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Abstract: The economic value of a mineral resource is highly dependent on the accuracy of grade
estimations. Accurate predictions of mineral grades can help businesses decide whether to invest in a
mining project and optimize mining operations to maximize the resource. Conventional methods
of predicting gold resources are both costly and time-consuming. However, advances in machine
learning and processing power are making it possible for mineral estimation to become more efficient
and effective. This work introduces a novel approach for predicting the distribution of mineral grades
within a deposit. The approach integrates machine learning and optimization techniques. Specifically,
the authors propose an approach that integrates the random forest (RF) and k-nearest neighbor (kNN)
algorithms with the marine predators optimization algorithm (MPA). The RFKNN_MPA approach
uses log normalization to reduce the impact of extreme values and improve the accuracy of the
machine learning models. Data segmentation and the MPA algorithm are used to create statistically
equivalent subsets of the dataset for use in training and testing. Drill hole locations and rock types are
used to create each model. The suggested technique’s performance indices are superior to the others,
with a higher R-squared coefficient of 59.7%, a higher R-value of 77%, and lower MSE and RMSE
values of 0.17 and 0.44, respectively. The RFKNN_MPA algorithm outperforms geostatistical and
conventional machine-learning techniques for estimating mineral orebody grades. The introduced
approach offers a novel solution to a problem with practical applications in the mining sector.

Keywords: machine learning; kriging; MPA optimizer; log normalization; hybrid algorithm

1. Introduction

Reserve estimation is critical in mine planning and development, impacting profitabil-
ity and sustainability. Accurately estimating ore grade is crucial for reserve estimation,
but challenges arise due to ore deposits’ internal variability and complex formation pro-
cesses [1].

Several mathematical and statistical techniques have been developed to overcome the
challenges of estimating metal grades. These techniques range from more conventional
geostatistical approaches, such as ordinary and indicator kriging, to innovative machine
learning algorithms, such as artificial neural networks and random forests. The geometry,
geology, and grade distribution of the ore deposit are all essential factors when choosing a
technique [2].
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Traditional geostatistical methods, such as ordinary and indicator kriging, are com-
monly used in grade estimation. These techniques are based on spatial interpolation of
data and the assumption that the spatial pattern of grade distribution is stationary. While
these methods have been used successfully for a long time, they have some significant
drawbacks. For example, they require that the data meet certain assumptions, they do
not use all of the available data, and they cannot find complex, nonlinear correlations [3].
The difficulties and limitations of conventional geostatistical methods for estimating ore
grade have prompted researchers to investigate alternative approaches. In recent years,
various computational learning approaches have been developed that can forecast ore
grades more correctly without relying on underlying assumptions. These techniques have
proved successful in the mining industry [4].

Machine learning (ML) models are a category of computational algorithms with
significant potential for use in ore grade estimation in the mining industry. ML models
learn from data and then use that knowledge to predict previously unknown data. They
can be more adaptable than conventional statistical models when they include and combine
various variables, such as geological, geophysical, and geochemical data [5]. This improves
mining ore grade estimate. Nevertheless, one of the limitations of ML models is that they
need to be fed an adequate amount of data to extract useful features. In addition, machine
learning models may be computationally costly, and training and optimizing them might
require a lot of computing resources.

Machine learning (ML) is a promising approach for spatial estimates in various do-
mains by a large number of research. The most often used machine learning models include
artificial neural networks, support vector machines, k-nearest neighbors, cubist, Gaussian
process regression, and random forests [6–15]. These models have been utilized in the
process of spatial estimate in a variety of different domains, including mineral prediction.
However, typical ML approaches may have performance difficulties when working with
non-linear, inconsistent, or higher-dimensional data. Researchers have developed hybrid
and ensemble models as a solution to these problems. These models combine traditional
ML methods with additional soft computing approaches or use bagging and boosting
methodology. The benefits of many soft computing approaches may be combined into a
single method through the process of hybridization, which can result in increased produc-
tivity. These hybrid approaches have shown to be particularly effective when dealing with
huge, multi-dimensional, and non-stationary datasets [16–24]. The need for a more reliable,
consistent, and objective method of estimating gold content in exploration projects has led
to the development of a hybrid system based on feature optimization and prediction. Both
the feature optimization technique and the prediction strategy employ a hybrid model that
integrates different ML models to achieve improved accuracy. The feature optimization
approach is responsible for selecting the most pertinent characteristics for prediction.

The MPA is one of the recent optimization algorithms; it is inspired by the optimal for-
aging strategy between predator and prey in marine ecosystems to solve the optimization.
The foraging strategy enables the MPA to converge to the optimal global solution within
a convenient time even in multidimensional search spaces. Accordingly, based on the
experimental results illustrated in [25], the MPA showed outstanding performance against
the old algorithms GA, PSO, and the well-known GSA, CS, SSA, and CMA-ES; furthermore,
the MPA was initially evaluated on twenty-nine test functions, test suite of CEC-BC-2017,
three engineering benchmarks, and two real-world engineering design problems. These
features have motivated researchers to employ the MPA in many various applications, i.e.,
in [26], the MPA was used to optimize the control parameters of four machine learning (ML)
models for predicting the compressive strength (CS) of concrete. In another study [27], au-
thors employed the MPA algorithm to perform a feature selection process; they developed
a robust human action recognition framework by integrating deep learning and swarm
intelligence. In [28], the MPA was used to optimize three ML models for predicting and
analyzing parks and attached green spaces based on a dataset of urban green space. These
points motivated us to use the MPA algorithm in the proposed methodology.
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The primary purpose of this piece of study is to present an innovative method for
estimating the mineral resources (prediction of gold content in the Quartz Ridge area).
The suggested approach, which will be referred to as RFKNN-MPA, would increase the
accuracy of grade estimations by combining the Random Forest (RF) and k-nearest neighbor
(kNN) models with optimized using the Marine Predators Optimization Algorithm (MPA).
The method incorporates geological data, such as lithology, and geographical data, such
as easting, northing, and elevation, into the model creation process. The model-making
process consists of three steps. In the first step, the random forest and kNN models
generate initial predictions. In the second step, the MPA method is used to optimize the
parameters of both the kNN and the random forest models. In the third step, the predictions
generated by the optimized versions of the Random Forest and kNN models are merged
to provide a final forecast. Once the model has been trained with enough data, it can
learn the relationship between the input factors (rock type and geographic position) and
the gold grade, the outcome variable of interest. The RFKNN-MPA technique improves
grade forecasts and mineral exploration estimates by integrating different models and
refining their parameters using the MPA algorithm. To the best of our knowledge, this
study is the first attempt to estimate the grade using the optimized weighted integration
between KNN and RF regressions optimized by the MPA; further, the experimental results
investigated how well the proposed RFKNN-MPA predicted outcomes compared to the
results of other machine learning models and geostatistical approaches. The outcomes
demonstrated that the RFKNN-MPA method performed better in accuracy and reliability
than the other models.

2. Method

The following section provides an overview of the research methods used in the
investigation and the efficiency evaluation that was conducted.

2.1. Predication Approaches

Estimating a gold grade can be carried out in various ways, the most common of
which fall into one of three broad categories: geostatistical, traditional, or hybrid. This
proposed study aims to develop a hybrid system for gold-grade prediction. The suggested
hybrid method, dubbed RFKNN-MPA, combines the Random Forest algorithm with the
K-nearest neighbor strategy and MPA optimization. The experiments were carried out
using the commercial program MATLAB, while the geostatistical methods were performed
on the Surpac (6.6.2) software.

In light of this, a novel hybrid method known as RFKNN-MPA was evaluated and
compared to the following techniques for geostatistics strategies (OK and IK) and machine
learning approaches (RF, KNN, GPR, DT, and FCN). The underlying principles are briefly
discussed in this part.

2.1.1. Geostatistical Technique
Ordinary Kriging

Geostatistics is a better prediction method than traditional methods. Kriging algo-
rithms are widely regarded as the best linear unbiased estimator capable of producing
reliable estimates even for locations that have not been sampled [29]. A linear combination
of a number of nearby values is used to determine the overall result, with weights given to
minimize the variation in the predicted value. Lagrangian multipliers are a valuable tool
for determining the weights that should be used when normalization is a consideration.

Kriging uses the variogram model to quantify the autocorrelation pattern in the
research region [30]. The variogram is produced by taking the average of the semi-variances,
which are computed as follows for each combination of locations and distance bin, and
then plotting the results:

γ(h) =
1
2

E[{Z(x)− Z(x + h) 2}] (1)
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According to this formula, the semi-variance between any two locations separated
by the vector h is denoted by γ(h) (the lag distance). The semi-variance is half of the
anticipated square difference between two values of the variable Z, specifically Z (x) and Z
(x + h), which are differentiated by the vector h. This is how the semi-variance is defined.
An essential part of kriging is the sampling strategy used. This method needs samples to
be divided by various lag lengths, from minor to very large, to ensure that the variogram
can accurately portray the spatial complexity of the area. This is crucial for obtaining a
dependable variogram model and enabling kriging to achieve its optimum precision.

On the other hand, kriging assumes a linear relationship between samples. Addition-
ally, the structural data required for the Kriging method (i.e., the covariance or variogram)
is based on two-point statistics. As a result, kriging may not always be sufficient to repre-
sent the comprehensive nature of spatial nonlinearity and complex features. Second-order
stationarity is when the mean and standard deviation are both the same across the study
area, and the covariance depends only on the lag distance h (where h is a vector that
includes the size of the distance between the data pairs and the direction of the line that
connects them) [31,32].

The formula for the OK estimator is as follows:

Z ∗ (x0) = ∑n
i=1 λiZ(xi) (2)

Since extremely positive values significantly affect semi-variance calculations, krig-
ing is extremely sensitive to skewed distributions. This makes it possible for Kriging
estimations to be unreliable [30].

Indicator Kriging

According to Journel (1983) [33], indicator kriging is a nonparametric approach for
evaluating the likelihood of multiple threshold values, Zk, given geographical data. The
first thing that must be performed in order to use the kriging indicator (IK) is to convert it
into indicators [34]. This is accomplished by giving the values 0 and 1 in the binary system
to grades that are, respectively, above and below a particular cut-off. The explanation is
the binomial coding of the data as either 1 or 0, depending on how it is connected to the
specified Zk cut-off number [35]. For any given value, Z(x):

i(x, Zk) =

{
1, i f Z(x) ≤ Zk,
0, i f Z(x) > Zk

(3)

The indicator variogram is combined with a weighted average of the indicator values at
the sample sites to estimate the IK at the unsampled point. A variogram of indicators is the
distribution of the variance of the indicator function at varying distances and orientations
from a sample point (1 if the variable is present and 0 otherwise).

Indicator kriging has several advantages, including the ability to use complex data
and soft data and the ability to estimate the probabilities of occurrence for a binary or
categorical variable. However, it requires many samples to provide reliable estimates and
can be affected by outliers. It also requires software proficiency and a strong understanding
of spatial statistics and geostatistics [36]. In particular, it is a suitable choice when the
data distribution is significantly skewed, which is commonly the situation in ore grade
estimation. This is because it allows for more accurate predictions of the actual values of
the variables.

2.1.2. Machine Learning Algorithms in Grade Prediction

During the scope of this research, a unique hybrid approach known as RFKNN-MPA
was evaluated alongside six different machine learning algorithms. These algorithms
included RF, K-NN, GPR, DT, and FCN. These algorithms were selected because of their
ability to represent non-linear correlations with little to no user input, lack of assumption
requirements, long track records of success, and proven robustness.
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Random Forest (RF)

The foundation of RF is an ensemble of regression trees, a family of algorithms that
divide the training data into classes of probability based on a set of if–then rules. The
CART algorithm (Breiman, 1984) serves as the foundation for RF. This algorithm fits a
single tree, utilizing the whole training data. Unlike other tree approaches that only create
a small number of trees, RF generates hundreds or thousands of decision trees [37]. The
fundamental concept of RF is to repeatedly choose bootstrap samples from the given data,
construct a decision tree (DT) for each bootstrap sample, and combine the estimates from
several DTs into the prediction model. A single DT can overfit the data, resulting in a lower
bias but greater prediction variance. Averaging the predictions from multiple DTs can
achieve a trade-off between bias and variance [8].

The strategy relies on identifying the most significant data error as the primary error
and correlating other data inaccuracies with it. Selecting a general error based on the most
data gives us a more accurate and reliable forecast. This prediction becomes even more
accurate when the data fed into the model does not change [38]. It is widely acknowledged
that this algorithm is among the most effective learning algorithms due to its ability to
accurately classify various inputs [39]. One of the strengths of this classifier is that it
performs quite well even when used in massive datasets [40]. The most crucial quality
of random forests is their superior performance in assessing the significance of variables,
which establishes the contribution of each variable to the prediction of outcomes [41].

K-Nearest Neighbors (K-NN)

Classification and regression problems can be tackled with KNN, a non-parametric
instance-based learning technique [42], by finding the k-number of points closest to a given
data point and using the mean of their values as the projected value for that point.

The KNN algorithm starts by calculating the distance between the new data point and
the training points. The distance can be determined using a variety of distance metrics,
such as the Euclidean distance, the Manhattan distance, or the Minkowski distance. After
calculating the distances, the KNN algorithm selects the k-nearest neighbors from the
training set that are most similar to the new data point. In regression, the algorithm
calculates the average of the k-nearest training points to estimate the new data point’s
value. The mathematical expression that may be used to describe KNN is as follows: First,
determine how far away the new data point is from each position in the training group.
Second, Select the k-nearest neighbors that best describe the new data point based on the
computed distances. Finally, predict the value of the new data point by taking the average
of the values of the k closest training points [22].

The KNN algorithm is a flexible, simple, and easy-to-implement algorithm that can
be applied to various data types, including those with incomplete values and categorical
factors. However, it can be computationally expensive due to the need to calculate the
distance between each new data point and each training point. It can also be susceptible
to unimportant or noisy features. To prevent overfitting and underfitting, selecting the k
value carefully is vital. In this research, the KNN algorithm was used with a k value of 13,
which was found to be the optimal number through experimental results for predicting
gold concentration.

Gaussian Process Regression (GPR)

Gaussian processes are non-parametric techniques utilized in the Bayesian method of
machine learning. They can solve both supervised and unsupervised learning problems,
such as regression and classification. The GPR-based system offers various practical benefits
over other supervised learning algorithms, like flexibility, abilities to generate uncertainty
predictions, and learning noisy and smooth parameters through training data. Other super-
vised learning methods are limited in their ability to learn these parameters. In addition,
GPR performs well on small datasets and can provide [43]. Therefore, it can be employed
in continuous variable forecasting, modeling purposes, mapping, and interpolating [44],
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and it can be guided from training data to represent the intrinsic nonlinear relationship in
any dataset. Due to the presence of this characteristic, it is suitable for evaluating the grade
of the ore.

F(x) ~ GP (m(x), k(x, x′) (4)

where m(x) = E[f(x)] is the mean function at input x, and k(x; x′) = E[(f(x) −m(x))(f(x′) −
m(x′))T] is the covariance function that represents the dependency between the function
values for various input points x and x′.

The squared exponential covariance function is a popular option for the kernel in
the statistical technique known as Gaussian process regression. This kernel assumes that
the function being modeled is continuous and smooth and that data points that are close
together strongly correlate with one another. Gaussian process regression uses zero mean
and squared exponential covariance functions. This is seen in Equation (5).

K (x, x′) = σf
2 exp (

−r
2
) (5)

where r is equal to (|x − x′|2/l2) and σf and l are hyperparameters that have a major
impact on the performance of the GP algorithm. Model noise is σf, and length scale is
l. Input parameters have a high covariance regardless of their proximity, but this value
decreases exponentially with distance. Several covariance and kernel functions can be used
to optimize the GPR rational quadratic. The model of the distribution of predictions is
conditioned on the training data. This is made possible via

p( f ∗|x∗, D) = GP
(

f ∗
∣∣∣µ∗, σ∗2

)
(6)

The mean prediction µ∗ may be calculated using the formula below.

µ∗ = k(x∗)T
(

K(X, X) + σ2
N IN

)−1
∗ t (7)

Furthermore, the variance prediction σ∗ may be computed as

σ∗2 = σ2
N − k(x∗)T

(
K(X, X) + σ2

N IN

)−1
k(x∗) + k(x∗, x∗) (8)

The training dataset’s covariance matrix is represented by the matrices K(X, X), and the
testing dataset’s covariance matrix is represented by the matrices K(X*, X*). The previous
equations make it possible to demonstrate that the linear combination of the observed
target may be proven to be the mean forecast. The observed target did not influence the
variance; instead, it depended entirely on the observed inputs. Gaussian distributions have
this attribute.

GPR is a robust technique that can be used to make predictions and estimate uncer-
tainty. It assumes the function to be a random sampling from a Gaussian process (GP) and
returns a probability density for the function’s value at each given input position. It is
flexible enough to include information from multiple sources and models and can deal
with non-linear and non-stationary functions. The choice of kernel function can be challeng-
ing and requires prior information, and it can be computationally expensive for massive
datasets or high-dimensional input spaces. In mineral exploration, GPR can predict the
geographical distribution of minerals using information gathered from geological, geophysical,
and geochemical studies.

Decision Tree (DT)

Decision tree regression predicts dataset output after developing a decision tree struc-
ture. As a supervised learning method, this model analyses the data to create a model and
forecast the output based on the input values [45].
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A DT is a data structure that can visualize and analyze data. It splits the data according
to specified criteria and assigns each choice a probability. The data are first partitioned into
nodes or points, and then branches are drawn between them to represent the decisions
that need to be made. This process, known as “splitting,” is determined by the available
data results. Each decision tree branch represents a possible outcome and is assigned a
probability based on the values of the other branches. The model is evaluated using new
data, and its accuracy and reliability are assessed based on the results [46].

Decision tree regression equations are often complex algorithms, such as randomized
decision trees, gradient-boosted trees, and random forests. These equations use a variety of
mathematical processes to build a model and make predictions.

Decision tree regression is a valuable tool for non-technical people because it is easy to
use, does not require much computing power, and can be very accurate. However, it may
be less precise and reliable than other models, and it can take a very long time to train. The
model may also struggle with overly complex datasets or situations where the data must
be balanced. Finally, the trees may grow to be too big and unreadable [47].

Fully Connected Neural Network (FCN)

A fully connected neural network (FCN) is a type of artificial neural network (ANN)
that employs direct connections between nodes in various layers. It is a popular deep
learning framework. In this architecture, all nodes from one layer are linked to those from
the next. FCN layers are commonly used in supervised (classification, regression) and
unsupervised (density estimation) learning tasks.

By analyzing its structure and composition, FCNs can accurately predict a material’s
chemical, mineral, and physical characteristics. They work by developing mathematical
models that are meant to describe the relationship between the inputs (features) and the
outputs (results) (mineral content). The network of neurons compresses and processes
information from the input to generate an output. Each neuron is connected to every other
neuron with weights, and a learning process called backpropagation is used to update the
weights [48].

FCNs can be used to predict mineral composition using a simple equation and the
backpropagation algorithm. Backpropagation is a method for updating the weights of each
neuron based on the degree of discrepancy between the input and the desired output. This
helps the neural network minimize error through data-driven learning. Backpropagation is
used to change the weights between randomly allocated neurons.

FCNs are well-suited for estimating mineral content because of their accuracy, adapt-
ability to different input/output formats, and ability to capture non-linear correlations.
However, they also have drawbacks, including overfitting and poor interpretability. Over-
fitting occurs when a neural network learns the training data too well, leading to poor
performance on new data. Additionally, FCNs can be difficult to interpret, making it
challenging to understand why a particular prediction was made.

2.2. Marine Predators Optimization Algorithm (MPA)

Biologically inspired metaheuristic algorithms are a type of algorithm that was devel-
oped to address complicated optimization issues by utilizing natural events and biological
processes. Algorithms like the whale optimization algorithm (WOA), genetic algorithm
(GA), ant colony optimization (ACO), differential evolution (DE), lion optimization algo-
rithm (LOA), grasshopper optimization algorithm (GOA), sine cosine algorithm (SCA), bat
algorithm (BA), particle swarm optimization (PSO), grey wolf optimizer (GWO), simulated
annealing (SA), and marine predator algorithm (MPA) are all examples of this kind. They
have solved several engineering, financial, and computer science optimization challenges.
One of the biological metaheuristic algorithms developed by [25] will be shown in this
work. This method is known as the Marine Predator Algorithm (MPA). Optimization
strategies have seen a dramatic uptick in popularity in recent years. When dealing with the
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many different optimization sectors, such as machine learning and feature selection, they
are more effective than other strategies currently in use [49].

The foraging strategies of marine predators in the wild serve as the basis for the MPA
mathematical model. MPA can accommodate both the Lévy and Brownian statistical distri-
butions. The Lévy search technique involves traversing space with a series of prominent
hops, while the Brownian method makes a systematic and consistent progression across the
search space. While the Brownian technique guarantees visits to far-flung places, the Lévy
strategy’s strength lies in its thorough and precise search. This collaboration has greatly
enhanced the search capabilities of MPA.

The movement equation is an essential equation employed in the MPA method. It
governs how the predators move about the solution space and is thus very important. The
equation for movement is defined as follows:

xi(t+1) = xi(t) + vi(t) (9)

where xi(t) represents the location of the ith predator at time t, vi(t) represents the velocity
of the ith predator at time t, and t represents the current iteration of the algorithm.

The MPA algorithm’s strengths lie in its rapid convergence to optimal solutions and
adaptability to multimodal and massively parallel optimization problems. The method
might become trapped in the local optimum and requires careful parameter tuning.

2.3. The Proposed RFKNN-MPA Methodology

A combined model is useful when the predictions of different ensemble members do
not match up or when errors of the different members are not closely linked. The primary
concerns when using a hybrid model are the construction or selection of component models
and the manner of combining their outputs. A hybrid model’s ensemble members should
be chosen so their predictions do not match up [50].

A hybrid ensemble network combines the results of several different models to make
a single prediction. The subcomponents of the hybrid model work in parallel, but each
component is self-sufficient in making predictions. This can improve system performance.
The random forest and k-nearest neighbors hybrid algorithm with the marine predators
optimization algorithm (MPA) is a strategy that improves the accuracy of predictions by
combining the strengths of both RF and KNN as the MPA algorithm.

The method that combines random forest (RF) and k-nearest neighbors (KNN) with
MPA is a three-stage procedure that optimizes data. Figure 1 depicts the algorithm’s stages.

In the first stage, predictions are made using RF and KNN. The original RF and KNN
algorithms are trained on the training data and then evaluated on the validation data. In
the second stage, the parameters of the RF and KNN models are optimized using the MPA
method. In this case, MPA aims to find the set of parameters that minimizes the mean
squared error (MSE) between the predicted and actual ore grades. In the third stage, the
final prediction is made by combining the predictions from the improved RF and KNN
models. The predictions from the RF and KNN models are weighted according to their
performance on the validation data. The final prediction is then computed as the sum of
the weighted predictions.

Specifically, the RF regressor produces Pred 1, and the KNN regressor produces Pred 2.
These two predictions are then optimized so that the strengths of both regressions can
be exploited. An optimization algorithm is used to find the optimal weights for Pred 1
and Pred 2. The optimal weights are then used to compute the final prediction, P. The
MPA optimizer employs a population of solutions with two parameters (W1 and W2)
that are initialized randomly. Throughout the optimization operation’s iterations, these
generated solutions evolve towards the promising solution to reach a proper objective
value; in our case, the objective function is the final prediction obtained with a minimized
MSE error from the corresponding actual regression value. Compared to other algorithms,
the hybrid RFKNN-MPA algorithm is superior in several respects, making it an effective
tool for both machine learning and data analysis. It uses the Random Forest, KNN, and



Appl. Sci. 2023, 13, 7622 9 of 25

Marine Predators Optimization Algorithm (MPA) to create more accurate predictions than
individual models. In addition to this, it can deal with high-dimensional data, which is a
typical obstacle in machine learning. It is also adaptable and can be applied to classification
and regression issues.
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Figure 1. Shows the various steps that make up the proposed approach.

2.4. Efficiency Evaluation

Cross-validation is a popular ML model evaluation approach that divides data into
multiple groups for training and validation. The k-fold cross-validation approach often
splits the data into k equal parts and trains the model on k-1 parts while validating on the
rest. Each part becomes the validation set once during this process.

Cross-validation helps to prevent overfitting and underfitting by accurately assessing
the model’s performance on unseen data. This research evaluates the regression model’s
performance using 5-fold cross-validation, which divides the data into 5 equal parts and
repeats the training and validation process 5 times [51].

The approaches’ performance was assessed using prediction errors, and four mathe-
matical metrics were employed to control and compare them. The first metric, the corre-
lation coefficient ®, assesses the strength of two variab’es’ association as they vary. The
coefficient of determination (R2) measures model fitting accuracy by dividing real data
variance by predicted value variation. R2 values between 55% and 75% are considered
satisfactory, but R2 values below 30% are cause for concern. The mean squared error (MSE)
takes bias and error variation into account but is more susceptible to outliers than the
mean absolute error. Moreover, root mean square error (RMSE) is a measure of the average
distance between the predicted values and the actual values. It is calculated by taking the
square root of the mean of the squared residuals. The lower the RMSE, the better the model
predicts the actual values. RMSE is often used to compare the performance of different
models [52].
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3. Results and Discussion
3.1. Case Study Area for Grade Estimation

Quartz Ridge is a newly discovered field at 24◦56’ North and 34◦45’ East in the Central
Eastern Desert (CED), just a short distance to the east of the Sukari gold mine (roughly
5 km). It is important to note that the Sukari gold mine has resources totaling more than
14.3 million ounces of gold, with an emphasis on the unexplored reserves in the neighbor-
hood [53,54]. The Sukari concession contains several interesting and potentially lucrative
options, but Quartz Ridge stands out among them. As a result of this, it garners more
attention, which, in the end, leads to more substantial revenue and returns on investment.

The top domain is the southeastern domain, which contains the most investigated
resources. This domain consists of a well-defined granodiorite intrusion intersected by
dominant ENE steep fault zones and flat dipping thrusts. Extension veins are evident
from the drilling as stacked extension veins with a flat angle and a thickness of up to 1 m.
Ankerite makes up most of the surface alteration in the Southeastern domain, whereas a
silica-chlorite assemblage dominates the area under the surface. The visual assessment and
the mineralization patterns within this zone are shown in Figure 2 [55].
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3.2. Exploratory Analysis of the Data

The exploration data used in this study come from unpublished exploration reports
of gold prospecting by Centamin plc in the Quartz Ridge region of the eastern desert. It
includes details on the lithology and geographic location of boreholes and Au assay values.
This region is a valuable and virgin resource for exploration because it has never been
mined. The information is based on 523 exploratory boreholes, with an average drilling
interval of 20 m. In total, 27,505 samples from the boreholes were obtained as a result,
which were not arranged in a regular grid. The samples, which come from various rock
types, were taken at various intervals. Reverse circulation (RC) and diamond drilling
(DD) drill holes, which are used in mineral prospecting for gathering samples from deep
underground locations, were used to collect data over a number of years.
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Overall, this exploration data offers essential knowledge about the regional geology
and mineral potential of Quartz Ridge. Machine learning and statistical methods can be
used to analyze these data to reveal information about the distribution of mineral grades
and the likelihood of economic mineralization in the region.

3.2.1. Data Analysis and Descriptive Statistics

The statistical analysis performed on the raw sample before regularization is summa-
rized in Table 1 for convenience. The deposit mean and standard deviation were 0.22 and
1.72 ppm, respectively. The coefficient of was 7.74, indicating a relatively high degree of
variability in the gold grades. These results indicate that the deposit has a complicated
grade distribution with a wide range of values.

Table 1. Summarizes data on the gold concentration in the area under study.

N Min Max Mean Variance S.D. CoV Skewness Kurtosis

27505 0.005 187 0.22 2.95 1.72 7.74 64.94 6010.3

Figure 3 shows the raw samples’ histogram plot. The histogram indicates that the
drilling dataset contains a large number of low-quality values and a small number of high-
quality values. Most of the information is clustered at the lower end of the scale, with only a
few outliers at the other extreme, indicating that the data distribution is positively skewed.
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However, skewed distributions can make analysis and estimation challenging because
the frequencies of the sample values are unbalanced. A regularization technique may be
required to balance the data and improve prediction accuracy. The statistical analysis offers
valuable information about the deposit’s characteristics and the challenges of analyzing
skewed data.

3.2.2. Data Regularization

To enhance the accuracy of grade estimates, the dataset was regularized by using equal-
length samples in both geostatistical and machine-learning models. Regularization helps to
reduce sampling bias, leading to more reliable grade estimates. The regularization process
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was performed using SURPAC, and the data were regularized to a 1 m spacing. During the
regularization process, only drill holes within the ore body were used to estimate the grade.
This approach ensures that the data accurately represents the grade distribution of the
deposit, thereby avoiding the risk of overestimating the amount of ore and underestimating
the grade.

By excluding the waste zone, the composites used for grade estimation may underes-
timate the ore grade and volume. Therefore, this regularization technique has been thor-
oughly examined and applied to ensure the accuracy and reliability of the grade estimates.

3.2.3. Outlier Detection and Data Enhancement

The current study involves data processing, which includes identifying outliers based
on geological domains and statistical populations. These anomalous values, known as
outliers, can be identified by the fact that they deviate significantly from the average. The
histogram plot technique enhances the data representation and modeling of the dataset.
A top cut of ten ppm was implemented because there were outliers in the Au values; as a
result, 29 outliers were found. Geostatistical analysis and using the dataset for machine
learning training are made more accessible. The composite data were statistically analyzed,
and the results showed significant in-depth variations (Table 2 presents the summary
statistic). The regularized statistical data on gold grade reveals a mean of 0.19 ppm, with a
variance of 0.48 ppm and a standard deviation of 0.69 ppm. The CoV is 3.72, which shows
a moderate degree of variability in the gold grades [56,57].

Table 2. Summarizes compositing data on the gold concentration in the area under study.

N Min Max Mean Variance S.D. CoV Skewness Kurtosis

32980 0.005 10 0.18 0.43 0.69 3.72 8.9 99.87

3.2.4. The Lithological Analysis

The non-stationarity of gold grade in the deposit refers to the fact that the distribution
of gold grades within the deposit is not constant or uniform. Instead, it varies geographi-
cally and is affected by many geological features, including lithology, structure, alteration,
and mineralization type.

In geology, it is common practice to group similar lithologies to simplify the cate-
gorization and interpretation of geological data. Reducing the number of rock types to
six (VQ: Quartz vein, SD: Sedimentary rocks, GD: Granodiorite, GBD: Gabbro Diorite,
DI: Diorite, and AN: Andesite) created a more manageable set of categories that can be
used to understand the geological distribution in a more general way and to help predict
gold content.

The categorization of rocks based on their genetic category, structure, composition,
and grain size is known as rock type [58].

The data in Table 3 and Figure 4 suggest that the area under investigation has a wide
range of gold contents across the various rock types. This study identifies six distinct rock
types, namely VQ, SD, GD, GBD, DI, and AN, corresponding sample sizes of 392, 1742,
10,733, 10,004, 4967, and 5142, respectively.

Table 3. Statistical summary of the data on gold content in various types of rocks.

Variable N Mean SD Variance Min Q1 Median Q3 Max Skewness Kurtosis

VQ 392 0.76 1.75 3.06 0.005 0.01 0.03 0.55 10 3.26 11.2
SD 1742 0.08 0.34 0.12 0.005 0.005 0.01 0.03 5.5 10.80 143.4
GD 10,733 0.2 0.67 0.45 0.005 0.01 0.03 0.11 10 8.38 92.7

GBD 10,004 0.21 0.74 0.54 0.005 0.01 0.02 0.10 10 8.21 86.3
DI 4967 0.13 0.51 0.25 0.005 0.005 0.02 0.05 10 9.91 137.3
AN 5142 0.08 0.46 0.21 0.005 0.005 0.01 0.03 10 14.38 253.6
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The VQ rock type has the highest average gold content, with a mean of 0.76 and a
maximum of 10. This highlights that VQ is a significant lithology for gold mineralization
in the region. SD and AN have the lowest average gold concentrations, with mean values
of 0.08 and 0.13, respectively, and maximum values of 5.5 and 10. GD, GBD, and DI rock
types exhibit moderate mean gold concentrations, varying between 0.13 and 0.21.

The presented data indicate significant variability in the distribution of gold concentra-
tion across different rock types, with standard deviations from 0.34 to 1.75. This indicates
that gold mineralization may be affected by various geological factors, including lithology,
structure, and alteration. According to the skewness and kurtosis values for each kind of
rock, the distribution of gold content is not normally distributed and might be affected by
outliers or non-linear correlations.

The data presented in this study can be used to analyze patterns and trends in the
distribution of gold within different rock types. This can provide a valuable overview of
the gold concentration in the region. However, further investigation is required to fully
understand the geological constraints on gold mineralization and give a complete picture
of the distribution of gold in the area.

3.3. Variography

A variogram represents the degree of spatial dependence or correlation between
two data points in a spatial domain. It measures how the variance of two points’ values
varies with distance. Geostatisticians use variograms to model spatial autocorrelation
in datasets by plotting pairs of points versus their separation distances. The variogram
curve’s shape can reveal the dataset’s spatial properties. A variogram that rises quickly
and then levels off indicates a short-range spatial relationship, while one that grows slowly
and steadily suggests a long-range one. The variogram range shows where data points
have no spatial association.

Anisotropic spatial correlation in datasets can be caused by geometric and zonal
anisotropy. Anisotropy can be accounted for by modeling a variogram in multiple directions
or using a directional model with spatial structural orientation. Anisotropic variograms
can estimate and replicate subsurface conditions, including faults and fractures, which
affect mineral deposit distribution in the geostatistical modeling of subsurface geological
formations. [59–61].
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3.3.1. Analysis of Grade Variography

Considering geographical variation and randomness, the variogram function may
depict the spatial variable structure of regional variables. Variography was conducted in
multiple directions and dips to examine gold anisotropy. Most variograms showed various
ranges and sills, indicating anisotropy in the gold deposit. An omnidirectional model is
shown in Figure 5. The analytical model featured a nugget effect of 0.41, an exponential
model with a sill value of 0.48, and a range of 29.2 m. According to the spherical model
with a range of 29.2 m, the spatial correlation appears to decrease with increasing distance,
but it may still be observed up to 29.2 m.
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Figure 5. Variography for gold content three types of variograms: (a) omnidirectional, (b) downhole,
and (c,d) directional variograms. The black line shows an experimental variogram and the red line
represents the fitting model.

Table 4 displays an exponential variogram-based directional model. The relatively
small nugget effect and large sill value in the directional model indicate a significant spatial
dependency in the data. With a range of 23.4 m, this model’s spatial correlation appears to
cover a relatively short distance, and the exponential variogram model indicates that the
spatial correlation drops quickly with distance. Because most of the drilling composite assay
values are of a relatively low grade, a normalized nugget of roughly 0.31 is not surprising.

Table 4. Characteristics of Variogram Models for Estimation.

Direction Model Type Nugget (ppm2) Sill (ppm2) Range (m)

Omnidirectional
Exponential

0.41 0.48 29.2
Downhole 0.31 0.88 15.6
Directional 0.37 0.51 23.4
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The inspection of the variogram revealed the presence of anisotropy. The Directional
model accounts for the anisotropy of the spatial correlation, which can potentially increase
the accuracy of interpolation and prediction in regions with directional variability [62].

3.3.2. Indicator Variography for Spatial Variability Analysis and Modeling

The study of directional indicator variograms considers the spatial correlation between
indicator variables, which are binary variables that show the existence or absence of a
particular characteristic in a specific area. In the presented scenario, directional indicator
variograms were utilized to evaluate the geographical continuity of four possible cut-offs,
namely 0.3, 0.6, 0.9, and 1.5 parts per million (ppm).

The lag spacing and the angular tolerance had to be adjusted so that there would
be sufficient numbers of samples. Lag spacing is the distance between the data points
used to make the variogram, and angular tolerance is the biggest angle between them. In
the variogram analysis, an accurate representation of the spatial correlation of the data is
essential, and these factors play a significant role in that.

Table 5 lists the parameters of the variogram models fitted to the experimental vari-
ograms, while Figure 6 displays experimental variograms and their corresponding fitted
models. The spatial correlation and variability of the data can be better understood by
examining the variograms and their associated parameters, allowing for more accurate
predictions of gold values in areas that were not sampled.

Table 5. Cut-off indicator variogram parameters.

Cut-off Variogram Model Nugget Effect Sill Range Azimuth Dip

0.3 Exponential 0.49 0.77 17.1 50 −60
0.6 Exponential 0.54 0.75 15.67 100 −50
0.9 Exponential 0.49 0.76 13.4 100 −50
1.5 Exponential 0.45 0.88 14.14 110 −60
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Using an exponential variogram model, Table 5 shows the directed variogram parame-
ters for four different cut-off values, from 0.3 to 1.5. The nugget effect is a representation of
the data’s variation when there is no distance involved. In this scenario, the nugget effect
drops marginally with increasing cut-off value, which may indicate that measurement or
sampling error reduces data variability.

The value of sill represents the entire variation in the data. The relative consistency of
the sill values across the various thresholds suggests that the spatial correlation of the data
is robust.

The range is the distance where spatial correlation becomes minimal. Range values
fluctuate across cut-off values, demonstrating that spatial data correlation varies with
cut-off value.

Last but not least, the azimuth and dip values indicate, respectively, the direction and
angle of the connection that is the strongest. Variation in the directional dependency of the
data is also seen in the azimuth and dip values as a function of the cut-off value.

3.4. Block Model Creation and Validation for Resource Estimation

This section describes generating and validating block models for resource estimation
in gold mineralization deposits. The block model was created by dividing the deposit
into small, similar-sized blocks using empty block models within closed wireframe mod-
els of the mining bodies. To prevent overestimation, sub-blocking was employed. The
SURPAC program incorporated constraints into the block model, such as specific gravity
and deposit geology, to ensure an accurate estimate of the target tonnage and minimize
potential inaccuracies.

The validity of the block model provided quantitative evidence for the accuracy of the
estimating process. Because it results in the slightest standard error, a minor confidence
interval, and the highest level of confidence or the least amount of risk, kriging was selected
as the method for performing the estimation [63]. Ordinary kriging was utilized to estimate
the deposit grade, as it has been found to perform effectively in previous models. Moreover,
the spatial correlation of the binary data can be leveraged to estimate the likelihood of
exceeding a particular grade cut-off at unsampled locations through indicator kriging. This
information can help identify areas with a high potential for mineralization, which can help
guide future exploration and mining efforts.

The block model’s 20 × 20 × 5 m parent blocks encompassed the mineralization
domain. Compositing, drilling spacing, and geological structure all factored into the
decision-making process for selecting the properties of the parent blocks. Sub-blocking
ensured volume representation was accurate for resource estimation [64].

All blocks within the deposit were assigned an average specific gravity of 2.67 to
facilitate tonnage calculations based on the deposit’s geology. The resource domain was
used to generate ordinary and indicator kriging models, which were then utilized to
estimate the grade of each block.

Building and validating a block model are crucial aspects of the resource estima-
tion process since they provide a solid foundation for generating reliable mineralization
estimates for subsequent exploration and mining efforts. Restrictions and sub-blocking vari-
ables were employed to prevent overestimation and ensure that the block model accurately
represents the deposit’s mineralization.

In this study, mathematical metrics and prediction errors were used to assess the
performance of various approaches. These methods can provide valuable insights into the
effectiveness and suitability of different models or techniques for estimating gold content.

Table 6 shows that the model’s predictions are inaccurate for the kriging methods
(OK and IK). A low R (Figure 7) means that the predicted and actual values do not have
a strong linear relationship, and a low R2 means that the predicted values only explain a
small amount of the variation in the actual values. A large MSE and RMSE suggest that the
estimates are, on average, far from the observed values.
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Table 6. Geostatistical (OK and IK) performance for predicting gold content.

Metric R R2 MSE RMSE

OK 0.32 0.104 0.40 0.63
IK 0.31 0.096 0.43 0.65
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Based on the study’s findings, the gold content in the research region exhibits signifi-
cant skewness and large coefficients of variation. This may explain why the models perform
poorly in predicting the gold content, particularly compared to the results of variogram
modeling. The variogram modeling revealed rising nugget/sill values for each model.
However, the R2 values for all models used in the research were less than 0.5, indicating
poor performance. This can be attributed to two main factors. Firstly, the poor spatial
correlation between the gold dataset and the study region may have affected the accuracy
of the models. Secondly, the skewed data distribution may have impacted the accuracy of
the model’s predictions.

The study anticipated poor results from using ordinary kriging to forecast gold content
due to its tendency to produce locally linear estimates and smoothing effects. Kriging
calculates each grid point by taking a weighted average of surrounding samples, which
can hinder its ability to detect local differences in the data. To overcome these limitations,
the study employed machine learning algorithms and hybrid methods to construct a gold
deposit model. These algorithms can identify non-linear associations and patterns within
the data, improving the accuracy and reliability of models that predict gold content.

3.5. Data Preparation and Normalization

The features of the data that are accessible, as well as the output that is intended, should
serve as the basis for choosing an acceptable normalizing procedure. Since the choice of a
normalizing approach may substantially influence the accuracy of the model’s predictions,
it is vital to examine the efficacy of various normalization strategies on the performance of
the model. This evaluation should be performed as thoroughly as possible [65].

For this analysis, a composite dataset was used that had been processed to control
outliers. Prior to training the ML model, the dataset was normalized, which helped to
reduce noise and improve prediction accuracy. Normalization is particularly advantageous
since it ensures that the statistical distribution of the data is uniform, allowing the model to
predict values more accurately for each input and output [18,66].
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Log normalization was chosen because it can make data less skewed and more regu-
larly distributed by reducing the effect of extreme values. This could enhance the overall
performance of some machine-learning models. This is consistent with Zaki’s conclusion [8].

Log normalization’s ability to stabilize the variance of the data is helpful for models
that depend on the variance being constant. In addition, log normalization can make
interpreting the model’s results simpler, as the transformed values may be more intuitive or
relevant to the specific application. Log normalization may not be appropriate for all data
types or machine learning models. The impact of log normalization on model performance
should be carefully assessed, and other normalizing methods should be considered.

Experiments with Random Training and Test Partitions

In many previous studies on predicting ore grades, the available data are typically
randomized before being split into training and testing subsets. For this analysis, the dataset
was divided into training (70%) and testing (30%) subsets for model evaluation. It is critical
to emphasize that these two subsets should exhibit comparable statistical characteristics.
Data segmentation and the MPA are optimization techniques for splitting a dataset into
training and testing groups [10]. After partitioning the dataset into primary segments
labeled low, medium, or high based on their gold values, they were further divided into
sub-segments through a visual inspection of the histogram plot.

Data segmentation was employed to improve the accuracy of resource estimates by
ensuring that both the training and testing subsets of the dataset were representative of the
range of gold values in the deposit (see Table 7 for more details). The study aimed to identify
the combination of input variables for the resource estimating model that produced the
most accurate estimates using the MPA as an optimization method. The analysis, depicted
in Table 7, describes the statistical analysis of the original dataset following splitting.
The evaluation of how well the data partitioning approach utilized in the study worked
requires that this comparison of statistics be performed. The resource estimate model may
be inaccurate if the training and testing datasets have very varying gold contents. The
study shows that the data partitioning approach worked and that the resource estimate
model is likely accurate and dependable by showing that the training and testing datasets
had similar gold contents.

Table 7. The statistical analysis of the original dataset after partitioning.

Variable N Mean SD Min Q1 Median Q3 Max

Test Data 9894 0.175 0.655 0.0005 0.01 0.02 0.07 10
Train Data 23,086 0.176 0.657 0.0005 0.01 0.02 0.07 10

Hyperparameters were tuned to obtain the optimal parameters for each ML algorithm
utilized. The optimization algorithm searched for the best values for each method’s param-
eters in the ML table (Table 8). It began by generating a set of starting parameters and then
iteratively refined them until it reached the optimal parameter values for the prediction
issue. Various hyperparameters, such as the number of hidden units, learning rate, training
iterations, and network depth, must be considered. Although this step is crucial for optimal
algorithm performance, it can be arduous and time-consuming [67].

Rerunning machine learning studies may lead to different findings. Therefore, it is
crucial to record parameters, assess sensitivity, and employ statistical tools to evaluate
significance and uncertainty. This is because the computer randomly selects the training
and testing datasets. Bayesian optimization, a valuable technique for improving models,
was employed in this study [68]. Additionally, a heuristic method was used to select the
best network to avoid overfitting in terms of network performance.
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Table 8. Outcomes from optimizing hyperparameters to improve gold predictions on the Quartz
Ridge dataset.

Model Hyperparameters

Typical configurations
Five k-folds CV

Bayesian optimization
Iterations: 30

RF Number of trees = 200

K-NN K = 13
Metric: Euclidean distance

GPR Basis function: constant
Isotropic Rational Quadratic kernel

DT leaf size: 6
Minimum leaf size: 1-9041

FCN
Three layers used

Iterations: 1000
Activation: ReLU

RFKNN-MPA Number of trees = 100
K = 13

3.6. Comparative Analysis

To accurately predict the grade value of the gold resource in the Quartz Ridge region,
several other model methods, including RF, K-NN, GPR, DT, and FCN, were tested against
the RFKNN-MPA model developed using the same dataset and optimized features as
input. To compare the results, the model’s performance was analyzed by applying the
same indices (R, RMSE, and R2) to the training and testing datasets.

Table 9 summarizes the findings obtained from the comparison research for the training
data. According to the results presented in Figure 8, the random forest (RF), RFKNN-MPA,
and K-NN models exhibit significantly higher R values compared to the other models.
This finding suggests a stronger linear relationship between the predicted and actual
values. Among these models, the RFKNN-MPA model exhibits the highest R-value of 0.74,
indicating the best linear correlation performance.

Table 9. Performance predicting gold content using the proposed method and machine learning
models on the training dataset.

Metric RF K-NN GPR DT FCN RFKNN-MPA

R 0.69 0.66 0.63 0.50 0.39 0.74
R2 0.47 0.43 0.40 0.25 0.15 0.54

MSE 0.36 0.47 0.48 0.51 0.58 0.31
RMSE 0.67 0.69 0.69 0.74 0.78 0.59

The R2 values for all models are relatively low, suggesting that only a small percentage
of the variation in the actual values can be accounted for by the predicted values. However,
the RFKNN-MPA model exhibits the highest R2 value, indicating that it performs better
than the other models in explaining the variation in the data. This model has an R2 value
of 0.54.

Based on the mean square error and root mean square error values, the RFKNN-
MPA model exhibits the lowest prediction error compared to the other models. The mean
square error (MSE) and root mean square error (RMSE) for this model are both 0.31 and
0.59, respectively, lower than the corresponding values for the other models. This finding
provides evidence that the RFKNN-MPA model outperforms the other models in accurately
forecasting the amount of gold present.
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Table 10 presents the performance of the proposed approach and machine learning
models for estimating gold content on the testing dataset. The results show that the RFKNN-
MPA model exhibits the highest R-value (0.77), indicating a robust linear relationship
between the predicted and actual values. Another model that performs well is the K-NN
model, with an R-value of 0.71. Although their R-values are lower, the other models
demonstrate a linear relationship between the predicted and observed values.
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Table 10. Performance predicting gold content using the proposed method and machine learning
models on the testing dataset.

Metric RF K-NN GPR DT FCN RFKNN-MPA

R 0.70 0.71 0.72 0.55 0.36 0.77
R2 0.49 0.497 0.52 0.29 0.13 0.597

MSE 0.24 0.26 0.25 0.30 0.37 0.17
RMSE 0.49 0.51 0.50 0.57 0.64 0.44

The models explain testing dataset variance better than the training dataset because
their R2 values are greater. Compared to the other models, the RFKNN-MPA model has
the greatest R2 value of 0.597, which indicates that this model is superior in explaining the
variation seen in the data.

The RFKNN-MPA model exhibits the lowest prediction error (as measured by MSE
and RMSE) compared to the other models. The mean squared error (MSE) and root
mean squared error (RMSE) for this model are 0.17 and 0.44, respectively, lower than
the corresponding values for the other models. This finding suggests that the RFKNN-
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MPA model is more accurate than the other models in predicting the gold content of the
testing dataset.

The RFKNN-MPA model performed best on the testing dataset for gold content
prediction using the proposed technique. These results are encouraging and indicate
that the model has excellent generalizability. However, it is required to perform fur-
ther validation and testing on other datasets to conduct a comprehensive analysis of the
model’s performance.

Figure 9 depicts a radar map that compares the performance of six models, including
RF, KNN, GPR, FCN, and DT, and the proposed RFKNN-MPA hybrid model. The study
evaluated the accuracies of several models for predicting gold content using four metrics:
R, R2, MSE, and RMSE. The radar plot displays different lines for training and testing data
for each model, with testing data exhibiting better performance than training data. The
results show that the RFKNN-MPA hybrid model outperformed the other models in all
four metrics for training and testing data. As a result, the hybrid model is the most accurate
and reliable model for estimating gold content in the study region.
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In this comparative study of models, the RFKNN-MPA model outperformed the other
models (including both machine learning methods and geostatistical approaches) in terms
of R, R2, MSE, and RMSE values, exhibiting higher R and R2 values than the other models.
These results suggest that, compared to the other models, the RFKNN-MPA model was
able to explain a more significant proportion of the variance in the dependent variable and
produce more accurate predictions.

It is essential to bear in mind that the success of machine learning models can be
influenced by a wide range of factors, including the quality and quantity of data, the
features and hyperparameters used, and the specific application. Therefore, it is essential
to conduct a thorough analysis of the performance of various models and select the one
best suited for the particular task.
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4. Conclusions

The proposed hybrid model is an innovative approach for predicting mineral grade
distribution that can capture nonlinearity and spatial heterogeneity. It has produced
superior estimates compared to standalone machine learning or kriging models. The
comparative analysis with various machine learning models and geostatistical methods,
such as OK and IK, highlights the hybrid model’s advantages in reducing errors resulting
from incomplete or inconsistent drill hole assay data. The study focuses on the hybrid
model’s ability to enhance accuracy.

MPA optimization algorithms play a crucial role in the proposed hybrid model, reduc-
ing computational time and enhancing model efficiency and scalability. The MPA optimizer
can improve the hybrid method’s predictions by adjusting the integration weights, which
is particularly beneficial when data are limited or uncertain.

Log normalization can improve the overall performance of ML models by reducing
the impact of extreme values and reducing data skewness. It stabilizes data variance, which
is beneficial for models that require a constant variance, and simplifies model interpretation
with more intuitive converted values.

Incorporating factors such as rock types into the model, in addition to the coordinates,
can enhance its accuracy by providing more information about the mineral deposit’s
properties and accounting for spatial variations that may impact the distribution of mineral
grades. This is particularly beneficial for complex or heterogeneous mineral deposits.

The RFKNN-MPA algorithm is a robust and accessible method for estimating mineral
orebody grades. It exhibits higher R-squared coefficients and lower RMSE and R values,
resulting in superior estimations. These statistics indicate that it can lead to more confident
decision making in mining operations. The proposed method preserves patterns within
the data by considering geological characteristics (rock type) and chemical composition
(gold grade).

Overall, the suggested hybrid model is a promising approach for predicting the
distribution of mineral grades. This method can potentially improve decision making
in mining operations and has broader implications in various industries. However, it is
essential to continue evaluating and improving the method to ensure its accuracy and
usefulness in various settings.
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