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Abstract: The difference in fuel consumption of wheel loaders can be more than 30% according to
different shoveling trajectories for shoveling operations, and the optimization of shoveling trajectories
is an important way to reduce the fuel consumption of shoveling operations. The existing shoveling
trajectory optimization method is mainly through theoretical calculation and simulation analysis,
which cannot fully consider the high randomness and complexity of the shoveling process. It is
difficult to achieve the desired optimization effect. Therefore, this paper takes the actual shoveling
operation data as the basis. The factors that have a high impact on the fuel consumption of shoveling
are screened out through Kernel Principal Component Analysis. Moreover, the mathematical model
of fuel consumption of shoveling operation is established by Support Vector Machine and combined
with the Improved Particle Swarm Optimization algorithm to optimize the shoveling trajectory. To
demonstrate the generalization ability of the model, two materials, gravel, and sand, are selected.
Meanwhile, the influence of different engine speeds on the shoveling operation is considered. We
optimize the shoveling trajectories for three different engine speeds. The optimized trajectories are
verified and compared with the sample data and manually controlled shoveling data. The results
show that the optimized trajectory can reduce the fuel consumption of shoveling operation by 27.66%
and 24.34% compared with the manually controlled shoveling of gravel and sand, respectively. This
study provides guidance for the energy-efficient operation of wheel loaders.

Keywords: trajectory optimization; machine learning; wheel loader; fuel consumption

1. Introduction

The wheel loader is a relatively versatile construction vehicle widely used in many
civil engineering and mining projects. It usually performs a variety of tasks, including
shoveling, transporting, and dumping [1]. Among them, the most important form of
operation is shoveling. The fuel consumption in the process of shoveling is one of the
critical indicators for evaluating the operational efficiency of wheel loaders [2]. Reducing
the fuel consumption of wheel loaders in shoveling operations has become an urgent
problem. Numerous studies have shown that the fuel consumption of wheel loader shov-
eling operation is closely related to the shoveling trajectory. The shoveling trajectory is
the track of the wheel loader bucket moving in the pile. The fuel consumption of wheel
loader shoveling operations with different trajectories has obvious differences [3,4]. Thus,
optimizing the shoveling trajectory is an effective way to reduce the fuel consumption of
shoveling operations.

The wheel loader is usually divided into three phases, namely the insertion phase,
scooping phase, and lifting phase, when carrying out the shoveling operation. Among
them, the optimization of the shoveling trajectory in the insertion phase and the shoveling
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trajectory in the scooping phase is the key to reducing the fuel consumption of the wheel
loader shoveling operation. The main point for the shoveling trajectory in the insertion
phase is to determine the insertion depth. Sarata et al. [5] concluded that if the wheel
loader is inserted too deep into the pile, the bucket resistance may exceed the maximum
power of the wheel loader, and the bucket may get stuck in the pile. Hong et al. [6] planned
three shoveling trajectories based on different insertion depths. The different insertion
depths resulted in large differences in fuel consumption, and the best insertion depth was
obtained in the three trajectories. Xu et al. [7] analyzed the relationship between insertion
depth and resistance of the wheel loader and established a mathematical model for the
optimization of insertion depth. The results showed that there exists an optimal bucket
depth when the wheel loader is shoveling the pile. For the scooping phase, which is the
phase with the highest fuel consumption in the whole shoveling process, it is important
to determine the shoveling trajectory of the scooping phase to reduce the resistance and
fuel consumption. Gong et al. [8] compared the shoveling operation with linear shovel-
ing trajectory and curved shoveling trajectory by ADAMS software and concluded that
the energy consumption of linear shoveling trajectory is smaller. Zhang et al. [9] pro-
posed the concept of parallel trajectory, which means the trajectory of the scooping phase
should be parallel to the pile plane, and with this trajectory, the resistance of the bucket
will be the smallest. The corresponding fuel consumption will be lower. Filla et al. [10]
generated 800 sets of trajectories based on four shoveling methods and compared them.
The shoveling trajectories with parallel trajectories have obvious advantages. The above
studies only start from the part of the shoveling process and ignore the continuity of
the shoveling process, which has a limited effect on the optimization of the shoveling
trajectory. Meng et al. [11] established the resistance model of the bucket based on the
Coulomb theory and obtained the optimized trajectory based on the principle of minimum
energy consumption. Yu et al. [12] established the agent model of shoveling trajectory and
shoveling efficiency by the Kriging method and obtained the optimized shoveling trajectory
under different working conditions by joint RecurDyn-EDEM simulation. Osumi et al. [13]
established the bucket resistance model and optimized the shoveling trajectory with the
objectives of resistance reduction and energy consumption reduction. Some other scholars
optimized the shoveling trajectory by establishing a mathematical model of the shoveling
process. Zhang et al. [14] established the trajectory motion model of the electric shovel by
kinetic, combined with the pseudospectral method to convert the kinetic model into the
algebraic format. They obtained the optimal excavation trajectory by solving the nonlinear
programming. Shen et al. [15] modeled the whole excavation process and obtained the
excavation trajectory by a rule-based planning method, which significantly reduced fuel
consumption. Frank et al. [16] used a dynamic planning method to generate the shoveling
trajectory. They conducted tests in a gravel pile, and the results showed a 15% improvement
in fuel economy with this method. Yao et al. [17] established a mathematical model of the
shoveling process to optimize the shoveling process to reduce fuel consumption, which can
be reduced by 30% through simulation analysis. However, in these studies, the optimiza-
tion of shoveling trajectory is mainly carried out by theoretical analysis and simulation
analysis. It ignores the high randomness and complexity of the shoveling operation process,
and there is a specific error between the dynamics or mathematical model and the actual
shoveling operation [18–20]. As a result, it is difficult to achieve the desired effect in the
actual shoveling operation.

Research has always focused on modeling the fuel consumption of shoveling oper-
ations. At present, the common fuel consumption modeling method is the theoretical
calculation method [21–23]. This method is mainly based on theoretical analysis of energy
consumption during the shoveling operation of wheel loaders and then calculates the
overall fuel consumption. This method usually cannot consider the large randomness
in the process of wheel loader shoveling operation, and there is a large error between
it and the actual shoveling operation. In recent years, machine learning methods have
shown excellent properties in solving real engineering problems. There have been several
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successful applications of using machine learning to achieve modeling of operational fuel
consumption of engineering vehicles. Dindarloo et al. [24] analyzed the fuel consumption
of mining dump trucks at each stage of operation with the objective of fuel consumption of
a single operating cycle and constructed a fuel consumption model using machine learning
methods. Siami-Irdemoosa et al. [25] established an Artificial Neural Network fuel con-
sumption model to achieve fuel consumption prediction of mining trucks in each cycle with
a model error of 10%. Alamdari et al. [26] used machine learning methods such as multiple
linear regression, Random Forest, Artificial Neural Network, Support Vector Machine, and
Kernel nearest neighbor to predict the fuel consumption of transport trucks and compared
the accuracy of each model. Gong et al. [27] used a binary logistic regression model to
analyze 21 fuel consumption influencing factors of heavy trucks and obtained 8 influencing
factors that have a significant effect on fuel consumption. Meanwhile, the accuracy of the
fuel consumption model was compared using Decision Tree, Artificial Neural Network,
and Random Forest. Shen et al. [28] constructed an excavator data collection system and
proposed an improved PSO-BP model for excavator energy consumption prediction, which
achieved good prediction accuracy.

However, there are fewer applications for modeling the fuel consumption of wheel
loaders using machine learning. Liu et al. [29] constructed a BP neural network model with
wheel loader driver, pile type, and bucket capacity as input features, although the accuracy
of the model was high. However, in this study, there are problems of fewer data samples
and unreasonable selection of fuel consumption influencing factors, which are difficult to be
extended to other application scenarios. Since the shoveling process itself is a high random-
ness process. There are many factors that can have a great impact on the fuel consumption
of shoveling operations. Therefore, determining the reasonable influence factors on the fuel
consumption of shoveling is the key task to establishing the fuel consumption model by
machine learning. Therefore, this study selects the Kernel Principal Component Analysis
(KPCA) method to filter the factors that have a strong influence on the fuel consumption
of shoveling operations. Compared with the traditional Principal Component Analysis
(PCA) method, KPCA has better nonlinear data processing capability [30]. After obtaining
the factors with a strong influence on the fuel consumption of the shoveling operation, a
model of the fuel consumption of the shoveling operation is constructed using Support
Vector Machine (SVM), a typical machine learning method. It replaces the empirical risk
in traditional neural networks with the structured risk minimization principle. It solves
the drawback that it is difficult to overcome the local extremes when the sample size is
small [31]. After establishing the fuel consumption model, the Improved Particle Swarm
Optimization (IPSO) algorithm is selected in this study to optimize the factors with a strong
influence on fuel consumption. Compared with the Particle Swarm Optimization (PSO)
algorithm, IPSO greatly improves the ability of local optimization search. The optimiza-
tion algorithm has been widely used to improve operational efficiency by optimizing the
operational trajectory. For example, Yuasa et al. [32] optimized the excavating trajectory
of an excavator by a Genetic Algorithm based on a parametric mathematical model of
the excavating trajectory, loading, and linkage mechanism, which effectively improved
the operational efficiency of the excavator. Bi et al. [33] obtained the optimal shoveling
trajectory of a cable shovel by a Multi-Objective Genetic Algorithm with the operating time
and energy consumption per payload as the optimization objectives.

In response to the above issues and discoveries, this study proposed a method to
construct a fuel consumption model by SVM and optimize the shoveling trajectory by IPSO.
Firstly, the wheel loader was shoveled several times with three different engine speeds
on the gravel pile and sand pile to obtain samples. After that, the factors with a strong
influence on the fuel consumption of shoveling operation were selected by KPCA and
combined with a Grey relation analysis (GRA) to validate, and the fuel consumption model
of shoveling operation was established by SVM. Finally, the factors with a strong influence
on the fuel consumption of shoveling operation were optimized by the IPSO algorithm.
The lowest energy consumption trajectory was obtained at different engine speeds. The
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optimized shoveling trajectory was used for validation experiments and compared with
the sample data and manually controlled shoveling data to verify the optimization effect.

2. Shoveling Experiments and Analysis
2.1. Shoveling Principle and Experiment Design

The shoveling method is characterized by the insertion of the wheel loader into the
pile to a certain depth. Then, the bucket is turned and lifted by the action of the lift
arm, tilt level, and connecting rod to complete the shoveling. Finally, the bucket is lifted.
Among them, the shoveling trajectory of the scooping phase is parallel to the surface
of the pile, as shown in Figure 1. Thus, the wheel loader can be regarded as a system
with three degrees of freedom when carrying out the shoveling operation, which is wheel
loader advancing, bucket lifting, and bucket turning. Among them, the bucket lifting
and turning are controlled by the lift cylinder and the tilt cylinder, respectively, as shown
in Figure 2. The wheel loader displacement, lift cylinder displacement, and tilt cylinder
displacement are not the same in different shoveling trajectories, which is the reason for
the large difference in fuel consumption during the shoveling operation of wheel loaders.
Meanwhile, the different engine speeds provide different power to the wheel loader. Even
if the same shoveling trajectory is used, however, due to the difference in engine speed,
the fuel consumption of the shoveling operation will also appear as a large gap. Therefore,
optimizing the shoveling trajectory at different engine speeds is a critical way to reduce the
fuel consumption of the shoveling operation.
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To execute the shoveling trajectory better and avoid the errors caused by manual
operation. And to obtain more accurate data about the shoveling process, this study
has developed an automatic shoveling experiment platform for a wheel loader. The
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platform will carry out automatic shoveling by preplanning the shoveling trajectory and
setting the relevant shoveling parameters. The relevant parameters during the shoveling
operation are recorded, including the wheel loader displacement, cylinder displacement,
fuel consumption, engine speed, operation time, and shoveling weight. The recording
frequency is 500 Hz, which is recorded once every 0.002 s. The automatic shoveling platform
and the main sensors are shown in Figure 3.
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2.2. Trajectory Planning

Due to the different insertion depths, the shoveling trajectories are also different. The
fuel consumption of shoveling operations with different shoveling trajectories has obvious
differences. In this study, a variety of insertion depths are randomly selected, ranging from
600 mm to 1000 mm. Two types of materials are selected, including gravel and sand. Gravel
is characterized by non-uniform, high-density, and large particles. At the same time, sand
is characterized as uniform, low-density, and with small particles. Both above materials
have high representativeness, and the relevant parameters of the two materials are shown
in Table 1. Due to the different angles of repose of the two piles, their shoveling trajectories
are also different, as shown in Figure 4.
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Table 1. Pile parameters.

Type of Pile Density (kg/m3) Angle of Repose (◦) Particle Diameter (mm)

Gravel 2672 35.0 20–60
Sand 2392 36.5 <1

The shoveling area S consisting of the shoveling trajectory and the surface of the pile
is shown in Figure 5. According to the geometric relationship in Figure 5, the shoveling
area can be expressed as shown in Equation (1). However, the shoveling trajectory is not
the same. However, the shoveling area composed of the shoveling trajectory and surface of
the pile is always constant and equal to the bucket cross-section. When the length of lAB is
determined, both lBC and lCD can be expressed as a function of lAB only. This is shown in
Equation (2). When the shoveling area is held constant, different shoveling trajectories can
be obtained by adjusting the length of lAB.

S =
V
L

=
1
2

lABlBQ + lBClBP (1)

where V is the bucket volume, and L is the bucket length.
lBP = lAB sin(α)
lCD = lBQ = lAB tan(α)
lBC = S

lBP
− lBP

sin(2α)

lBC′ = lBC cos(α)

(2)

where lAB is the insertion depth of the insertion phase, lBC is the shoveling length of the
scooping phase, lCD is the shoveling length of the lifting phase, lBP is the horizontal distance
between the trajectory of the scooping phase and the surface of the pile, and lBC′ is the
wheel loader displacement of the scooping phase.
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2.3. Engine Speed Analysis

To obtain the optimal trajectory with different engine speeds. Three different engine
speeds are selected, 900 RPM, 1200 RPM, and 1500 RPM, and 40 shoveling operations
are performed on the gravel pile and the sand pile with each engine speed. The relevant
parameters are recorded during the shoveling process. The pile is recovered after each
shoveling operation. The process of shoveling gravel and the process of shoveling sand
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are shown in Figure 6. The experimental environment is an open flat area. The average
temperature is 22 ◦C, and the average relative humidity is 83%.
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When the engine speed is 1500 RPM, the engine speed for shoveling gravel and
shoveling sand is shown in Figure 7. The shoveling operation process can be divided into
four phases with the change of displacement of the lift cylinder and the tilt cylinder, which
are the insertion phase, scooping phase, stopping phase, and lifting phase, corresponding
to S1, S2, S3, and S4 in Figure 7, respectively.

1. Insertion phase: There is no change in the displacement of the lift cylinder and the
displacement of the tilt cylinder. The engine speed is maintained at 1500 RPM, but a
smaller oscillation will occur. This oscillation is more violent at the beginning of the
insertion phase. However, as the insertion depth increases, it gradually calms down
and stays at 1500 RPM.

2. Scooping phase: The displacement of the tilt cylinder increases rapidly, and the
displacement of the lift cylinder steps up. With the increasing displacement of the
cylinder, there is a large change in engine speed. When the displacement of the
cylinder starts to increase, the engine speed decreases at first, then increases rapidly
and is higher than 1500 RPM. When the displacement of the cylinder is stable, the
engine speed also falls back to 1500 RPM rapidly.

3. Stopping phase: The displacement of the tilt cylinder and lift cylinder has no change,
and the engine speed decreases to a lower state in a short time.

4. Lifting phase: The displacement of the lift cylinder increases rapidly, and the dis-
placement of the tilt cylinder is almost unchanged. The engine speed decreases to the
lowest point in the whole shoveling process in a short period and then increases.
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1. Insertion phase: There is no change in the displacement of the lift cylinder and the 
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smaller oscillation will occur. This oscillation is more violent at the beginning of the 
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2.4. Fuel Consumption Analysis

The wheel loader fuel consumption per unit time, wheel loader displacement, lift
cylinder displacement, and tilt cylinder displacement during the wheel loader shoveling
process are shown in Figure 8.

1. Insertion phase: The wheel loader is inserted into the pile at a certain distance with
traction. In the early insertion phase, the insertion speed of the wheel loader is fast.
However, as the insertion depth increases, the resistance to the bucket also increases
rapidly, and the wheel loader insertion speed gradually decreases. Meanwhile, the
fuel consumption per unit of time rises rapidly after the insertion of the pile and then
remains in a relatively stable state.

2. Scooping phase: The wheel loader continues to keep moving forward. In the early
scooping phase, the wheel loader can move forward rapidly because the material is
scooped up by the bucket to provide space for the wheel loader to move forward. In
the later scooping phase, the wheel loader advances at a slower speed due to resistance.
It is obvious that when the lift cylinder and tilt cylinder remain unchanged, the fuel
consumption per unit time remains at a relatively stable level. The fuel consumption
per unit time increases rapidly when the displacement of the lift cylinder and tilt
cylinder increases and then is in a stable state.

3. Stopping phase: The resistance of the wheel loader increases sharply, and the wheel
loader is forced to stop moving forward. However, to prevent the wheel loader from
moving backward, the wheel loader will continue to keep moving ahead and move
forward for a short distance. The fuel consumption per unit time is then reduced to
the lowest state during the entire shoveling operation.

4. Lifting phase: The wheel loader is subjected to inertia in the process of lifting the
bucket and continues to keep moving forward. And the fuel consumption per unit
time increases with the displacement of the lift cylinder and then remains stable.
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The sensor on the wheel loader is a flow sensor. The total fuel consumption needs to
be obtained by the calculation formula, which is shown in Equation (3). As an example, in
Figure 8, the total fuel consumption, the fuel consumption of each phase, and the percentage
of the total fuel consumption by each phase are shown in Table 2.

C =

n
∑

i=1
ci

f ·3600
·1000 (3)

where C is the total fuel consumption, mL, c is the fuel consumption per unit time at a
certain moment, L·h−1, f is the frequency, Hz.

Table 2. Fuel consumption.

Type of Pile Parameter Insertion Phase Scooping Phase Stopping Phase Lifting Phase Total

Gravel
Fuel consumption (mL) 27.12 49.27 4.10 15.61 96.10

Percentage (%) 28.22 51.27 4.27 16.24 100.00

Sand
Fuel consumption (mL) 15.97 41.15 6.45 24.68 88.26

Percentage (%) 20.51 52.83 8.29 31.68 100.00

According to Figure 8 and Table 2. The fuel consumption in the scooping phase is the
highest, and the fuel consumption in the stopping phase is the lowest. In shoveling gravel,
the fuel consumption in the insertion phase is higher than that in the lifting phase. While
shoveling sand, the fuel consumption in the insertion phase is less than that in the lifting
phase. This is related to the material properties, as gravel is a denser and less loose material.
The wheel loader needs more operation time and energy consumption when inserting
the gravel pile. Sand, on the other hand, is less dense and relatively looser. The wheel
loader is easier to insert from the sand pile and therefore generates less fuel consumption
when inserting into the sand pile. In short, the fuel consumption of shoveling gravel is
higher than that of shoveling sand with the same engine speed, which is determined by
the material characteristics. From Figure 8, the lift cylinder displacement and tilt cylinder
displacement within different phases all affect fuel consumption, which increases with the
expansion of cylinder displacement. Meanwhile, the different engine speed of the wheel
loader leads to the different initial velocity of the wheel loader when inserted into the
pile, which will directly affect the time of wheel loader shoveling operation. Moreover,
the engine speed is related to the wheel loader power, which will have a direct impact on
the fuel consumption of the shoveling operation. In addition, the final shoveling weight
will also have an impact on the fuel consumption of the shoveling operation. It is mainly
reflected in the lifting phase; if the shoveling weight is too high, it will increase the extra
fuel consumption.

3. Research Methodology
3.1. KPCA and GRA

KPCA is an improved processing method of PCA. As for PCA, it only applies to linear
data, and there is a significant error when dealing with nonlinear data. In contrast, KPCA
can largely preserve the local structure of nonlinear data by introducing kernel functions.
Meanwhile, PCA will map data points into a low-dimensional space when dealing with
high-dimensional data, facing dimensional disaster and leading to the loss of distance
information between data points. Therefore, KPCA is more advantageous than PCA [34].
The basic idea is to project the samples that are linearly indistinguishable in the low-
dimensional space to the high-dimensional space and make them linearly distinguishable
by the kernel function [35]. For a set of samples X = [x1, x2, . . . , xn] ∈ Rm, the mapping
function is

n

∑
i=1

ϕ(xi) = 0(ϕ : Rm → Rk(k� m)) (4)
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where ϕ(xi) is the mapping function, Rm is an m-dimensional vector, and Rk is a k-
dimensional vector.

Then the covariance matrix can be expressed as

C =
1
n

n

∑
i=1

ϕ(xi)ϕ(xi)
T (5)

Suppose the eigenvalue of C is λ, and its corresponding eigenvector is v, the result is

λv = Cv = (
1
n

n

∑
i=1

ϕ(xi)ϕ(xi)
T)v =

1
n

n

∑
i=1

(ϕ(xi)
Tv)ϕ(xi) (6)

For λv = Cv, by multiplying each left and right by ϕ(xi), we can obtain λϕ(xi)v = Cvϕ(xi).
The introduced kernel function matrix can be expressed as Kij = K(xi, xj) = ϕ(xi)ϕ(xj). Then,
we can obtain nλa = Ka, where a is the eigenvector of K. Then, the projection of x into the
higher dimensional space can be expressed as

vϕ(x) =
n

∑
i=1

ai ϕ(xi)ϕ(x) =
n

∑
i=1

aiK(xi, x) (7)

In this study, the Gaussian kernel function is chosen as the kernel function, which is
defined as follows:

K(x, q) =
exp(−‖x− q‖2)

σ2 (8)

where σ is the function parameter, and q is the center of the function.
GRA is an analytical method based on grey system theory, mainly used to study

the strength of association between influencing factors. It converts the grey information
between multiple factors into black-and-white information, then uses the magnitude of the
grey relation coefficient value as the basis for evaluating the strength of the correlation. The
specific steps are as follows.

1. Select the parent sequence Y and the subsequence X.
2. To eliminate the influence of the magnitude, the parent sequence and the subse-

quence are normalized, and the normalized parent sequence is recorded as Y′ and the
subsequence is recorded as X′.

3. The formula is shown in Equation (9) to calculate the grey relation coefficient.

ξ(i) =
mini(min|Y′ − X′(i)|) + ρmaxi(max|Y′ − X′(i)|)

|Y′ − X′(i)|+ ρmaxi(max|Y′ − X′(i)|) , i = 1 · · · n (9)

where ρ is the discriminant coefficient, which takes values from 0 to 1 and is taken as 0.5 in
this paper.

3.2. SVM

SVM is to use the kernel function to map the sample data eigenvalues in the low-
dimensional space to the corresponding high-dimensional space. And the optimal hyper-
plane is determined in the high-dimensional space based on the structural risk minimization
principle [36]. The expression of the classification hyperplane is shown in Equation (9), the
objective function is shown in Equation (10), and the constraints are shown in Equation (11).

f (x) = w·x + b (10)

min
1
2
‖w‖2 + g

m

∑
i=1

(ξi + ξ∗) (11)
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s.t.


yi − (w·ϕ(xi) + b) ≤ ε + ξi
(w·ϕ(xi) + b)− yi ≤ ε + ξ∗i
ξi ≥ 0, ξ∗i ≥ 0 (i = 1, 2, · · · , m)

(12)

where w is the normal vector of the hyperplane, x is the input vector, b is the hyperplane
translation distance, ξ is the relaxation factor, g is the penalty factor, m is the number of
samples, ε is the insensitivity coefficient factor, and ϕ is the mapping function.

The output function of the SVM can be expressed as

g(x) =
m

∑
i=1

aiK(xi, xj) + b (13)

where ai is the Lagrange multiplier, and K is the kernel function, and the radial basis kernel
is chosen as the kernel function in this paper, as shown in Equation (13):

K(xi, xj) = exp(
−
∥∥xi − xj

∥∥2

2c2 ) (14)

where c is the kernel function parameter.
For machine learning models, optimizing hyperparameters is decisive for the model

performance [37]. A reasonable choice of hyperparameters is beneficial to improve the
performance of the model. Studies have shown that the optimization of penalty factor g
and kernel function parameter c in SVM is an effective way to improve the accuracy of
SVM [38]. To obtain reasonable g and c and avoid overfitting of the model. In this study,
we choose the method of K-fold Cross Validation (CV) to obtain reasonable parameters,
and the pseudo-code of K-fold CV optimize g and c is shown in Algorithm 1.

Algorithm 1 K-fold Cross Validation

1: begin
2: bestaccuracy; cbest; gbest;
3: for c = cmin

2:cmax
2

4: for g = gmin
2:gmax

2

5: divide the dataset equally into K groups;
6: for = 1:K
7: divide the dataset equally into K groups;
8: train(K) as the test set, the rest as the training set;
9: record the accuracy of the test set ace(K);
10: end;
11: cv = (ace(1) + ace(2) + · · · + ace(K))/K;
12: if cv > bestaccuracy
13: bestaccuracy = cv; cbest = c; gbest = g;
14: end;
15: end;
16: end;
17: end.

3.3. IPSO

PSO is inspired by the foraging behavior of bird populations in nature, and the basic
units in PSO are particles. Each particle is described by three features: fitness value,
position, and velocity. Each particle in the algorithm is measured by the fitness function
to measure the degree of merit of this particle. The velocity of the particle is influenced
by itself and the population and can be adjusted during each iteration. And the position
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describes the current location of the particle and is updated by the velocity. The updated
formulas for velocity and position are shown in Equations (14) and (15), respectively [39].

vi = wvi + c1r1(pi − xi) + c2r2(gbest − xi) (15)

xi = xi + vi (16)

where w is the inertia coefficient, c is the acceleration factor, and r is a random number
of [0, 1].

The choice of the inertia coefficient w directly affects the convergence of the PSO. In
traditional PSO, w is taken as 1 by default. w tends to be the global search for larger PSO
and the local search for smaller PSO. To avoid premature maturation of the algorithm and
oscillation of particles near the global optimal solution in the late stage of the algorithm,
the value of w is usually taken to decrease linearly with the increase of the number of
iterations. However, it requires repeated trials to determine the maximum, minimum, and
number of iterations, and the optimal value may not be found. Thus, an Improved Particle
Swarm algorithm is applied in this study for implementing a nonlinear dynamic adaptive
adjustment of the inertia coefficient w such that the inertia coefficient w can follow the
change of the fitness value, calculated as shown in Equation (16) [40].

w =

{
wmin + (wmax−wmin)( f− fmin)

favg- fmin
( f ≤ favg)

wmax( f > favg)
(17)

4. SVM Fuel Consumption Model and IPSO Optimization
4.1. KPCA Processing and GRA Verification

From the previous analysis, it can be seen that the wheel loader displacement, lift
cylinder displacement, and tilt cylinder displacement in different phases will influence fuel
consumption. Meanwhile, the initial velocity, operation time, and shoveling weight will
also influence fuel consumption. Since the displacement of the lift cylinder and the tilt
cylinder in some phases do not change. The displacement of the wheel loader in the four
phases, the displacement of the lift cylinder and the tilt cylinder in the scooping phase, the
displacement of the lift cylinder in the lifting phase, the initial velocity, the operation time,
and the shoveling weight, a total of 10 factors, are taken as the initial fuel consumption
influencing factors. The partial data of the gravel sample and the sand sample are shown
in Table 3.
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Table 3. Part of the sample data.

Type of Pile
Engine
Speed
(RPM)

Number
Initial

Velocity
(m·s−1)

Displacement of Wheel Loader
Displacement of Tilt

Cylinder in Scooping Phase
(mm)

Displacement of Lift Cylinder
Operation

Time
(s)

Shoveling
Weight

(kg)

Fuel
Consumption

(mL)
Insertion

Phase
(mm)

Scooping
Phase
(mm)

Stopping
Phase
(mm)

Lifting
Phase
(mm)

Scooping
Phase
(mm)

Lifting Phase
(mm)

Gravel

900

1 0.48 802 1431 259 182 27 301 281 13.62 4771 73.63
2 0.49 789 1536 105 39 20 307 265 13.31 5116 74.34
3 0.35 995 1061 134 125 21 304 277 19.04 4966 141.51

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
40 0.42 789 1563 134 202 26 303 279 18.58 4927 142.70

1200

1 0.81 749 1508 462 103 20 308 267 13.03 4609 62.54
2 0.83 718 1738 105 125 28 300 282 12.64 4934 63.88
3 0.75 745 1699 77 163 25 302 270 14.99 5103 110.32

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
40 0.79 779 1431 249 144 32 296 251 15.79 4284 111.48

1500

1 1.17 806 1334 164 355 28 299 278 14.62 3894 73.49
2 1.09 819 1392 240 67 20 309 258 11.73 4914 75.12
3 1.18 730 1724 202 422 28 299 278 15.96 3796 76.96

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
40 1.16 729 1669 173 345 28 298 279 16.57 3770 102.71

Sand

900

1 0.43 787 1521 307 173 71 263 270 11.22 5409 55.49
2 0.50 739 1651 183 230 93 241 260 13.55 5474 68.65
3 0.48 682 1787 39 537 89 244 225 17.72 6722 81.59

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
40 0.37 748 1632 173 250 90 243 271 15.87 6449 83.71

1200

1 0.86 707 1755 192 67 94 237 270 13.08 5864 62.71
2 0.83 768 1579 221 134 73 261 276 12.11 5844 63.72
3 0.84 960 1110 96 105 23 328 275 16.27 5441 70.59

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
40 0.81 729 1684 240 211 68 265 275 14.31 6878 74.78

1500

1 1.16 682 1841 192 259 99 233 263 14.16 5909 61.06
2 1.17 670 1899 96 250 94 237 265 12.78 6117 61.33
3 1.17 826 1418 144 96 94 239 270 11.77 6241 63.60

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
40 1.20 889 1234 173 364 91 237 271 13.36 6052 64.94
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Due to the different magnitudes among the initial fuel consumption influence factors,
they need to be normalized. After the normalization process and then the KPCA opera-
tion, the contribution rate and cumulative contribution rate are calculated as shown in
Equation (17). The contribution rate and cumulative contribution rate of each factor are
shown in Table 4. The factors that have the greatest influence on the fuel consumption
of shoveling operation are initial velocity and insertion phase displacement of the wheel
loader. The initial velocity is related to the engine speed, which is responsible for providing
power for the whole shoveling operation process. While the wheel loader displacement
in the insertion phase is related to the insertion resistance, and the wheel loader reaches
the peak of resistance in the insertion phase, which is the key factor that influences fuel
consumption. In the sand sample, the contribution of shoveling weight is greater than the
operation time, while in the gravel sample, the contribution of operation time is slightly
greater than the shoveling weight. This is related to the experimental environment, which
is affected by the climate, where the humidity in the air increases and the sand appears
to stick, so the shoveling weight is higher when shoveling sand. The scooping phase is
the most important phase in the shoveling operation process, so the displacement of the
wheel loader in this phase also has a greater influence on the fuel consumption of the
shoveling operation. From Figure 8, the cylinder displacement will influence the fuel
consumption of the shoveling operation, but compared with other factors, the influence
of cylinder displacement on the fuel consumption of the shoveling operation is not great.
According to the principle of KPCA preference, the requirement of replacing all factors can
be achieved for factors with a cumulative contribution of 90% [41]. In the gravel samples
and sand samples, the initial velocity, wheel loader displacement in the insertion phase,
shoveling weight, operation time, and wheel loader displacement in the scooping phase,
the cumulative contribution rate is greater than 90%. Thus, these five factors are selected as
the key factors for the influence of fuel consumption of shoveling operation, and further
research is conducted. 

γ =
λj

n
∑

i=1
λi

γ′ =

m
∑

i=1
λj

n
∑

i=1
λi

(j = 1, 2, · · · , n) (18)

where λ is the eigenvalue, γ is the contribution rate, and γ′ is the cumulative contribution rate.

Table 4. Contribution rate and the cumulative contribution rate of each factor.

Gravel Sand
Parameters γ (%) γ′ (%) Parameters γ (%) γ′ (%)

Initial velocity 31.64 31.64 Initial velocity 31.00 31.00

Displacement of wheel loader
in insertion phase 27.04 58.68 Displacement of wheel loader

in insertion phase 24.42 55.42

Operation time 15.36 74.03 Shoveling weight 13.99 69.41

Shoveling weight 15.35 89.39 Operation time 13.79 83.20

Displacement of wheel loader
in scooping phase 6.56 95.95 Displacement of wheel loader

in scooping phase 10.70 93.89

Displacement of wheel loader
in stopping phase 2.65 98.60 Displacement of wheel loader

in stopping phase 5.64 99.53

Displacement of wheel loader
in lifting phase 1.13 99.73 Displacement of wheel loader

in lifting phase 0.29 99.82

Displacement of lift cylinder
in scooping phase 0.24 98.97 Displacement of lift cylinder

in scooping phase 0.16 98.99

Displacement of lift cylinder
in lifting phase 0.02 99.98 Displacement of lift cylinder

in lifting phase 0.01 99.99

Displacement of tilt cylinder
in scooping phase 0.01 100.00 Displacement of tilt cylinder

in scooping phase 0.01 100.00



Appl. Sci. 2023, 13, 7659 15 of 26

In order to verify the correlation between the key factors of fuel consumption influence
and fuel consumption, the GRA is selected to test the correlation. The fuel consumption
is chosen as the parent sequence, and the key factors of fuel consumption influence the
subsequence. After calculation, the grey relation coefficients of gravel samples and sand
samples are shown in Table 5. The more the grey relation coefficient value tends to 1, the
higher the correlation between the subsequence and the parent sequence. The grey relation
coefficient values are greater than 0.75 in the gravel samples and sand samples. There
is a greater correlation between fuel consumption and key factors of fuel consumption
influence. It proves that the key factors of fuel consumption influence screened by KPCA
are effective.

Table 5. Grey relation coefficients.

Type of Pile Initial
Velocity

Displacement of Wheel
Loader in Insertion Phase

Shoveling
Weight

Operation
Time

Displacement of Wheel
Loader in Scooping Phase

Gravel 0.792 0.782 0.834 0.789 0.779

Sand 0.762 0.795 0.894 0.846 0.822

4.2. SVM Model

According to the results of KPCA, the initial velocity, the displacement of the wheel
loader in the insertion phase, the shoveling weight, the operation time, and the displace-
ment of the wheel loader in the scooping phase are selected as the input layer, and the fuel
consumption as the output layer. Among 120 sets of gravel samples and sand samples,
respectively, 100 sets of samples are randomly selected as the training set, and the other
20 sets are used as the test set. Meanwhile, the penalty factor g and the kernel function
parameter c are optimized by combining them with the CV method. The optimal c and g
for the gravel fuel consumption model are 3.03 and 143.58, respectively, and for the sand
fuel consumption model, they are 4.32 and 123.52, respectively. The accuracy effect of the
fuel consumption model is shown in Figure 9. Meanwhile, root mean square error (RMSE),
average relative error (ARE), and goodness of fit R2 are used in this study as indicators
to evaluate the performance of the fuel consumption model. The smaller the RMSE and
ARE, the smaller the deviation between the predicted value and the true value, and the
higher the accuracy of the model. The value of R2 is closer to 1, which indicates a higher
degree of fit and higher accuracy of the model, and its calculation formula is as follows.
The evaluation indicators of the fuel consumption model are shown in Table 6.

RMSE =

√
1
n

n

∑
i=1

(yi
∗ − yi)

2 (19)

ARE =
1
n

n

∑
i=1

∣∣∣∣yi − yi
∗

yi

∣∣∣∣ (20)

R2 = 1−

n
∑

i=1
(yi − yi

∗)2

n
∑

i=1
(yi − yi)

2
(21)

where yi is the true value, yi
∗ is the predicted value, yi is the mean of the true value, and n

is the number of samples.
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Figure 9. Prediction performance of fuel consumption model. (a) Gravel fuel consumption model; 
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sand fuel consumption prediction model. And in terms of fitting ability, the gravel fuel 
consumption prediction model has a better fitting ability. Overall, the SVM fuel consump-
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and the model has high stability and generalization ability. To further test the rationality 
of KPCA. Different dimensions of fuel consumption influence factors are selected as input 
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Table 6. Fuel consumption model evaluation indicators.

Type of Pile ARE (%) RMSE R2

Gravel 4.91 5.91 0.9764
Sand 3.49 3.08 0.9494

In the gravel fuel consumption prediction model, the ARE is 4.91%, the RMSE is
5.91, and the R2 is 0.9764. While in the sand fuel consumption prediction model, the
ARE is 3.49%, the RMSE is 3.08, and the R2 is 0.9494. In terms of prediction accuracy,
the prediction accuracy of the gravel fuel consumption prediction model is lower than
that of the sand fuel consumption prediction model. And in terms of fitting ability, the
gravel fuel consumption prediction model has a better fitting ability. Overall, the SVM
fuel consumption prediction model showed better prediction ability in both the gravel
samples and the sand samples. The deviation between the predicted and true values of the
model is slight, and the model has high stability and generalization ability. To further test
the rationality of KPCA. Different dimensions of fuel consumption influence factors are
selected as input layers in the SVM fuel consumption model. The same training set and test
set are selected, and ARE is used as the evaluation indicator. The prediction performance of
the gravel model and sand model is shown in Figure 10. When the dimension increases, the
value of ARE decreases rapidly, and when the dimension is 5, the ARE of the gravel model
and sand model reaches the lowest point. When the dimension continues to increase, the
values of ARE both have a small increase.

4.3. IPSO Optimization Process

To obtain the optimal shoveling trajectory with different engine speeds. IPSO is used
to optimize the SVM fuel consumption model. The indicators of optimization are the
input features of the SVM model, which are the initial velocity, the displacement of the
wheel loader in the insertion phase, the shoveling weight, the operation time, and the
displacement of the wheel loader in the scooping phase. Among them, the initial velocity
exists in different intervals depending on the engine speed. The displacement of the wheel
loader in the scooping phase is not involved in the optimization search due to the limitation
of trajectory planning, and the results are obtained by the calculation of wheel loader
displacement in the insertion phase. As for the operation time and shoveling weight, which
is a posteriori data, as long as they correspond to the upper and lower limits of the sample
data, the optimization intervals of each parameter are shown in Table 7.
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Table 7. Optimization intervals for each parameter.

Parameters Interval
Gravel Model Sand Model

900 RPM 1200 RPM 1500 RPM 900 RPM 1200 RPM 1500 RPM

Initial velocity
(m·s−1)

Upper limit 0.6 0.95 1.3 0.6 0.95 1.3

Lower limit 0.3 0.65 1.05 0.3 0.65 1.05

Displacement of wheel
loader in insertion phase

(mm)

Upper limit 1000

Lower limit 600

Shoveling weight (kg)
Upper limit 5526 5545 5558 7294 7441 7520

Lower limit 4459 4609 3913 5400 5773 5519

Operation time (s)
Upper limit 25 23 21 25 26 23

Lower limit 12 12 10 11 12 10

Displacement of wheel
loader in scooping phase

(mm)
Calculated according to Equation (2)

In the IPSO algorithm, c1 and c2 are set to 1.5. The number of iterations is set to 200.
The population size is set to 30. The optimal trajectories of the gravel model and the sand
model are optimized for three different engine speeds, respectively. The optimization
process is shown in Figure 11, and the optimization results are shown in Table 8.
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Table 8. Optimization results.

Type of Pile Engine Speed
(RPM)

Initial
Velocity
(m·s−1)

Displacement of Wheel
Loader in Insertion

Phase (mm)

Displacement of Wheel
Loader in Scooping

Phase (mm)

Fuel
Consumption

(mL)

Gravel
900 0.59 704 1778 55.05

1200 0.86 686 1843 59.58
1500 1.16 698 1799 48.59

Sand
900 0.48 839 1272 48.12

1200 0.79 749 1520 48.16
1500 1.25 733 1569 56.87

5. Validation Experiment and Discussion
5.1. Validation Experiment

To verify the performance of the optimized shoveling trajectory, the corresponding
trajectories were planned at different engine speeds according to the data in Table 8, and the
research line of thought is shown in Figure 12. Three experiments at each of three different
engine speeds with optimized trajectories in a gravel pile and sand pile and the results of
the shoveling experiments with the shoveling operation parameters are shown in Table 9.
Due to the large randomness of the shoveling operation itself and the accuracy problem
in the data collection process, which led to certain errors in the testing process, it was
difficult to ensure that the trajectory remained the same as the theoretical trajectory even by
using the automatic shoveling platform. Therefore, in the insertion phase, when the error
between the actual insertion distance of the wheel loader and the theoretical distance is
less than 20 mm, it can be considered as basically conforming to the theoretical trajectory.
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Table 9. Validation experiment shoveling operation parameters and fuel consumption.

Type
of Pile

Engine
Speed
(RPM)

Number
Initial

Velocity
(m·s−1)

Displacement
of Wheel
Loader in

Insertion Phase
(mm)

Displacement
of Wheel loader

In Scooping
Phase (mm)

Operation
Time (s)

Shoveling
Weight

(kg)

Fuel
Consumption

(mL)

Average Fuel
Consumption

(mL)

Gravel

900
1 0.56 719 1690 10.99 4492 53.50
2 0.53 713 1710 11.79 4602 51.91 54.50
3 0.49 722 1703 11.20 4570 58.09

1200
1 0.83 702 1804 12.02 4641 67.64
2 0.81 704 1785 12.49 4713 58.68 61.97
3 0.81 694 1748 12.55 4596 59.60

1500
1 1.14 726 1737 8.01 4388 45.09
2 1.12 704 1844 10.56 4414 47.30 44.59
3 1.09 725 1745 7.33 3770 41.38

Sand

900
1 0.52 826 1432 10.52 4232 49.24
2 0.47 855 1342 9.85 5357 50.23 49.98
3 0.49 819 1436 9.90 5207 50.48

1200
1 0.81 747 1668 9.31 4966 49.78
2 0.77 758 1601 10.10 4550 47.54 50.00
3 0.87 730 1643 10.39 4843 52.69

1500
1 1.14 728 1594 10.65 6514 56.50
2 1.14 739 1603 11.12 6442 64.64 57.42
3 1.15 749 1488 11.37 4758 51.11

The average fuel consumption of the validation experiment, the theoretical fuel con-
sumption of IPSO optimization, the minimum fuel consumption of the sample, the maxi-
mum fuel consumption of the sample, and the average fuel consumption of the sample are
shown in Figure 13. The deviation between the average fuel consumption of the validation
experiment and the theoretical fuel consumption of IPSO optimization is small. The maxi-
mum deviation value is 8.23%, and the accuracy of the fuel consumption model is high.
The deviation from the actual shoveling operation is small. In Gravel-1200 RPM, the experi-
mental average fuel consumption is slightly higher than the minimum fuel consumption of
the sample, and the fuel consumption is improved by 0.62%. However, in the other models,
the average fuel consumption of the validation experiment is reduced compared with the
minimum fuel consumption of the sample. Among them, the maximum reduction in fuel
consumption is 22.63% in Gravel-900 RPM. The average fuel consumption of the validation
experiment is substantially reduced compared to the sample maximum fuel consumption,
with a maximum reduction of 73.65% and a minimum reduction of 55.70%. In the gravel
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model with three different engine speeds, the average fuel consumption of the validation
experiment is reduced by 60.93%, 45.79%, and 49.10%, respectively, compared to the sample
average fuel consumption. In the sand model with three different engine speeds, the
average fuel consumption of the validation experiment is reduced by 30.93%, 35.56%, and
28.59%, respectively, compared with the sample average fuel consumption. The optimized
shoveling trajectory effectively reduced the fuel consumption of the shoveling operation.
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To further compare the performance of the optimized shoveling trajectory, a compar-
ison with the shoveling operation of a manually operated wheel loader is selected. In man-
ually controlled shoveling, there are no restrictions on the parameters such as the engine 
speed of the wheel loader, displacement of the wheel loader in the insertion phase, and 
displacement of the wheel loader in the scooping phase. Wheel loader drivers will conduct 
random shoveling according to their driving habits and operating experience. To increase 
the comparability, two drivers are selected to carry out 10 shoveling operations on the 
gravel pile and sand pile, respectively, in the same experimental conditions and record 
the parameters during the shoveling operations. The parameters of shoveling operations 
are shown in Figure 14, and the fuel consumption of shoveling operations is shown in 
Table 10. 

Figure 13. Fuel consumption comparison.

To further compare the performance of the optimized shoveling trajectory, a com-
parison with the shoveling operation of a manually operated wheel loader is selected. In
manually controlled shoveling, there are no restrictions on the parameters such as the
engine speed of the wheel loader, displacement of the wheel loader in the insertion phase,
and displacement of the wheel loader in the scooping phase. Wheel loader drivers will
conduct random shoveling according to their driving habits and operating experience. To
increase the comparability, two drivers are selected to carry out 10 shoveling operations on
the gravel pile and sand pile, respectively, in the same experimental conditions and record
the parameters during the shoveling operations. The parameters of shoveling operations
are shown in Figure 14, and the fuel consumption of shoveling operations is shown in
Table 10.

Table 10. Fuel consumption by manually controlled shoveling.

Driver Shoveling
Operation Fuel Consumption Average Fuel

Consumption

Driver A
Shoveling gravel 71.67 64.06 92.31 72.56 75.38 71.89 63.60 71.72 76.12 66.70 72.60
Shoveling sand 72.65 62.36 72.07 64.77 68.66 92.63 76.10 72.38 65.51 66.17 71.33

Driver B
Shoveling gravel 84.85 65.72 74.56 77.76 72.16 74.00 65.73 68.77 96.22 78.53 75.83
Shoveling sand 61.17 57.76 67.28 61.05 74.34 66.57 69.00 74.26 68.23 74.09 67.38
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Figure 14. Parameters of the shoveling process for driver A and driver B. (a) Engine speed; (b) Initial 
velocity; (c) Displacement of wheel loader in insertion phase; (d) Displacement of wheel loader in 
scooping phase; (e) Operation time; (f) Shoveling weight. 
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velocity; (c) Displacement of wheel loader in insertion phase; (d) Displacement of wheel loader in
scooping phase; (e) Operation time; (f) Shoveling weight.

The average fuel consumption for the validation experiments of the three optimized
trajectories decreased by 29.54%, 19.84%, and 42.33%, respectively, compared to driver A’s
control of shoveling gravel and by 30.39%, 21.42%, and 43.46%, respectively, compared
to driver B. The average fuel consumption of the validation experiments for the three
optimized trajectories decreased by 33.63%, 33.60%, and 23.76%, respectively, compared to
driver A shoveling sand, and by 29.99%, 29.96%, and 19.58%, respectively, compared to
driver B. The average fuel consumption for shoveling gravel with optimized trajectory with
three engine speeds is 53.69 mL, which is 26.05% and 29.20% lower compared to Driver
A and Driver B, respectively. And the average fuel consumption of shoveling sand with
optimized trajectory with three engine speeds is 52.47 mL; compared with Driver A and
Driver B, the average fuel consumption is reduced by 26.44% and 22.12%, respectively. The
average fuel consumption for manually controlled shoveling of gravel is 74.22 mL, and
the average fuel consumption for manually controlled shoveling of sand is 69.35 mL. The
fuel consumption can be, on average, reduced by 27.66% when shoveling gravel with an
optimized trajectory and by 24.34% when shoveling sand with an optimized trajectory. In
conclusion, compared with the manually controlled shoveling operation, the shoveling
operation, according to the optimized trajectory, can effectively reduce fuel consumption of
shoveling operation.

In order to test the significance of the reduction in fuel consumption for the optimized
shoveling trajectory, a t-test is chosen to test it in this paper. The samples are selected from
the fuel consumption of the optimized shoveling trajectory and the fuel consumption of
drivers A and B shoveling gravel and sand, respectively. The t-test allows us to obtain
statistical conclusions about the significance of the difference between the means of the
two groups of samples and to determine their level of statistical significance. First, the
hypothesis is established. The null hypothesis H0 is that there is no significant differ-
ence between the fuel consumption data of the optimized shoveling trajectory and the
fuel consumption data of the manually controlled shoveling. The alternative hypothesis
H1 is that the fuel consumption data from the optimized shoveling trajectory performs
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significantly better than the fuel consumption data from the manually controlled shoveling,
as shown in Equation (22). After that, the significance level needs to be determined. In
this paper, the significance level α is chosen as 0.05. Finally, the T-value is calculated and
compared with the critical value of the two-sided test, and the formula for calculating
the T-value is shown in Equation (23). The fuel consumption of shoveling gravel with
optimized shoveling trajectory is 5.02 and 5.50 compared to driver A and B, respectively,
while the fuel consumption of shoveling sand with optimized shoveling trajectory is 5.80
and 5.83 compared to driver A and B, respectively, with all T-value greater than the critical
value t0.05/2(17) = 2.11. Therefore, the null hypothesis can be rejected, and the alternative
hypothesis is selected. Thus, we can conclude that the fuel consumption with an optimized
shoveling trajectory performs significantly better than the fuel consumption with manually
controlled shoveling. At the restricted significance level, fuel consumption is significantly
reduced with the optimized shoveling trajectory.{

Ho : µ1 = µ2
H1 : µ1 > µ2

(22)

where µ1 is the overall mean value of fuel consumption for manually controlled shoveling,
and µ2 is the overall mean value of fuel consumption for optimized shoveling trajectory.

T =
x1 − x2√

s2
1

n1
+

s2
2

n2

(23)

where x1 is the sample mean value of fuel consumption of manually controlled shoveling,
x2 is the sample mean value of fuel consumption of optimized shoveling trajectory, s1 is the
sample standard deviation of fuel consumption of manually controlled shoveling, s2 is the
sample standard deviation of fuel consumption of optimized shoveling trajectory, n1 is the
sample number of fuel consumption of manually controlled shoveling, n2 is the sample
number of fuel consumption of optimized shoveling trajectory.

5.2. Discussion

This paper is based on the constructed automatic operation platform of the wheel
loader. The mathematical model of fuel consumption is established by SVM. And the
optimized shoveling trajectory with three different engine speeds in the gravel pile and
the sand pile is obtained by combining IPSO. By comparing with the fuel consumption
of manually controlled shoveling, the fuel consumption with the optimized shoveling
trajectory has been significantly reduced. In this study, only the effect of different engine
speeds and different shoveling trajectories on fuel consumption has been considered. There
are other influencing factors for fuel consumption. The main factors include the driver’s
operating ability and the age of the wheel loader. The driver’s operating ability will directly
affect the fuel consumption, varying from two to three times for different drivers [42].
The influence of manual operation on fuel consumption mainly includes the selection of
insertion depth [43], the bucket attitude control during shoveling [44], and the cooperation
between the gas pedal and the brake pedal [45]. The power possessed by the wheel loader
is different at different engine speeds. When the engine speed is low, if the insertion is
too deep, the bucket will get stuck in the pile and cause the tires to slip, increasing fuel
consumption. Moreover, if the bucket is turned too much during the shoveling process,
the resistance to the bucket will surge, which requires additional fuel consumption. It is
worth noting that the shoveling process is not a uniform speed process, which needs a
moderate increase and decrease, that is, better cooperation between the gas pedal and the
brake pedal. For the age of the wheel loader, it is sure that with the increase in use time,
there will be different degrees of wear between the mechanisms, and fuel efficiency will be
reduced. In particular, the bucket tip of the bucket, as the part that contacts the pile, suffers
the most wear during the long-term shoveling process [46]. Timely replacement or repair of
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bucket tips is an effective way to reduce fuel consumption. Automatic shoveling of wheel
loaders has undoubtedly become the mainstream development trend in the future [47,48],
and automatic shoveling means a more standard operation mode, higher fuel economy,
and a corresponding reduction in wear for wheel loaders. At the same time, human safety
is ensured to a large extent. Most importantly, automatic shoveling is an effective way
to reduce fuel consumption. Azulay et al. [49] developed a controller based on deep
reinforcement learning. They conducted experiments on a shoveling robot with three
degrees of freedom, which included lift, turn, and speed, and the shoveling efficiency of
the robot with this controller was significantly higher than that of the robot with manual
control. Dadhich et al. [50] proposed a time-lag neural network-based shoveling operation
method for wheel loaders was conducted, and several experiments were successful, with
only 26% longer operation time and improved fuel economy for the same shoveling weight.
Huang et al. [51] established an automatic shoveling model for wheel loaders by Q-learning,
which could reduce fuel consumption by 8.0% and 10.6%, respectively, compared to manual
operation by two drivers. Our study promotes the development of automatic shoveling
by planning a reasonable shoveling trajectory for it. Moreover, it demonstrates excellent
advantages and potential compared to manually controlled shoveling.

In this study, we consider only the fuel consumption with an optimized shoveling tra-
jectory. However, the shoveling weight is the critical indicator for evaluating the efficiency
of wheel loaders. The importance of shoveling weight and fuel consumption varies for
different shoveling environments. It is essential to recognize that higher shoveling weights
are not better. If the wheel loader is overloaded for a long time, it may lead to greater
wear on the wheel loader and reduce its service life. In conclusion, the weighting between
shoveling weight and fuel consumption must be determined in actual operation. In the
future, we will optimize the shoveling trajectory for the actual shoveling environment to
balance fuel consumption and shoveling weight. In the meantime, we have only tested in
gravel piles and sand piles. Although these two materials are highly representative, we
plan to extend them to other applications, such as large rocks. As the material size and
irregularities increase, the bucket will shake significantly during shoveling and may even
deviate from the planned shoveling trajectory. We must ensure that this deviation is within
an acceptable range. Of course, the control of the shoveling process will also become a
new challenge.

6. Conclusions

In this study, the shoveling trajectories of gravel and sand are optimized at different en-
gine speeds. The corresponding optimized trajectories were obtained with the optimization
objective of reducing the fuel consumption of shoveling operations. The results show that
the optimized shoveling trajectory effectively reduces the fuel consumption of shoveling
operation, and the main conclusions are as follows.

1. In this study, the factors with a strong influence on the fuel consumption of shoveling
operations are screened by experimental analysis and KPCA. The factors with a strong
influence are initial velocity, the wheel loader displacement in the insertion phase,
the shoveling weight, the operation time, and the wheel loader displacement in the
scooping phase. KPCA results show that the cumulative contribution rate of the
above five factors can reach 90%. Meanwhile, the grey relation coefficients between
key factors of fuel consumption influence and fuel consumption are all greater than
0.75. It proves that the screening of key factors of fuel consumption influenced by
KPCA is effective.

2. In this study, the fuel consumption model is established by SVM, and the penalty
factor and kernel function parameters in SVM are optimized by CV. The SVM fuel
consumption model has high stability and generalization ability, and the deviation
between the predicted and true values of the model is small. In the gravel samples, its
ARE is 4.91%, RMSE is 5.91, and R2 is 0.9764. While in the sand samples, the ARE is
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3.49%, RMSE is 3.08, and R2 is 0.9494. The deviation between the true values and the
predicted values from the SVM fuel consumption model is small.

3. In this study, the optimized shoveling trajectories are obtained by IPSO for shoveling
gravel and shoveling sand at three engine speeds. Validation experiments are con-
ducted based on the optimized trajectory and compared with the sample data fuel
consumption and manually controlled shoveling fuel consumption. The results show
that the optimized trajectory can significantly reduce the fuel consumption of shovel-
ing operations. For shoveling gravel, the average fuel consumption of the validation
experiment is reduced by 60.93%, 45.79%, and 49.10%, respectively, compared with the
sample average fuel consumption with three engine speeds. For shoveling sand, the
average fuel consumption in the validation experiment is reduced by 30.93%, 35.56%,
and 28.59%, respectively, compared with the sample average fuel consumption with
three engine speeds. Compared with manually controlled shoveling gravel and sand,
fuel consumption can be reduced by 27.66% and 24.34%, respectively.
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