
sequence feature vector Ew∈ Rc×b, i.e.,

Ew = W ×V. (3)

Therefore, the log sequence characteristic matrix can pay attention not only to exceptions
that occur in the log execution order but also to the semantic information of the log. This
method represents log messages more accurately than existing log representations.

3.2.3. Component Sequence Matrix Generation

We discuss how to obtain the representation of component values in LTAnomaly. Log
component values with the same block_id form a vector of component value sequences
in order of execution. Then, TF-IDF is used for weight analysis. The TF-IDF algorithm
here differs slightly from that of word sequence weight calculation. TF is still employed
to describe its importance, and IDF measures the occurrence of log events. These are
calculated as

TF(componenti) =
mi

∑k mk
, (4)

and

IDF(componenti) = log
(

ci
c + 1

)
, (5)

where mi is the number of appearances of componenti in whole log sequences, ∑k mk is
the sum of the component values in whole log sequences, and c and ci are, respectively,
the sum of log sequences and of those with componenti. The TF-IDF weight W for each
component value is computed as TF×IDF. The TF-IDF weights of all component sequences
constitute a component sequence weight matrix Wc∈ Rc×d. Finally, the log component
value sequence matrix is equal to the component sequence weight matrix, Ec ∈ Rc×d, i.e.,

Ec = Wc. (6)
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3.2.4. Final Feature Matrix Generation

The final feature matrix is the pivotal point in log anomaly detection. The log exception
detection model takes the final feature matrix as its input. The concatenate(·) means to
stitch two matrices together. The final feature matrix, E ∈ Rc×(b+d), is composed of a
log sequence feature matrix and component value sequence feature matrix, which are
connected as

E = concatenate(Ew, Ec). (7)

3.3. Anomaly Detection

LTAnomaly uses LSTM and Transformer to model the feature matrix of the input and
detect anomaly logs, taking advantage of LSTM modeling of the time dimension and the
self-attention mechanism in Transformer to capture global contextual information. In doing
so, we add LSTM to the Transformer subset (Figure 6). For Transformer with LSTM, the
input eigenmatrix is processed by LSTM and transmitted to the Transformer block.

Figure 6. LT model: Transformer with LSTM.

The final feature matrix E, including the log sequence feature matrix and component
sequence feature matrix, is processed by Word2Vec and TF-IDF. The feature matrix E
in the proposal is input to the anomaly detection model based on LSTM-Transformer,
which is processed by the Embedding layer and transmitted to the LSTM layer and the
PositionalEncoding layer. The output matrix of the LSTM layer and the PositionalEncoding
layer are combined and sent to the Transformer block. The calculation process can be
summarized as follows:

emb = Encoder(E), (8)

out_l, h = LSTM(emb), (9)

src = Pos_encoder(emb×
√

ninp), (10)

x = Fusion(src, out_l). (11)
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where emb denotes the output of Embedding, out_l and src are the outputs of LSTM and
PositionalEncoding, respectively, and ninp is the embedded dimension in the Embedding
layer. Fusion(·) is a combined operation for the Fusion layer, and x is the output of the
Fusion layer, which is input to the next module.

We next discuss the decoder parts of the Transformer model, involving the Multihea-
dAttention, normalization, and full connection layers, as shown in Figure 7. The output x
of the Fusion layer is regarded as the input of the module, and the calculation process of
the module is as follows:

Q = xWQ, (12)

K = xWK, (13)

V = xWV , (14)

Hi = So f tmax

(
QiKT

i√
dk

)
Vi (15)

O = Concat(H1, H2, . . . , Hn−1, Hn)WO. (16)

where WQ, WK, and WV are learnable parameter matrices, and the input data are transferred
to query, key, and value. The dimension of the key vector is dk. The Concat(·) function
concatenates the output of each header with the help of the parameter matrix WO.

Figure 7. Transformer block.

The O processed by multiple attention is added and connected with its input x to
provide Ot through the full connection layer,

Ot = FNN(O + x), (17)

where FNN(·) is a feedforward network. An Ot with the same size and shape as x can be
input to the next module.

Softmax calculates the prediction label y_pred for the log sequence, in which 0 in-
dicates that the input data are normal and 1 indicates abnormality. Cross-entropy for
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our loss function can be utilized in the training phase, making full use of the adaptive
moment estimation optimization algorithm (Adam) when tuning model parameters. LSTM
and Transformer are combined in a powerful and robust model through intersectional
information representation.

4. Experiments
4.1. Datasets

Experiments were conducted on two public datasets: HDFS [5], a distributed system
log; and BGL [19], a supercomputer log.

The HDFS log dataset is based on map-reduce jobs from running Hadoop with more
than 200 AmazonEC2 nodes. It has 11,175,629 items of log information, including time
(year, month, day, hour, minute, and second), source IP address, and data size. The block_id
can be divided into 575,061 operation sequences, with 2.9% of them marked as exceptions
by Hadoop domain-related experts.

BGL was formed by the BlueGene/L supercomputer system at Lawrence Livermore
National Laboratory (LLNL) [18]. Its 4,747,963 log messages include 348,460 logs regarded
as anomalous. Unlike HDFS, BGL logs do not capture the block_id generated by each
log event. Consequently, we must split the log messages into log sequences with sliding
windows. Once there is an error log in a log sequence, it is deemed an exception.

Log Anomaly Characteristics

As computer systems continue to increase in complexity and size, complex log data
and various types of anomalies become more common. A large-scale system will inevitably
encounter failures that lead to changes in log patterns. Anomalies in log data sets refer
to events that do not conform to the normal behavior pattern recorded over a certain
period of time, which may be due to software errors, hardware failures, malicious attacks,
or other reasons. The anomaly types of log data include log sequence anomalies, log
event anomalies, and component value anomalies, as shown in Figure 8. A log sequence
anomaly mainly refers to an obvious deviation or inconsistency between the sequence of
log occurrences and the usual sequence. Abnormal log events mainly refer to content in
the log that is inconsistent with normal situations, such as the appearance of unknown IP
addresses or software version information. Component value anomalies mainly refer to
component value information generated by logs that does not match normal situations,
which may be caused by illegal acquisition of permissions or malicious attacks.

Figure 8. Log anomaly characteristics.

If log anomalies in a system are not identified in a timely manner, they may lead to
potential security risks and threats to the system, which can result in data breaches, system
attacks, or malware infections.

4.2. Evaluation Metrics

Log anomaly detection is typically viewed as a dichotomous issue, where Precision,
Recall, and F1-measure are used to measure model efficiency. These indicators [23,43] have
also been mentioned in previous studies. These indicators are calculated as

Precision =
TP

TP + FP
, (18)

Recall =
TP

TP + FN
, (19)
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F1−measure = 2×
(

Precision× Recall
Precision + Recall

)
. (20)

where TP means that an exception log sequence is correctly predicted, FN represents an
incorrect prediction of an abnormal log sequence, FP indicates the prediction of a normal
log sequence as an exception, and TN indicates a correct normal log sequence prediction.
Precision is the ratio of actual anomalies among all reported anomalies. Recall is the ratio
of correctly recognized log sequences to all actual anomalies. F1−measure is the harmonic
average of precision and recall.

4.3. Experimental Results

Experiments on LTAnomaly were implemented on a CPU-equipped Windows machine
with PyTorch. Calculation speed and results become better on a GPU with specific hardware.
The window size of the log sequence and the batch_size were set to 15 and 128, respectively.
With two layers of LSTM and two layers of Transformer, we set the initial learning rate to
0.0001 and trained the LTAnomaly model for 20 epochs. LTAnomaly was compared with six
baseline methods with unsupervised learning: LogCluster [44], DeepLog [8], LogRobust [9],
HitAnomaly [12], CL2MLog [45], and LogLS [46].

4.3.1. HDFS Dataset Evaluation

Table 1 shows the performance of LTAnomaly and the six baseline methods on the
HDFS dataset, with the highest score expressed in bold. LTAnomaly shows the highest
recall rate, with an F1-measure of 0.985. High F1-measures of LogRobust, HitAnomaly,
CL2MLog, LogLS, and LTAnomaly make it clear that the semantic information of the
log template has an impact on exception detection. LogRobust produces more errors
than LTAnomaly because it does not use component value information provided by the
dataset. HitAnomaly is better than LTAnomaly when detecting normal logs. However,
there are more false detections of anomalous logs, with serious ramifications for the system.
Further observation shows that many anomaly detection methods work efficiently on
HDFS datasets, i.e., the log parser does a good job extracting log templates from HDFS
datasets. Therefore, the results show that the log parser plays an important role in the
anomaly detection of logs.

Table 1. HDFS dataset for evaluation.

Technique Precision Recall F1-Measure

DeepLog 0.92 0.95 0.934
LogCluster 0.96 0.83 0.890
LogRobust 0.96 0.96 0.970

HitAnomaly 0.99 0.97 0.979
CL2MLog 0.96 0.98 0.970

LogLS 0.96 0.98 0.970
LTAnomaly 0.98 0.99 0.985

For large systems that are not easily manageable, small improvements can be crucial
for efficiency. In some cases, making LTAnomaly 0.02 more accurate than LogLS may result
in more precise identification of potential failures or anomalies, thus enabling businesses
or organizations to react faster and avoid potential losses. Moreover, in critical domains
such as finance and healthcare, even a relatively minor accuracy improvement can have a
significant impact on system security and reliability.

The LTAnomaly model achieves high accuracy in log anomaly detection by combining
semantic information, sequence relationships, and component values to represent logs as
vectors. This is achieved by incorporating a Transformer with long short-term memory
(LSTM) as the final classification model, which enables the model to consider both local and
global information when processing sequences. The flexibility, simplicity, and robustness of
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the LTAnomaly model make it more effective than existing log anomaly detection models,
and it has been shown to perform well in detecting HDFS data anomalies. On the other
hand, Transformer-based anomaly detection methods also use deep learning techniques,
and the Transformer architecture has been adapted for time series analysis by using a
self-attention mechanism to learn the relationship between different parts of time series
data. The reason why LTAnomaly may outperform Transformer-based methods in HDFS
anomaly detection is due to various factors, such as the size and complexity of the dataset,
the quality of the data, and the hyperparameter tuning of each algorithm. The design of
its model architecture increases the sensitivity to long sequence information, making the
model more accurate in considering the relationship between local and global information.
Moreover, the unique characteristics of the dataset, such as the size and complexity of the
logs or the nature of the detected anomalies, may favor the LTAnomaly model over other
methods, confirming that there are scenarios where our proposed model performs better at
log anomaly detection.

Log anomaly detection requires not only high accuracy but also high efficiency. This pa-
per compares the time-consuming performance of Deeplog, HitAnomaly, and LTAnomaly
methods on HDFS datasets. To ensure the consistency of the experimental results, Deeplog,
HitAnomaly, and LTAnomaly are conducted in the same experimental environment.

Table 2 shows the results of the experiment. DeepLog takes less time than LTAnomaly
at the expense of low accuracy. HitAnomaly takes more time than LTAnomaly because
the number of parameters in the Transformer-encoder is much larger than that in LSTM.
Based on the experimental results, LTAnomaly dramatically reduces time consumption
while ensuring high accuracy. LTAnomaly is an efficient log anomaly detection model.

Table 2. Time performance comparison of different anomaly detection models.

Model Number of Logs Time Consumption

Deeplog 787,095 2 h 17 m 29 s
HitAnomaly 787,095 4 h 29 m 56 s
LTAnomaly 787,095 3 h 22 m 6 s

4.3.2. BGL Dataset Evaluation

Table 3 compares the performance of LTAnomaly and the six baseline models on the
BGL dataset, with the highest score expressed in bold. LTAnomaly has the best accuracy,
with an F1-measure of 0.975, a 4% increase over CL2MLog. The detection accuracy of Log-
Cluster is not high, due to the high-dimensional sparsity of the event count matrix. Hence,
it is difficult to distinguish between anomalies and normal situations with log clusters,
leading to many false predictions. DeepLog only considers the temporal characteristics of
log sequences and ignores the semantic characteristics of log messages, resulting in worse
performance than LTAnomaly. The LogLS model performs better on HDFS and shows a
poor performance on BGL datasets, indicating that it has a small application range. As the
experimental results show, LTAnomaly performs well on both HDFS and BGL, indicating a
wide range of applications.

Table 3. BGL dataset for evaluation.

Techniques Precision Recall F1-Measure

DeepLog 0.91 0.71 0.797
LogCluster 0.42 0.87 0.541
LogRobust 0.91 0.78 0.840

HitAnomaly 0.95 0.90 0.924
CL2MLog 0.91 0.97 0.939

LogLS 0.68 0.99 0.809
LTAnomaly 0.97 0.98 0.975
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In the experiments, we examined the effects of window size and number of layers on
the performance of our model. We tested the BGL dataset, changing one parameter value
and setting the others to default values.

The partition of the log sequence is determined by the window size. To investigate
the influence of window size on the model, we set it to 5, 10, 15, 20, and 25. As we can see
from Figure 9, LTAnomaly has relatively stable accuracy for different window sizes, with a
certain influence on recall. With an increased window size, the efficiency of LTAnomaly
anomaly detection does not show significant degradation, and it remains high. However,
too small a window results in low recall, so the model cannot detect some anomalies.
The model performs best with a window size of 15. The number of LSTM layers is also
important for LTAnomaly. To observe its influence on LTAnomaly, we set the number of
layers as 1, 2, 3, 4, and 6. Figure 10 shows its influence on LTAnomaly, from which we can
find that the anomaly detection of the model is basically the same when the number of
layers is greater than or equal to 2. However, the more parameters there are, the longer the
model training and detection times. Hence, we prefer two LSTM layers.

Figure 9. Effect of window size.

Figure 10. Influence of LSTM layers.
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4.4. Ablation Study

In this study, we considered not only the semantic information of log messages and
the sequential relationships between logs but also the component value parameters in
logs. To verify the advantages of feature combinations, we evaluated the performance
of LTAnomaly without component value parameters in the log. Without the semantic
message of the log template sequence, LTAnomaly only models the accuracy of component
value parameters. Therefore, ablation experiments were performed on the BGL and HDFS
datasets. Table 4 shows the performances of different feature extraction techniques in two
datasets, in which “-” and “O” indicate using and not using the technique, respectively,
and W means that we should think about the semantic information of the log message and
the sequential relationship between logs, with the highest score expressed in bold. More
importantly, C represents the component value parameter that uses the log. We observe
that LTAnomaly with no logging component parameters has a lower recall rate than that
with logging component parameters, indicating that some exceptions caused by parameter
value errors are ignored. The accuracy of LTAnomaly without log semantic and sequence
information is relatively low; hence, this information is important for anomaly detection.
The LTAnomaly model (with no component value parameters) and the LogRobust model
ignore component value information. However, LTAnomaly outperforms LogRobust,
which shows that Transformer with LSTM is more effective in logging exception detection.

In log anomaly detection, it is crucial to consider the values of log components be-
cause they provide information about the state of the application or system. Abnormal
events usually cause abnormal changes in log component values. Therefore, analyzing log
component values can effectively detect and identify abnormal events. When selecting an
anomaly detection algorithm, various log component values must be taken into account,
and attempts should be made to determine which values are most suitable for detecting
anomalous events. Attention should also be paid to issues such as how to perform prepro-
cessing and normalization and how to deal with missing values in the data to ensure the
quality and reliability of the data. By considering these factors collectively, the proposed
approach’s performance results can be improved, and accurate log anomaly detection can
be achieved.

Table 4. The performance of different feature extraction technology combinations in datasets.

Dataset
Techniques

Precision Recall F1-Measure
W C

BGL
- O 0.95 0.91 0.929
O - 0.79 0.86 0.823
- - 0.97 0.98 0.975

HDFS
- O 0.97 0.98 0.975
O - 0.83 0.89 0.859
- - 0.98 0.99 0.985

This study uses Transformer with LSTM for log exception detection for the first time.
We investigated whether the fusion of LSTM and Transformer can improve the accuracy of
detection. Ablation experiments on the HDFS and BGL datasets were performed to analyze
the impact of each component on the overall model. Table 5 shows the performance of
different anomaly detection techniques in two datasets, with the best results highlighted in
bold. Table 5 confirms that adding LSTM modules to Transformer provides better exception
detection performance, with the highest score expressed in bold.
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Table 5. The performance of different anomaly detection technology combinations in datasets.

Dataset Techniques Precision Recall F1-Measure

BGL
LSTM 0.92 0.86 0.889

Transformer 0.95 0.91 0.929
LTAnomaly 0.97 0.98 0.975

HDFS
LSTM 0.96 0.98 0.970

Transformer 0.99 0.97 0.979
LTAnomaly 0.98 0.99 0.985

4.5. Explainability

LTAnomaly employs an LSTM-based Transformer architecture that compresses the
input log sequence into a fixed-length vector representation in the encoder and converts
this vector representation back to the original log sequence in the decoder. This struc-
ture is intuitive and is easy to understand and interpret. Additionally, LTAnomaly can
determine which features are most important for anomaly detection by analyzing the
attention mechanism in the model. This feature importance analysis can help users gain
a deeper understanding of the causes and characteristics of exceptions, enabling them to
handle exceptions more effectively. The model can label all items or subsets of the input
data and observe the model’s response to these specific data points, allowing the user to
better understand where the model made incorrect predictions or accurate predictions.
Visualization techniques can be used to visualize the inner workings of the model. For
example, drawing a diagram between inputs, outputs, and internal states can help provide
better understanding of how the model processes inputs and generates outputs. This is
how models contribute to explainability.

4.6. Robustness

To account for the differences in various environments, such as different computer,
server, or network conditions, we need to evaluate the stability of technical performance.
To achieve this, we conducted tests on multiple hardware devices and found that the
differences in test results were not significant. However, based on past experience, we
recognize that data sets significantly impact technical performance. Therefore, during the
testing process, we paid special attention to using data sets of different types, sizes, and
qualities. It is gratifying to note that the proposed technique shows good applicability
and generalization. One thing to note is that certain technologies may depend on specific
parameter settings. Therefore, during the test, we attempted multiple parameter combina-
tions to determine the optimal setting and verified the robustness of its adjusted results.
We use metrics such as accuracy and F1-measure to evaluate the technology’s performance
and cross-validation methods to verify the reliability of the results.

5. Conclusions

We designed a log-based abnormal detection model: LTAnomaly. The semantic
information of log sequences and component-valued parameters in logs were utilized
to represent logs. We applied Transformer with LSTM to implement anomaly detection.
The model offers a more accurate representation of logs and various anomaly detection
methods to improve detection efficiency. The experimental results demonstrated that wider
applications increased detection accuracy. The model’s ability to accurately represent logs
using semantic information in log sequences and component-valued parameters in logs
can enable wider applications and improve detection efficiency. One potential scenario
for the use of this model is in detecting anomalies in large-scale distributed systems, such
as cloud computing infrastructures. The LTAnomaly model can automate the process of
detecting anomalies, thereby reducing the time required to identify and resolve issues.
Furthermore, the LTAnomaly model can help detect anomalous activities within network
logs and alert security personnel to take immediate action to prevent a security breach.
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However, a limitation of our work is that variable parameters in log messages cannot be
well handled. In the future, we aim to represent logs in a simpler and more comprehensive
manner and detect anomalies more accurately and quickly. A direction of our future work
is to be able to forecast anomalies and take effective measures to protect against them,
hence reducing their associated damages.
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