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Abstract: Recent advances in vehicle technology offer new opportunities for an electric, automated,
modular bus (MB) unit with an adjustable capacity to be applied to transit systems, promising to
tackle the resource allocation challenges of traditional buses in coping with uneven travel demand.
Drawing on the concept of modular vehicles, this paper introduces a novel scheduling system
in which MB units can be combined/separated from fulfilling imbalanced trip demands through
capacity adjustments. We develop an optimization model for determining the optimal formation and
trip sequence of MB units. In particular, given that the vehicles are electrically powered, battery range
limits and charging plans are considered in the system scheduling process. A column-generation-
based heuristic algorithm is designed to efficiently solve this model, with constraints related to travel
demand and charging station capacity incorporated into the master problem and the trip sequence for
modular units with limited energy solved by the subproblem. Taking real data from transit operations
for numerical examples, the proposed model performs well in terms of both algorithmic performance
and practical applications. The generated optimal MB dispatching scheme can significantly reduce the
operating cost from $1534.31 to $1144.26, a decrease of approximately 25% compared to conventional
electric buses. The sensitivity analysis on the MB dispatch cost and battery capacity provides some
insights for both the scenario configuration and the battery selection for MB system implementation.

Keywords: modular bus; multi-trip scheduling; dynamic capacity adjustment; energy limitation;
charging decision

1. Introduction

In light of the ongoing trend towards urbanization and population growth, the inte-
gration of electrified public transportation has emerged as a critical component in cities
worldwide. Serving as a sustainable mode of transportation, it not only reduces traffic con-
gestion and air pollution but also affords greater convenience for commuters [1]. However,
establishing and sustaining a highly efficient and dependable electrified public transporta-
tion system is an intricate undertaking that involves multifarious factors such as network
design, timetable preparation, vehicle scheduling, personnel allocation, and charging ar-
rangements [2,3]. Among these factors, vehicle scheduling is an indispensable element
that determines the quality of service and cost-effectiveness of the public transportation
system [4]. Despite the widespread adoption of traditional fixed-route and fixed-capacity
vehicle scheduling methods that allocate a predetermined number of vehicles to fixed
routes, such approaches may be insufficiently adaptable to meet the dynamic requirements
of travel demands, resulting in suboptimal resource allocation [5,6].

To optimize the provision of public transportation vehicles, it is imperative to account
for the variability in demand across different trips and to leverage resource sharing and
reallocation as necessary. MB units in Figure 1, also known as automated modular vehicles,
constitute a novel vehicle technology that can dynamically adjust the capacity and size of
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platoons by assembling or separating different modules [7,8]. Particularly in transportation
scheduling systems characterized by multiple trips, MB units can be customized to match
passenger numbers and minimize the waste of vehicle resources and road congestion. For
instance, modular units can be extracted from trips with lower demand and form large
capacity MB platoons for trips with higher passenger demand, leading to cost-effective
resource utilization [9,10]. In recent years, modular bus technology is now being validated
in certain real-world applications, such as the United Arab Emirates [11] and Germany [12].

Figure 1. Modular bus unit (Source: http://www.next-future-mobility.com/ (accessed on 5 February 2023)).

Currently, modular bus-related research has been explored in multiple aspects, includ-
ing optimization of schedule strategy optimization, passenger transfer plan design [13,14],
specialized station deployment for modular unit reorganization [15], and driving trajectory
planning [16]. Various studies collectively indicate that the concept of modular buses holds
promise in reducing operating costs, improving service quality, and enabling more flexible
vehicle dispatching, thereby potentially serving as an effective solution to address resource
allocation challenges in traditional bus systems [17].

With respect to modular bus schedules relevant to the present research, the majority of
studies have emphasized the optimization of MB platoon capacity and departure timetables
in transit systems. Chen et al. [18,19], Dai et al. [20], Ji et al. [21], and Liu et al. [22]
addressed when and how many modular buses to dispatch on a single bus route to
minimize passenger waiting time and vehicle operating costs. Pei et al. [23] extended
it to a network encompassing multiple bus stations, and Dakic et al. [24] optimized the
composition and serve frequency of MB units and conventional buses on multiple lines.
However, most of these studies primarily focus on the operation of a single-vehicle platoon
composed of different numbers of modular units on the bus route or network, neglecting
the more complex coupling/decoupling mechanisms among multiple MB platoons in a
bus network scheduling system.

Furthermore, Shi et al. [25,26] and Zhang et al. [27] considered the interplay between
MB platoons in the scheduling process. The former incorporated passenger arrival times to
devise optimal departure times and node separation strategies for module vehicles in Y-
shaped shared corridors, minimizing both passengers waiting time and vehicle dispatching
costs. The latter has leveraged a modular transit network to expand service coverage,
whereby only the coupling/decoupling of main modules, trailer modules, and passengers
with impeccably aligned itineraries are deemed valid scheduling operations.

Evidently, in scenarios where multiple modular bus platoons coexist in the network,
the coupling/decoupling operations can only be effectuated when the MB platoons or units
converge at the same location and conform to time constraints, while the uneven demand
between trips also emerges as a pivotal factor influencing the coupling/decoupling operations.

http://www.next-future-mobility.com/
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However, the aforementioned studies have largely overlooked the energy limitations
and charging arrangement of electric-powered modular buses. It is well known that
charging strategies, influenced by factors such as charging time, charging station capacity,
and power resources, are crucial for the sustainable operation of electrified transportation
systems [28–31]. In comparison to conventional buses, MB units are characterized by
smaller sizes and battery capacities. Consequently, in the midst of demanding trip tasks,
scheduling plans must not only account for fluctuations in passenger demand between
trips but also ensure that the consumption energy of MBs during their travel sequence does
not exceed the battery’s capacity while flexibly devising charging plans to avert situations
of insufficient power.

To bridge the gaps, we propose a modular bus scheduling system under range and
charging constraints to reduce system costs while enhancing scheduling flexibility. Given
that MB scheduling falls under the category of vehicle scheduling problems, wherein a
group of modular buses needs to be efficiently assigned tasks under timetable constraints,
we can draw insights from existing research on electric buses.

Two main categories of modeling methods can be identified. One is mainly based on a
directed network to model the scheduling problem. Li [32] and Tang et al. [33] developed a
spatiotemporal network graph and scheduling model for electric buses, in which charging
stations are treated as time nodes. The arc-based model in their study can be solved by
commercial solvers (GUROBI or CPLEX), while the path-based model is solved by a branch-
and-price framework. Liu et al. [34] also models based on spatiotemporal graphs, except
that a genetic algorithm solution method is adopted. In addition, there are some studies
that extend the spatiotemporal graph to a complex network covering both vehicle and
passenger flow [35]. Another category directly models the schedule regarding electric buses.
Olsen et al. [36] proposed a mathematical model that simultaneously optimizes the charging
station locations and scheduling schemes and solved it using a variable neighborhood
search algorithm. Liu et al. [37] considered the impact of vehicle procurement costs,
operating costs, and charging facility installation costs to establish a regional schedule
model for electric buses. Rinaldi et al. [38,39] proposed mixed integer linear programming
to address the mixed bus fleet scheduling problem, taking into account timetables and
energy constraints.

The modeling method based on a directed network graph, as a focal point of our
study, provides more precise sequential relationships among trips, vehicles, and charging
processes. However, it is not entirely applicable to the MB scheduling problem, as a
conventional bus can cover one trip with fixed capacity, whereas there is a coupling
between MB platoons leading to dynamic capacity. In brief, we establish a modular
bus unit scheduling model and method under range and charging constraints to achieve
sustainability and economy of the transit system. Our contributions are as follows:

• The optimization model for determining the optimal formation and trip sequences of
MB units is developed. In particular, given that the vehicles are electrically powered,
battery range limits and charging plans are considered in the system scheduling process.

• A column generation-based heuristic algorithm is designed to efficiently solve this
model. The constraints of trip demand and charging station capacity are included in
the main problem, and the problem of the mileage of modular units under a limited
range is solved by subproblems.

• Taking real data from transit operations for numerical examples, the proposed model
performs well in terms of both algorithmic performance and practical applications, en-
abling strategic support for the promotion of modular bus technology in transit systems.

The rest of this paper is organized as follows: Section 2 presents the scheduling model
for modular units in detail. Next, Section 3 elucidates a column generation-based heuristic
algorithm. Section 4 introduces the case analysis and computational results in actual bus
networks. The main conclusions are highlighted in Section 5.
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2. Modular Bus Scheduling Model
2.1. Preliminaries

All notations involved in the model are listed in Abbreviations. The modular bus
unit scheduling problem under range and charging constraints can be formally defined as
follows. Given a directed graph G = (N, A), the set of nodes N = {o} ∪ D ∪ K ∪ F ∪ {s}
is partitioned into the source node o (depot departure), the set D of dummy depot nodes
providing temporary stay for buses, the set K of trips, the set F of time-expanded charging
stations, and the sink node s (depot arrival). Each node i ∈ N is equipped with the start
time vi, end time wi, node demand di, node distance li and node energy consumption pi.
Without loss of generality, we assume that the demand, distance, and energy consumption
of node i ∈ N\K are equal to zero, i.e., di = 0, li = 0, pi = 0, i ∈ N\K. The arc set A contains
feasible arcs linking different nodes i and j, denoted as (i, j) ∈ A . Each arc (i,j) has an idle
time tij and an arc energy consumption pij.

The connection rules of feasible arcs are shown in Table 1, distinguished between
different nodes. The preprocessing of arcs can effectively reduce unnecessary connections
and improve the model’s efficiency. The feasibility condition of arc(i, j) ∈ A, i, j ∈ D, i 6= j
between virtual depot nodes is wi = vj since all virtual depot nodes targeting the same
depot do not have spatial location transfer, the dwell time for MB should be continuous.
The arc leading from the origin o only makes sense for the case of going directly to the
trip set K with the feasible condition wo + toj ≤ vj. Similar connection rules exist for
the arc to the endpoint s. For the feasibility condition vj − tb ≤ wi + tij ≤ vj − ta, in
addition to being governed by the end time wi of the previous node i, the start time vj
of the subsequent node j and the idle time tij, it also comprises the waiting threshold tb
introduced to prevent the nodes from being visited prematurely, and the time ta to ensure
the smooth coupling/decoupling action between the MB units.

Table 1. The connection rules of feasible arcs.

i
j o D K F s

o × × wo + toj ≤ vj × ×

D × wi = vj vj − tb ≤ wi + tij ≤ vj − ta ×

K × vj − tb ≤ wi + tij ≤ vj − ta
wi + tis ≤ vs

F × vj − tb ≤ wi + tij ≤ vj − ta ×

s × × × × ×

An example consisting of five node types o, D, K, F, s, and some feasible arcs, is used
to illustrate the process of constructing the underlying network, as depicted in Figure 2.
The travel time along each arc, the duration of nodes, and the sampling interval for
charging nodes and virtual charging nodes are all set to one unit. A maximum waiting
time of 2 units is allowed outside the depot, while the coupling and decoupling time for
vehicles is set to 0.5 units. Starting from the source node o, two sets of trip sequences
connected by feasible arcs are generated according to the connectivity rules. In the se-
quence o− k1 − k3 − d6 − d7 − k6 − s, trips k3 and k6 are not directly connected because
11− 2 ≥ 5 + 1, which would result in prolonged waiting times for MBs outside the depot.
In contrast, modular buses can briefly pause at the virtual depot node after completing trip
k3 and then proceed to complete trip k6. It is important to note that the virtual nodes d6
and d7 are both associated with the same depot, thus satisfying condition 8 = 8.
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Figure 2. An example of the scheduling pictorial graph.

Another sequence o − k2 − k4 − k5 − f9 − k7 − s encompasses the process of trip
execution and charging, where all the arcs involved satisfy the connectivity condition
vj − tb ≤ wi + tij ≤ vj − ta. For example, considering the arc ( f9, k7), the modular unit
arrives at node k7 at time 11+ 1, which is both earlier than the start time of node k7(14− 0.5)
and not earlier than 14− 2, as expressed by 14− 2 ≤ 11 + 1 ≤ 14− 0.5.

The cost of a modular bus passing through arc cij, is also discussed by case depending
on the node type, as defined below, where cm represents the dispatch cost of one modular
unit, cp is the charging cost, and the remaining parameters ct, cs, and cw are the idling cost,
operating cost, and waiting cost per unit of time, respectively.

cij =


cm + ct·tij + cs·

(
wj − vj

)
, (i, j) ∈ A, i = o

ct·tij + cw·
(
vj − wi − tij

)
+ cs·

(
wj − vj

)
, (i, j) ∈ A, j ∈ K

ct·tij + cw·
(
vj − wi − tij

)
, (i, j) ∈ A, j ∈ D,

ct·tij + cw·
(
vj − wi − tij

)
+ cp, (i, j) ∈ A, j ∈ F

ct·tij, (i, j) ∈ A, j = d

2.2. Mathematical Formulation

We now formulate an arc-based model for the MB unit scheduling problem, which
will be exploited in the Dantzig–Wolfe decomposition posited in the next section.

min ∑
h∈H

∑
(i,j)∈A

cij·xijh·δh (1)

∑
j∈N−(i)

xjih = ∑
j∈N+(i)

xijh ≤ 1 ∀i ∈ K ∪ D ∪ F, ∀h ∈ H (2)

∑
j∈N+(o)

xojh = ∑
j∈N−(s)

xjsh ≤ 1 ∀h ∈ H (3)

qih = 0 ∀i ∈ {o} ∪ F, ∀h ∈ H (4)

qih = ∑
j∈N−(i)

(
qjh + pji·δh + pi·δh

)
·xjih ∀i ∈ K ∪ D, ∀h ∈ H (5)
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qih + ∑
j∈N+(i)

pij·δh·xijh ≤ Q·δh·µ ∀i ∈ N, ∀h ∈ H (6)

∑
h∈H

∑
j∈N−(i)

xjih·δh ≥ ddi/Me ∀i ∈ K (7)

∑
h∈H

∑
j∈N−(i)

xjih·δh +

amax

∑
a=1

∑
h∈H

∑
j∈N−(Ya

i )

xj(Ya
i )h
·δh ≤ U ∀i ∈ F (8)

xjih ∈ {0, 1} ∀(i, j) ∈ A, ∀h ∈ H (9)

The objective function (1) aims at minimizing the total system cost inclusive of various
components such as dispatching costs, operation costs, and charging costs. Constraint (2)
ensures that each MB platoon h remains balanced with respect to incoming and outgoing
arcs at any given node i ∈ K ∪ D ∪ F. Constraint (3) specifies that once dispatched, an
MB platoon h must depart from source o and return to node s. Constraints (4)–(6) define
the energy limitations and charging plans for platoon h. Specifically, Constraint (4) states
that the cumulative energy consumption at depot o and charging nodes should be zero,
indicating that module platoon h can reset its energy through strategic charging decisions.
Constraints (5) formulate qih at the nodes i ∈ K ∪ D, determined jointly by the preorder
node j and energy consumption on arc (j, i) and node i. The energy limitation of each
module platoon should be met, and thus, Constraint (6) applies. A minimum number of
MB units that serve trip i is imposed by constraints (7), where for coupling/decoupling
action, the same location required is fulfilled by the node itself, and the time restrictions
have been handled in the arc feasibility rules. Constraint (8) considers the charging station
capacity, determined by the total number of module vehicles accessing node i ∈ F and in
the previous amax charging nodes.

3. Solution Algorithm

Although GUROBI can be applied directly to the arc-based formulation, after some
preliminary experiments, we find that the instance size handled by the solver is quite
limited. To obtain the optimal solution for larger instances, we reformulate the MB schedul-
ing problem as a path-based formulation. By applying Dantzig–Wolfe decomposition,
the original problem effectively yields a master problem allocating MB platoons and a
subproblem that addresses the trip sequences under range and charging constraints.

3.1. Master Problem

We define the following master problem:

min ∑
r∈R

Cr·Zr (10)

∑
r∈R

Vri·Zr ≥ ddi/Me ∀i ∈ K (11)

∑
r∈R

Vri·Zr + ∑
r∈R

amax

∑
a=1

Vr(Ya
i )
·Zr ≤ U ∀i ∈ F (12)

Zr ∈ {0, 1, 2, . . . , gmax} (13)

where Cr means the cost of the trip sequence r ∈ R, Vri is given as a parameter with
Vri = 1 if node i is covered by the trip sequence r provided by the pricing subproblem
and 0 otherwise. Zr, an integer variable, reveals the number of MB units assigned to the
sequence r.
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The master problem aims to minimize the total cost of the scheduling system by allocat-
ing varying numbers of MBs to the generated trip sequence, as indicated by constraint (10).
Constraint (11) indicates that the total number of modular buses allocated to sequence r
covering trip i is at least ddi/Me. Constraint (12) guarantees that the number of modular
units serviced at the charging station does not exceed its capacity. Constraint (13) imposes
an integer constraint on variable Zr ∈ {0, 1, 2, . . . , gmax}.

3.2. Pricing Subproblems

Given a dual solution from the relaxed master problem, the pricing subproblem is set
to find trip sequence r with a negative reduced cost. Solving the subproblem is essentially
akin to enumerating all feasible trip sequences. Since all MB units are identical, the pricing
subproblem associated with each bus can be expressed as:

min ∑
(i,j)∈A

cij·xij −∑
i∈K

Vri·θi −∑
i∈F

Vri·
[

ωi +

amax

∑
a=1

w(Ya
i )

]
(14)

∑
j∈N−(i)

xji = ∑
j∈N+(i)

xij ≤ 1 ∀i ∈ K ∪ D ∪ F (15)

∑
j∈N+(o)

xoj = ∑
j∈N−(s)

xjs = 1 (16)

qi = 0 ∀i ∈ {o} ∪ F (17)

qi = ∑
j∈N−(i)

(
qj + pji + pi

)
·xji ∀i ∈ K ∪ D (18)

qi + ∑
j∈N+(i)

pij·xij ≤ Q·µ ∀i ∈ N (19)

xij ∈ {0, 1} ∀(i, j) ∈ A (20)

Let θi for ∀i ∈ K and ωi for ∀i ∈ F be the values of the dual variables associated with
constraints (11) and (12), respectively. Then, the minimum reduced cost of trip sequence r
can be calculated by Equation (14). Constraint (15) requires that each node can visit node
i ∈ K ∪ D ∪ F at most once. Constraint (16) restricts the trip sequence to start at node o
and end at node s. Constraints (17) and (18) give expressions for the cumulative energy
consumption of the modular bus at different node types. Constraint (19) specifies the upper
limit of the cumulative energy consumption. Constraint (20) defines a binary decision
variable that equals 1 if the MB unit traverses arc (i, j) and 0 otherwise.

3.3. Solution Procedure

In this subsection, we design a column-generation-based heuristic (CGBH) algorithm
for tackling the path-based MB unit scheduling model under range and charging constraints.
A detailed flow chart is provided in Figure 3, which can be explained in the following
five steps.
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Figure 3. The flow chart of the column-generation-based heuristic algorithm.

Step 1: Initialization. Depending on the characteristics of the actual problem, a
greedy algorithm can be employed to construct the columns that could potentially form a
feasible solution.

Step 2: Obtain the dual solution. The initial solution is fed into the relaxed master
problem to obtain the dual solutions of the constraints associated with trip nodes and
charging nodes and then pass them to the subproblem.

Step 3: Solving the subproblem. The trip sequence with a negative reduced cost
obtained from the subproblem is fed to the set R of the master problem. The label-setting
algorithm is recognized as an effective approach for tackling these subproblems [40]. By
leveraging the cost and energy consumption of nodes and arcs in the directed graph,
the algorithm dynamically expands from node o to node s, generating labels that store
cost and cumulative energy consumption information. Importantly, after each expansion,
the algorithm performs a dominance test to compare the newly generated labels with
existing labels in terms of cost and cumulative energy consumption. Labels that are domi-
nated are deemed invalid and pruned, resulting in a streamlined label set and improved
computational efficiency.

Step 4: Termination condition for iteration. The column generation process terminates
when the newly generated trip sequence does not contribute to the objective function of
the master problem, meaning there is no sequence r with a negative reduced cost.

Step 5: Obtaining integer solutions. The optimal solution obtained from the col-
umn generation process may be fractional. While the branch-and-price algorithm is com-
monly used to convert fractional solutions to optimal integer solutions [41], it can be
time-consuming. In this study, a diving heuristic is adopted to obtain high-quality integer
solutions. Based on the fractional solutions obtained, we selectively fix one or more frac-
tional variables that are very close to integers to positive integer values and then invoke
the column generation process until all solutions are integers.
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4. Computational Results

In this section, we present the computational results obtained to validate the proposed
model and algorithms. The real-world test scenarios and parameters in the experimental
analysis are set in Section 4.1. Then, we report the performance of the CGBH algorithm in
Section 4.2, followed by the scheduling scheme obtained in Section 4.3. In Section 4.4, we
provide management insights regarding the impact of MB battery capacity and dispatch
cost. All computational tests are performed on a computer with an Intel Core i7-8700
CPU processor, 8 GB RAM, and 3.2 GHz. The algorithm is coded in Python and relies on
GUROBI 9.5.1 to solve the mathematical problem formulation.

4.1. Case Setup

Three in-service bus lines in Zhengzhou, China, with the same starting point and
similar endpoints, were set as scheduling test scenarios, as shown in Figure 4. The close
geographical locations among the lines make the application of scheduling schemes with
multiple mixed trips more realistic and consistent with the research context of this study.

Figure 4. Test scenario of three in-service bus lines.

According to the research associated with the modular bus [20–23], we tune the param-
eters associated with the modular bus, including cm = $10 per vehicle, ct = $3.43 per hour,
cs = $5.72 per hour, cp = $3, cw = $1.72 per hour, Q = 30 kWh, µ = 0.7, M = 15 passen-
gers, U = 8, ta = 3 min, tb = 30 min, tc = 10 min.

The durations wi − vi for different node types are set as follows: (1) i = o, wi − vi = 0;
(2) i ∈ K, wi − vi is determined by the actual operation time of the bus lines; (3) i ∈ D,
wi − vi = 30 min; (4) i ∈ F, wi − vi = 20 min; (5) i = s, wi − vi = ∞.

Correspondingly, the current operating strategy of one electric bus (EB) covering one
trip is used as the control group, and the relevant parameters are set as follows [28–31].
cm(EB) = $97 per vehicle, ct(EB) = $12.34 per hour, cs(EB) = $20.56 per hour, cp(EB) = $25,
cw(EB) = $6.17 per hour, Q(EB) = 250 kWh, µ(EB) = 0.7. Note that the meaning of
the above parameters is the same as the definition in modular bus, with “(EB)” added to
highlight the parameters associated with the electric bus.
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4.2. Algorithm Efficiency

To test the effectiveness of the proposed algorithm, we extract four instances of pro-
gressively increasing size from the test scenario described in Section 4.1. Table 2 lists
the results obtained by the commercial solver GUROBI and the CGBH algorithm on four
instances. The node number is the total number of elements in the set N. Whether under
the label “GUROBI” or “CGBH”, we report the lower bound provided by the linear relax-
ation problem (column LB ($)), the best-known objective value obtained for a certain time
(column Obj ($)), the solution time (column Time(s)) and the percentage gap (column Gap
(%)), calculated by (Obj-LB)/Obj.

Table 2. Comparison results of the CGBH algorithm and GUROBI.

Instance GUROBI CGBH

Number Trip Node LB ($) Obj ($) Time (s) Gap (%) LB ($) Obj ($) Time (s) Gap (%)

(1) 10 52 375.45 375.45 43.13 0.00 375.45 375.45 0.89 0.00
(2) 30 92 1106.22 1147.16 >7200 3.57 1144.26 1144.26 18.93 0.00
(3) 60 184 2166.27 2438.63 >7200 11.17 2213.68 2217.35 464.87 0.17
(4) 90 214 3094.25 4113.42 >7200 24.78 3207.08 3215.24 824.40 0.25

From Table 2, it is apparent that GUROBI is able to easily obtain optimal solutions that
are identical to those obtained by the CGBH algorithm, but only in small-scale instances (1).
However, as the size of the instances increases, GUROBI exhibits a significant discrepancy
between the lower bound and best-known objective value, even consuming a longer time of
more than 7200 s. In contrast, the column-generation-based heuristic algorithm consistently
demonstrates favorable performance in terms of both solution time and gap, regardless of
the instance size. Consequently, the algorithm proposed in this study shows remarkable
efficiency and precision in solving the MB scheduling model.

4.3. Results and Analyses

Table 3 illustrates the optimal scheduling scheme for MB units in instance (2), where a
total of 27 modular buses operates on 18 trip sequences to fulfill the demand of 30 trips.
Note that in the “Trip Sequence” column, the numbers 1–30, 31–60, and 61–90 represent the
30 trip nodes, 30 temporary depot nodes, and 30 time-extended charging nodes, respectively.
The symbols o and s are the source and sink, referring to the same depot.

Table 3. Optimal modular bus scheduling scheme.

Number Trip Sequence Number of Units Equipped
with MB Platoon

Cumulative Energy
Consumption (kWh) Cost ($)

1 o-1-7-14-84-21-27-s 3 45.37 155.23
2 o-3-9-80-18-26-30-s 1 15.76 53.25
3 o-2-7-48-51-54-88-25-29-s 1 15.01 48.18
4 o-4-70-10-17-59-26-30-s 1 18.13 50.89
5 o-6-11-18-24-s 1 18.34 39.57
6 o-3-41-13-19-s 1 17.37 34.6
7 o-3-70-10-17-23-28-s 3 52.26 152.08
8 o-5-11-52-55-22-s 1 15.87 32.79
9 o-6-12-54-22-s 2 33.6 67.38

10 o-5-11-18-s 1 15.76 32.91
11 o-15-20-26-30-s 3 57.16 116.52
12 o-9-16-22-s 1 16.46 32.02
13 o-2-8-14-84-57-25-29-s 1 15.01 53.34
14 o-5-11-18-24-s 1 19.05 40.02
15 o-6-12-54-57-60-26-30-s 1 19.05 41.27
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Table 3. Cont.

Number Trip Sequence Number of Units Equipped
with MB Platoon

Cumulative Energy
Consumption (kWh) Cost ($)

16 o-2-8-77-17-23-28-s 1 15.16 50.17
17 o-1-68-9-16-22-s 1 16.46 43.25
18 o-4-41-13-19-s 3 52.13 100.79

Total Satisfying the demands of
30 trips 27 Not exceeding the battery

capacity 1144.26

First, compared to a traditional electric bus scheduling plan where one bus covers a
single trip, the MB scheduling scheme reduces costs from $1534.31 to $1144.26, a decrease of
approximately 25%, calculated by (1534.31− 1144.26)/1534.31× 100% = 25%, effectively
cutting operating expenses for the transit system.

Second, as elucidated in “Trip sequence”, all trips can be categorized into two types.
The first type encompasses trips that are covered by multiple sequences, exemplified by
Trip 1 being served by both Sequence 1 and Sequence 17. This underscores the advantage of
the coupling/decoupling mechanism of modular buses, wherein the consolidation of three
MBs and one standalone MB results in four MB units effectively executing Trip 1, followed
by their separation to serve subsequent trips. The other type of trip can be fully covered by
a single MB platoon. For example, both Trip 21 with Demand 35 and Trip 27 with Demand
42 are only present in Trip Sequence 1, being covered directly by three modular buses with
Capacity 45. Additionally, from the usage of charging nodes, the maximum number of MBs
served in the occupied charging nodes 68, 70, 77, 80, 84, and 88 is 4, which does not exceed
the maximum capacity of 8.

Finally, we further verify the effectiveness of the trip sequence. Taking Sequence 1 as
an example, a modular platoon with three MB units departs from node o, executes trips
1, 7, and 14 in order, replenishes power at charging node 84, and subsequently executes
Trips 21 and 27, finally returning to depot s. Notably, the cumulative energy consumption
of this bus platoon amounts to 45.37 kWh, which falls below the effective battery capacity
calculated as 30 × 3 × 0.7 = 63 kWh, indicating the correctness of the energy consumption
constraints and charging decisions. Analogously, other trip sequences are confirmed to
be valid.

In terms of cost, the total cost of a trip sequence is generally determined by the nodes
covered by the sequence and the number of assigned module bus platoons. If a trip
sequence is assigned only one module unit, its cost is calculated by summing the arc costs
that constitute the sequence. On the other hand, if the trip sequence is assigned multiple
module buses, each cost item needs to be multiplied by the corresponding quantity to
calculate the total cost of the sequence. It is evident that the cost can vary when different
platoons are assigned to the same sequence. For example, in Table 3, the cost of the first
sequence carrying three module buses is $155.23. However, if the same sequence is assigned
one MB unit, the cost would be $155.23/3. Additionally, we have provided the costs of
the trip sequences with the assigned platoons in the last column of Table 3, and the sum
of these costs perfectly aligns with the objective function value obtained by our model,
validating the accuracy of cost calculation.

4.4. Effects of the Dispatch Cost and Battery Capacity

This subsection is devoted to the sensitivity analyses of scheduling solution economics
with respect to the dispatch cost and battery capacity.

Figure 5 illustrates the total costs of modular bus systems under various MB dispatch
costs cm. The solid lines in four different colors represent four instances, while the corre-
sponding dashed lines denote the total costs of traditional buses only as a control group
without fluctuations. From Figure 5, we observe that as the cost of MB units increases, the
total cost of the dispatch system gradually rises at a relatively uniform rate. Taking modular
bus instance (2) as an illustration, the difference between consecutive points, denoted as
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C − A, represents the rate of change. When dispatching costs increase, the total number
of modular buses dispatched and the scheme remain unchanged as modular buses are
the sole vehicles involved in the scheduling process. Consequently, the increase in C − A,
determined by the change value per modular bus ($5) multiplied by the total number of
MB units in the instance, remains consistent throughout.

Figure 5. The impact of modular bus dispatching cost on total system cost.

Interestingly, the intersections between the solid line representing modular bus and
the dashed line representing traditional bus vary across different instances. Specifically,
in instances 1–4, these intersections occur at approximately $25, $25, $20, and $28 for
the individual bus cost, respectively. This phenomenon primarily relates to the ratio of
(B − A)/(C − A), as exemplified in instance 2. Here, B − A represents the overall cost gap
between the traditional bus system and the modular bus system at a dispatching cost of $5,
while C − A represents the cost difference between any two adjacent points.

The value of B − A signifies the economic gap between the two scheduling modes.
When the modular bus scheduling mode better aligns with the trip organization and pas-
senger demand in a given scenario compared to the fixed-capacity scheduling mode of
traditional buses, a larger difference in B − A arises. We qualitatively speculate that in
scenarios with low or fluctuating demand between trips, the fixed-capacity scheduling
strategy of traditional buses is likely to result in wasted vehicle resources. In contrast, mod-
ular buses allow adjustments to capacity with coupling/decoupling techniques, thereby
indicating an economic advantage. Based on the calculation of C − A (modular bus cost
change step * total number of vehicles dispatched), the value of C − A is smaller when the
fleet size is smaller.

In summary, it is crucial to identify the cost balance between the modular and tra-
ditional bus systems, which enables operators to make economically viable decisions by
considering the cost range of the modular bus system. For instance, when the advantages
of the modular bus system are pronounced, even in the early development stages with
higher costs (reflected in a larger B − A value), it can still offer profitability compared
to the traditional bus. As modular bus technology advances and the individual vehicle
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cost decreases substantially, the modular bus system will increasingly dominate as the
preferred option.

Figure 6 depicts the impact of battery capacity, wherein the MB units system exhibits
lower sensitivity to changes in battery capacity compared to Figure 5. This is because the
impact of varying battery capacity on the bus dispatching strategy is indirect, resulting in
only minor adjustments to the scheduling process. In contrast, changes in vehicle dispatch
costs act directly on total vehicle dispatch costs, which represent a significant proportion
of the system expenditure. It is worth noting that irrespective of the variations in battery
capacity, even with a mere 15 kWh, the cost of the modular system remains lower than that
of conventional bus systems. This underscores the prominent advantage of the modular
bus scheduling mode.

Figure 6. The impact of battery capacity on total system cost.

Furthermore, in Figure 6, the total system cost across the four instances gradually
decreases and stabilizes as battery capacity increases. This trend can be attributed to the
potential benefits of a longer battery range and reduced charging frequency. Specifically, a
notable decrease in total cost is observed when battery capacity increases from 20 kWh to
25 kWh across all instances. This is explained by the larger battery capacity of modular
buses covering more trips, thereby reducing the overall fleet size required and resulting in
cost savings from fewer dispatched vehicles. For modular bus instance (2), increasing the
battery capacity from 20 kWh to 25 kWh leads to a decrease in the number of vehicles from
36 to 28.

However, when the battery capacity surpasses 35 kWh, the cost fluctuation becomes
insignificant, and blindly increasing battery capacity may actually result in higher battery
costs. Therefore, we recommend procuring modular buses with a capacity between 25 kWh
and 35 kWh, a range that allows the vehicle to operate efficiently without frequent recharging.

5. Concluding Remarks

A novel modular bus system is proposed to identify optimal formation, trip sequences,
and charging decisions of modular vehicles, reducing operation costs while enhancing
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fleet scheduling flexibility. Through modeling and case validation, the key conclusions are
as follows:

• The proposed column generation-based heuristic algorithm, which decomposes the
original problem into a master problem and subproblems, outperforms widely used
solvers in terms of time and computation speed. Even in a network of 214 nodes, the
scheduling strategy can be obtained in about 10 min with a gap of less than 0.3%.

• The optimal modular bus scheduling scheme can reduce the overall system cost from
$1534.31 to $1144.26, a reduction of approximately 25%, while accommodating uneven
trip demand and embracing battery and charging station capacity constraints.

• Sensitivity analysis highlights the impact of dispatch cost and battery capacity of
modular buses on system total costs. Compared to the traditional bus, operators are
recommended to consider applying modular units in scenarios with low or volatile
demand; there may still be scope for profitability even if the dispatching cost is high.
Additionally, procuring modular buses with 25 kWh–35 kWh capacity can avoid
frequent charging.

In future work, the reconfiguration of modular buses among stations beyond the
ends of bus routes is a scalable research direction to improve fleet utilization and system
economy. Additionally, fine consideration of the heterogeneous nature of energy consump-
tion and charging processes among different modular units can further enhance system
practicality. Incorporating the proposed column generation algorithm into a branch-and-
price framework and finding diverse acceleration strategies for solving subproblems also
merits in-depth exploration. Given the limitations of our research in practical applications,
we will actively address real-world constraints and collaborate with ongoing electric and
automated transportation projects to validate and improve our methodology.

Author Contributions: Conceptualization, methodology, software, visualization, investigation,
writing—original draft, writing—review and editing. H.G. and K.L.; methodology, data curation,
writing—review and editing, supervision, J.W.; conceptualization, writing—review and editing, F.G.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant Nos.
51378091 and 71871043).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
Notation list:
Sets
N: The set of nodes, index by i or j
A: The set of arcs, index by (i, j)
K: The set of trips, index by i or j

D:
The set of dummy nodes providing temporary stay for modular vehicles,
index by i or j

F: The set of time-expanded charging stations, index by i or j

N+(i):
The set of nodes succeeding node i on the directed graph, G,
that is N+(i) = {j ∈ N|(i, j) ∈ A}, index by i or j

N−(i):
The set of nodes preceding node i on the directed graph G,
that is N−(i) = {j ∈ N|(j, i) ∈ A}, index by i or j

H: The set of modular bus platoons, index by h
R: The set of trip sequence, index by r
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Parameters
o: The source node (depot departure)
s: The sink node (depot arrival)
vi: Start time of node i
wi: End time of node i
di: Passenger demand of node i
li: Distance of node i
pi: Energy consumption of node i
pij: Energy consumption of arc (i, j) ∈ A
tij: Idle time between node i and node j

ta:
Constant threshold to ensure the smooth coupling/decoupling action
between the modular bus units.

tb: Constant threshold introduced to prevent the nodes from being visited prematurely
cij: Cost of a modular bus passing through arc (i, j)
cm: Dispatch cost of one modular unit
cp: Charging cost of the modular bus
ct: Idling cost per unit time of the modular bus
cs: Operating cost per unit time of the modular bus
cw: Waiting cost per unit time of the modular bus

δh:
The number of module units carried by module bus platoon h. δh ∈ {1, 2, . . . gmax},
where gmax is the maximum number of module units allowed to be carried

M: Capacity of single modular bus
U: Charging station capacity
Q: Battery capacity of single modular bus
µ: Battery loss rate
tc: Time interval between adjacent time-expanded charging nodes
Ya

i : The a-th node ahead of charging node i, where a = 1, . . . , amax, amax = wi−vi
tc

Cr: Cost of the trip sequence r

Vri:
Vri = 1 if node i is covered by the trip sequence r provided by the subproblem
and 0 otherwise

θi: Values of the dual variables associated with constraints (11)
ωi: Values of the dual variables associated with constraints (12)
Variables

xijh:
Binary decision variable that equals 1 if module bus platoon h ∈ H traverses
arc (i, j), and 0 otherwise

qih:
Intermediate variables, denoting the cumulative energy consumption of
the module bus platoon h at node i

Zr: Integer variable, reveals the number of modular bus units assigned to the sequence r

xij:
Binary decision variable that equals 1 if the modular bus traverses
and 0 otherwise

qi:
Intermediate variables, denoting the cumulative energy consumption of the module
bus at node i
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