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Abstract: Food security is a widely discussed topic globally. The key to ensuring the safety of
food storage is to control temperature and humidity, with ventilation being an effective and fast
method for temperature and humidity control. This paper proposes a new approach called “grain
condition multimodal” based on the theory of computer multimodality. Under changing external
environments, grain conditions can be classified according to different ventilation modes, including
cooling ventilation, dehumidification ventilation, anti-condensation ventilation, heat dissipation
ventilation, and quality adjustment ventilation. Studying intelligent ventilation decisions helps
achieve grain temperature balance, prevent moisture condensation, control grain heating, reduce
grain moisture, and create a low-temperature environment to improve grain storage performance.
Combining deep learning models with data such as grain stack temperature and humidity can
significantly improve the accuracy of ventilation decisions. This paper proposes a neural network
model based on residual networks and self-attention mechanisms that performs better than basic
models such as LSTM (Long Short-Term Memory), CNN (Convolutional Neural Network), GRU
(Gated Recurrent Unit), and ResNet (Residual Network). The model’s accuracy, precision, recall, and
F1 scores are 94.38%, 94.92%, 98.94%, and 96.89%, respectively.

Keywords: grain security; multimodal; ventilation model; deep learning

1. Introduction

As technology develops, crop yields have greatly increased [1]. However, due to
differences in geography and climate, crop production in some regions is far from meeting
the demand. As yield cannot be significantly increased, it is crucial to effectively reduce
grain consumption to preserve grain. The key to scientific grain preservation is “tem-
perature control” [2], and the key to maintaining an appropriate temperature for grain
is ventilation. Effective ventilation not only prolongs the storage time of grain but also
maintains its quality.

Nowadays, ventilation technology includes temperature-reducing ventilation,
precipitation-reducing ventilation, anti-condensation ventilation, heat-dissipation ven-
tilation, and conditioning ventilation [3]. Choosing the appropriate ventilation timing
and completing ventilation control in different modes is the key to temperature control.
However, currently, grain storage facilities can only detect “three temperatures and two
humidities”, which are the temperature of the grain pile, the temperature of the atmosphere
in the granary, the temperature of the external atmosphere, the humidity of the atmosphere
inside the granary, and the humidity of the external atmosphere. The commonly used
ventilation control still relies on human judgment to start and stop ventilation equipment.
Faced with the complex and ever-changing environment inside the granary, there is no
scientific, accurate, or fast response strategy.
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The so-called multi-modal grain status refers to the state of different ventilation condi-
tions under a global perspective, which is divided into temperature-reducing ventilation
mode, precipitation-reducing ventilation mode, anti-condensation ventilation mode, heat
dissipation ventilation mode, and conditioning ventilation mode.

There has been a rapid development of deep learning and its applications in various
fields, such as computer vision [4], speech recognition [5], natural language processing [6],
medical diagnosis [7,8], precision agriculture [9], stock market [10], and so on. As deep
learning becomes more widespread, its applications in food security have also increased,
but there have been relatively few practical applications in grain storage.

Deep learning is a learning algorithm that uses multi-layer neural networks and has
strong adaptability, robustness, and learning ability [11,12]. The concept of multimodality
originates at the intersection of cognitive science and computer science research. It refers
to the acquisition of rich information through multiple sensory channels [13], such as
vision, hearing, and touch, and the integration and joint processing of this information
to obtain more accurate and comprehensive information and understanding. This multi-
modal information processing approach plays an important role in human cognition and
communication [14] and has also become an important research direction in fields such as
computer vision, speech recognition, and natural language processing.

Based on the theory of computer multimodality, multi-modal grain storage refers to
the classification of internal and external environmental conditions of a grain pile under
ventilation into different modes. These modes include temperature-reducing ventilation,
moisture-reducing ventilation, anti-condensation ventilation, heat dissipation ventilation,
and conditioning ventilation. Multi-modal grain status control refers to the control method
that changes a series of modes with the environmental changes of the grain pile. Therefore,
combining deep learning with the latest multi-modal grain status control theory, research-
ing the decision-making and control strategies of grain storage ventilation mode, achieving
balanced grain temperature, preventing water condensation, stopping grain heating, re-
ducing grain moisture, creating a low-temperature environment, improving grain storage
performance, and reducing manual operation functions are of practical significance in
ensuring grain storage safety [15]. Based on this theory, Figure 1 shows the multimodal
division of the grain situation decision-making algorithm.
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We conducted an extensive literature review on grain storage and found limited re-
search in this field. However, we explored cutting-edge knowledge in related areas. One
article introduced a ventilation management model for grain storage based on Bayesian
networks [16]. The model utilized different factors, such as temperature, humidity, and
oxygen concentration, as nodes and used mathematical analysis to determine the proba-
bility relationships between them to optimize ventilation management. Additionally, we
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searched for a paper about a grain storage loss analysis model based on the decision tree
algorithm [17]. By collecting relevant data during the grain storage process, including
temperature, humidity, and ventilation information, we constructed a decision tree model.
The model yielded important findings, identifying temperature, humidity, and ventilation
as the key factors that impact grain storage losses. Effective measures should be taken to
control these factors in grain storage management to reduce the occurrence of grain storage
losses. These findings provide a theoretical foundation for our experiments.

This article proposes a neural network structure based on the transformer, which
relies entirely on attention mechanisms to process input sequences, greatly improving the
efficiency and speed of natural language processing and other sequence data tasks [18].
The self-attention mechanism allows the model to attend to different parts of the sequence
at different positions, enabling it to gather more global information rather than relying
on fixed-size windows as traditional recurrent and convolutional neural networks do.
Applying this theory to ResNet (Residual Network) can quickly train neural networks and
achieve faster convergence of network models.

Building on these two theories, this paper combines residual networks with self-
attention mechanisms, leveraging the advantages of residual networks to avoid the prob-
lems of gradient vanishing and exploding and accelerate neural network training. At the
same time, self-attention mechanisms are introduced to establish relationships among data
autonomously. Figure 2 is a flowchart of a decision algorithm based on the combination of
the self-attention mechanism and ResNet (Residual Network).
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2. Materials and Methods

In this section, we first introduced the data collection method and the principles of
creating the dataset used in this study, including how to collect grain condition data under
different ventilation scenarios and how to preprocess and divide the data.
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2.1. Data Collection

The granary data used for this experiment was obtained from a granary located in
Yushu City, Jilin Province. The storage grain was directly placed beneath the 25th tall
bungalow warehouse, as shown in Figure 3. The warehouse had a length of 35.76 m, a
width of 23.26 m, an outer length of 36.62 m, an outer width of 25.18 m, an eaves height
(h) of 11.33 m, a top height (H) of 13.26 m, and a grain pile height of 8.0 m. Distributed
fiber optic temperature measurement technology was used to measure the temperature of
grain piles [19], and its distribution is shown in Figure 4. Additionally, the temperature
and humidity inside the warehouse and the atmospheric temperature and humidity were
measured using the Sensirion digital temperature and humidity sensor model SHTW2.
Since the temperature changes in the grain pile are slow, an hourly data collection strategy
was employed to transfer the collected data to the MySQL database.
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2.2. Dataset Description

The data required for this experiment includes the temperature of each point in
the grain pile, the temperature and humidity inside the warehouse, the atmospheric
temperature and humidity, and the average temperature inside the grain pile. Table 1
describes the data used in this experiment.
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Table 1. A detailed table of grain situation data.

N Feature Unit of Measurement

1 Average temperature ◦C

2 Granary temperature ◦C

3 Granary humidity %

4 Atmospheric temperature ◦C

5 Atmospheric humidity %

6 Grain node temperature ◦C

2.3. Making a Dataset
2.3.1. Data Preprocessing

The form of the data obtained from Jilin Grain Depot No. 35 is shown in Figure 5,
which is an Excel table of one year testing data.
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Figure 5. Unprocessed grain situation data graph.

Summary and aggregation were performed on one year’s worth of data, which was
then plotted on a single table. This table includes the temperature of each point in the grain
pile, the temperature and humidity inside the warehouse, the atmospheric temperature and
humidity, and the average temperature inside the grain pile. The results are summarized in
Table 2 below.

Table 2. Grain situation data summary result chart.

Test Time Grain Node
Temperature Granary_Temp Granary_Hum Atmospheric_Temp Atmospheric_Hum Average_Temp

1 January 2020: 8:00 −11.2· · · −9.4 −14.5 54.3 −22.1 73.4 −8.5
. . . . . . . . . . . . . . . . . . . . .

29 December 2021: 12:00 −5.9· · · −3.9 −9.8 60.6 −16.4 53.9 −8.5

The unprocessed data was compared and analyzed to observe the distribution of
average temperature data for each month and identify any outliers that may have been
caused by other incidents. Figure 6 shows the distribution of the average temperature
data for each month. The data was then validated to determine whether any outliers were
caused by other incidents, and if so, they were removed.
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After outlier processing, since the data types of temperature and humidity are dif-
ferent, it is necessary to normalize the data to eliminate the impact of data inconsistency
on the experiment. To prevent the standardized data from being close to zero and not
differentiating the data, we choose z-score normalization, and its formula is as follows:

Z =
(X− µ)

σ

where X is the sample value, mean is the mean value of the sample data, and standard
deviation is the standard deviation of the sample data. After normalization, the resulting
Z value indicates the degree of deviation between the original data and the sample mean:
Z < 0 indicates that the data is smaller than the mean, and Z > 0 indicates that the data is
larger than the mean.

2.3.2. Labeling Data

An excellent deep learning model requires accurate data classification. However, since
the humidity collected in the grain depot is relative humidity, labeling directly according
to the grain depot ventilation regulations is not possible. Therefore, the grain ventilation
equation CAE (Chen–Clayton Approximation Equation) is used to fit the grain equilibrium
absolute humidity and grain dew point temperature. During this process, the influence
of different grains on the CAE (Chen–Clayton Approximation Equation) equation needs
to be considered. Table 3 provides a detailed explanation of the various parameters of the
CAE (Chen–Clayton Approximation Equation) equation for different grain categories [20].
Finally, the fitted data is labeled according to the grain depot ventilation regulations, and
the formula is as follows:
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EAHr = exp{

[
D

222 ×
(

e
B1 − M

A1 − e
B2 − M

A2

)
+ 0.9845

]
×

(
1737.1− 474242

273 + t

)
+ D× (1− e

B1 − M
A1 )− 68.57

87.72
}

where:
EAHr: grain equilibrium absolute humidity, mmHg;
M: grain moisture content, % (wet basis);
t: grain temperature;
A1, B1, A2, B2, D: the five parameters of the CAE equation.

DPTa = {
474242

474242
273 + Ta

− 89.1× 1g(RHa) + 410.34
} − 273

where:
RHa: atmospheric relative humidity, %;
Ta: atmospheric temperature, ◦C;
DPTa: atmospheric dew point temperature, ◦C.

Table 3. Parameters of the CAE equation for the main grain types.

Classification
Aspiration

Type
CAE Equation Parameters

A1 A2 B1 B2 D

Wheat
Desorption 4.212 4.796 7.493 4.028 202.031
Adsorption 4.874 4.767 4.671 3.639 201.676

Paddy Desorption 4.431 4.883 7.758 4.373 205.097
Adsorption 4.606 4.561 4.918 3.613 202.632

Corn
Desorption 4.393 4.845 7.843 3.858 203.892
Adsorption 4.812 4.479 4.783 3.799 202.164

2.4. Data Set Partitioning

To divide the processed and labeled data into training, testing, and validation sets, we
will use the DataLoader package in Python. Firstly, we will set the batch size to 32 and
the random state to 42 to ensure consistent results each time. This will guarantee that the
dataset is shuffled in a reproducible manner.

Next, we will create three data loaders: the training data loader, the testing data loader,
and the validation data loader. The data loaders will allow us to efficiently load and iterate
through the data during model training and evaluation.

The training data loader will be responsible for providing batches of data during the
training process. It will randomly sample 70% of the data for training.

The testing data loader will be used to evaluate the model’s performance. It will
contain 15% of the data and will be used to assess how well the model generalizes to
unseen examples.

The validation data loader will also contain 15% of the data and will be used to
finetune the model’s parameters and assess its performance on a separate dataset. This
will help ensure that the model’s weights are optimized and prevent overfitting to the
training data.

By using the DataLoader package and setting the appropriate parameters, we can
create data loaders that provide randomized and rigorous training, testing, and validation
data for our model.
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2.5. Neural Network Model
2.5.1. CNN

CNN (Convolutional Neural Network) is a type of deep learning neural network
widely used in fields such as computer vision and natural language processing. It consists
of convolutional layers, pooling layers, and fully connected layers. The convolutional layer
extracts features from the data, while the pooling layer performs downsampling to reduce
the number of parameters in the feature map, thereby reducing computational complexity,
preventing overfitting, and improving model robustness [21]. The fully connected layer
mainly works with the softmax function to normalize the output and obtain the probability
of each category, thereby achieving the classification task.

The CNN model used in this experiment is based on VGGNet16, which consists of
13 convolutional layers and 3 fully connected layers. Each convolutional layer uses a
3 × 3 convolutional kernel and the ReLU activation function. The first 12 convolutional
layers follow the same configuration, with a 2 × 2 max pooling layer following each
layer, using a stride of 2 to reduce the dimensionality of the feature maps. The first two
fully connected layers have 4096 neurons each, and the last fully connected layer has
1000 neurons. The output of the last fully connected layer is passed through a softmax
operation to convert it into a probability distribution.

2.5.2. ResNet

ResNet (Residual Network) is a deep learning neural network composed of multiple
residual blocks. Each residual block consists of two main parts: the main path and the
skip connection [22]. The main path is composed of a series of convolutional layers, batch
normalization layers, and activation functions, which are used for feature extraction of the
input signal. The skip connection is a direct connection that adds the input signal directly
to the output signal, thus preserving the information of the input signal and allowing it to
bypass the convolutional layers in the main path and be directly passed to the subsequent
layers. This structure makes the network easier to train, avoids problems such as gradient
disappearance and explosion, and makes the network deeper, which improves the accuracy
of the network. In this article, ResNet (Residual Network) is used as the basic model, and
the network structure of its residual blocks is shown in Figure 7.
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2.5.3. GRU

GRU (Gated Recurrent Unit) is a type of recurrent neural network that consists of an
update gate, a reset gate, and a hidden state vector [23,24]. The GRU model used in this
study consists of 16 hidden layers and 2 GRU layers. The hidden layers are responsible
for computing the hidden state at the current time step based on the previous information
in the input sequence and the current input. The hidden state contains information from
previous time steps and is passed to the model at the next time step, enabling the model to
capture the temporal dependencies in the sequence data.
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2.5.4. LSTM

LSTM stands for Long Short-Term Memory, which is a type of recurrent neural net-
work [25,26]. It was designed to overcome the vanishing gradient problem in traditional
RNNs and allow for the processing of long-term dependencies. LSTMs use a series of gates,
including an input gate, a forget gate, and an output gate, to selectively allow information
to flow through the network and control the memory stored in the hidden state. This
enables LSTMs to selectively remember or forget information from previous time steps as
needed, making them well-suited for tasks such as language modeling, speech recognition,
and handwriting recognition. The LSTM utilized in this article consists of 16 hidden layers
and 2 LSTM layers. The purpose of the hidden layers is to introduce non-linear mappings,
thereby enhancing the expressive capacity of the network. LSTM, a special type of recur-
rent neural network (RNN) architecture, addresses the issue of vanishing and exploding
gradients encountered by traditional RNNs by incorporating gate mechanisms. The LSTM
layer exhibits memory capabilities when processing sequential data, enabling effective
handling of long-term dependencies.

2.5.5. Self-Attention

Self-attention is a mechanism used in deep learning to balance the importance of
different parts of a sequence when predicting or generating the next element. Self-attention
allows the model to focus on different parts of the input sequence during prediction without
using recursive or convolutional operations.

The core idea of self-attention is to calculate the influence of each element on other
elements by computing the associated weights. This weight can be calculated using various
methods, but the most common approach is to use dot-product attention. This measures
the degree of association between a query vector and a key vector by calculating their dot
product and using it as the attention weight. Figure 8 for self-attention is as follows:

1 
 

 
Figure 8. Self-attention.

2.5.6. ResNet_Attention

This network is a 1D convolutional neural network based on the ResNet architecture.
It is mainly used for grain quality sequence data classification tasks, where the input is
one-dimensional grain quality sequence data. The network includes a convolutional layer
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(Conv3×3), a maximum pooling layer, four residual blocks, and a self-attention layer. Each
residual block contains two convolutional layers (Conv3×3) and a self-attention layer.
Inside the residual block, the input signal is passed through two 1D convolutional layers
(Conv3×3) with the same kernel size, followed by a self-attention layer for feature extraction
and adaptive feature weighting. The self-attention layer adjusts the weights of the feature
vectors by calculating attention weights so that important features get larger weights
while unimportant features get smaller weights. Self-attention can help the network better
understand the long-term dependencies and importance of the input signal, thus improving
classification performance. Finally, after global average pooling, a fixed-size feature vector
is obtained, which is then fed to a fully connected layer to output the classification result
for the grain quality data. The neural network structure used in this experiment is shown
in Figure 9.
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2.6. Evaluation Criteria

This article explores the use of residual neural networks with self-attention mechanism
for making ventilation decisions in granaries under multiple modalities. Five evaluation
metrics, including loss, accuracy, precision, F1 score, and recall, are used to compare the
performance of the proposed model against other models.

2.6.1. Cross-Entropy Loss

The cross-entropy loss is a commonly used loss function in deep learning, especially in
classification tasks. In classification tasks, we want the model to assign each input sample
to the correct category. The purpose of the cross-entropy loss is to measure the difference
between the predicted and actual categories. Its formula is as follows:

J(θ) = − 1
n

n

∑
i=1

m

∑
j=1

yij log(pij)

where:
n: represents the total number of samples;
m: represents the total number of categories;
yij: represents the true label of the ith sample, which is 1 if the ith sample belongs to

the jth category, or 0 otherwise;
Pij: represents the probability that the model predicts the ith sample belongs to the

jth category.

2.6.2. Accuracy

Accuracy is one of the most commonly used metrics for comparing model performance,
and is used to evaluate the accuracy of a model’s classification. However, accuracy is not a
universal evaluation metric. In some cases, it may be misleading because it only considers
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the number of correctly classified samples while ignoring the errors made by the model on
misclassified samples. Its formula is as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

where:
TP (True Positive): predictions that are positive and that are actually positive;
TN (True Negative): predictions that are negative and that are actually negative;
FP (False Positive): predictions that are positive but are actually negative;
FN (False Negative): predictions that are negative but are actually positive.

2.6.3. Precision

Precision is used to evaluate the proportion of true positive samples among all samples
that the model predicts as positive, so it can be used to measure the prediction accuracy of
the model. Its formula is as follows:

Precision =
TP

TP + FP

2.6.4. Recall

Recall, also known as sensitivity, is the proportion of true positive samples that are
correctly identified by the classifier among all positive samples. It can be understood as
the ability of the model to correctly identify positive samples and is also referred to as the
model’s “true positive rate” or “hit rate”. Its formula is as follows:

Recall =
TP

TP + FN

2.6.5. F1 Score

F1 score is a metric that considers both precision and recall of a classification model
and is commonly used to evaluate the performance of binary classification models. Its
formula is as follows:

F1Score = 2(
precision× recall
precision + recall

)

2.6.6. Confusion Matrix

The confusion matrix is a tool to evaluate classification models. It is a matrix that
shows the cross-occurrence of actual and predicted classifications. Rows in the matrix
represent the actual classes, while columns represent the predicted classes. By computing
the confusion matrix, we can obtain evaluation indicators such as accuracy, precision, recall,
and F1 score for the model.

3. Results

In this section, we compare the evaluation metrics of the LSTM, GRU, ResNet, and
CNN models, and evaluate their accuracy rates and other indicators for different ventila-
tion categories.

3.1. Model Training and Test Results
3.1.1. Model Training

To validate the superiority of the ResNet_Attention model over other sequence pro-
cessing models, comparative experiments were conducted using the same training dataset.
The initial learning rate for all models was set to 0.001, and the model weights were ran-
domly initialized. A batch size of 32 was used, and the models were trained for 20 epochs.
The results are shown in Figure 10.
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3.1.2. Model Testing

By using the test set, it was verified that ResNet with the self-attention mechanism
had better performance on the grain situation sequence data. The specific numerical
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values for the evaluation indicators, including accuracy, loss, and F1 score, showed that
ResNet_Attention performed better, as shown in Table 4.

Table 4. Evaluation form for different model testing.

Model Accuracy Precision Recall F1 Score Cross-Entropy Loss

CNN 0.84 0.72 0.64 0.66 0.506667
GRU 0.75 0.89 0.31 0.32 0.738257
LSTM 0.87 0.87 0.56 0.55 0.346726
ResNet 0.88 0.78 0.80 0.78 0.438510
ResNet_Attention 0.91 0.88 0.77 0.81 0.228690

3.2. Comparison of Identification Results
3.2.1. Compare the Decision Results under Different Ventilation Modes

Based on grain data, we tested the accuracy, precision, recall, F1 score, and other indi-
cators of cooling ventilation, dehumidification ventilation, anti-condensation ventilation,
heat dissipation ventilation, and quality adjustment ventilation. The results were calculated
based on the confusion matrix in Figure 11. The accuracy of each category of the model
was generally above 90%, with the comparison results for each category shown in Table 5.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 17 
 

 
Figure 11. Confusion matrix. 

Table 5. Evaluation results for different categories. 

Ventilation Modes Accuracy Precision Recall F1 Score 
Cooling ventilation 0.99 0.85 0.79 0.82 
Dehumidification ventilation 0.97 0.96 0.87 0.91 
Anti-condensation ventilation 0.97 0.86 0.61 0.71 
Heat dissipation ventilation 0.88 0.92 0.68 0.79 
Quality adjustment ventilation 0.94 0.67 0.75 0.70 

3.2.2. Compare Training Results under Different Learning Rates 
The following figure (Figure 12) shows the loss curves for the ResNet_Attention 

model trained with different learning rates after being trained on the same dataset. These 
experiments were conducted to find the optimal learning rate for the model. 

  
(a) (b) 

Figure 12. Model evaluation chart under different learning rates. (a) Training loss curve. (b) Training 
accuracy curve. 

Figure 11. Confusion matrix.

Table 5. Evaluation results for different categories.

Ventilation Modes Accuracy Precision Recall F1 Score

Cooling ventilation 0.99 0.85 0.79 0.82
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Anti-condensation ventilation 0.97 0.86 0.61 0.71
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3.2.2. Compare Training Results under Different Learning Rates

The following figure (Figure 12) shows the loss curves for the ResNet_Attention
model trained with different learning rates after being trained on the same dataset. These
experiments were conducted to find the optimal learning rate for the model.
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Based on the experiments, it was found that a learning rate of 0.01 resulted in a faster
reduction of loss and quicker convergence of the model.

4. Discussion

In this study, we compared the proposed residual network model with self-attention
mechanisms to several common sequence models, including LSTM, GRU, ResNet, and
CNN. LSTM and GRU are widely used in sequence modeling tasks, while ResNet and CNN
are popular deep learning architectures for image processing and classification. Compared
to these models, our proposed model achieved higher accuracy in all ventilation categories,
especially for cooling ventilation, where it reached 99%.

One of the advantages of the proposed model is its ability to capture the temporal and
spatial dependencies in the ventilation data, which is important for accurately identifying
different ventilation categories. Unlike the other models, our proposed model incorporates
the self-attention mechanism, which allows it to focus on important features and enhance
their representation. This mechanism also enables the model to learn more complex
relationships between the inputs and outputs, which is crucial for achieving high accuracy
in the ventilation classification task.

However, there are still some limitations that need to be addressed in future work. The
model exhibits high computational complexity due to its complex network structure and
the inclusion of self-attention mechanisms within the residual block structure, especially
considering the input sequence length of 425 and the computational demands of self-
attention. In some cases, this high computational complexity may be even higher. The
current model training and evaluation times are excessively long. The average training
time exceeds 23 min and 16 s, while the evaluation time is approximately 1 min and 16 s.
Moreover, the dataset used in this study only covers a certain range of grain conditions
and ventilation scenarios, which may not fully represent real-world situations.

Overall, our proposed model provides a promising approach to the development of
more accurate and efficient ventilation control systems for grain storage by leveraging
the principles of computer modeling and self-attention mechanisms. The model has
demonstrated superior performance compared to several commonly used models, and
future work can further improve its robustness and efficiency.
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5. Conclusions

This paper discusses the current status of intelligent ventilation management in grain
storage and its main challenges, which are due to a lack of clarity around the concept of
intelligent ventilation and grain storage data. To address this, a multimodal concept for
grain storage is proposed, which transforms the traditional ventilation problem into a
pattern selection problem. This allows decision-makers to make informed decisions based
on multiple factors rather than solely relying on ventilation regulations to determine the
existence of a problem.

The study combines self-attention mechanisms with residual network models to
solve decision-making problems in abnormal grain situations. The experimental results
demonstrate that residual networks with self-attention mechanisms converge faster and
have smaller losses, providing more accurate and efficient decision support for grain
storage managers. Moreover, the use of multi-head attention mechanisms significantly
improves feature extraction for sequence data, and adjusting these mechanisms for grain
situation data in the future may further improve the accuracy of residual networks and
shorten decision-making time.

Compared with traditional methods, this approach has significant advantages in deal-
ing with decision-making problems in abnormal grain situations. By considering multiple
factors and utilizing self-attention mechanisms, this method provides more accurate and
efficient decision support for grain storage managers. In the future, this method can be
extended to other fields, providing valuable insights and solutions to a wider range of
decision-making problems.
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