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Abstract

:

This paper presents a novel approach to solve the multi-objective optimization problem designing a two-stage helical gearbox by applying the Taguchi method and the grey relation analysis (GRA). The objective of the study is to identify the optimal main design factors that maximize the gearbox efficiency and minimize the gearbox mass. To achieve that, five main design factors. including the coefficients of wheel face width (CWFW) of the first and the second stages, the allowable contact stresses (ACS) of the first and the second stages, and the gear ratio of the first stage were chosen. Additionally, two single objectives, including the maximum gearbox efficiency and minimum gearbox mass, were analyzed. In addition, the multi-objective optimization problem is solved through two phases: Phase 1 solves the single-objective optimization problem in order to close the gap between variable levels, and phase 2 solves the multi-objective optimization problem to determine the optimal main design factors. From the results of the study, optimum values of five main design parameters for designing a two-stage helical gearbox were first introduced.
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1. Introduction


Optimizing gearboxes is a critical aspect of mechanical engineering as it has a direct impact on their efficiency, durability, and reliability, as well as the performance of other machinery and equipment. Multi-objective optimization of gearboxes involves simultaneously optimizing various performance parameters, such as load-carrying capacity, noise, mass, size, and efficiency, making it a complex and challenging task. To address these challenges, various optimization techniques have been developed in recent years. Helical gearboxes, one of many gearbox types, are widely used in industrial applications due to their superior load-carrying capacity, smooth operation [1], simple structure, and low cost. However, designing a helical gearbox involves numerous design parameters, making it difficult to optimize for multiple objectives.



Numerous studies on the optimal design of helical gearboxes have been conducted thus far. This research looked into both single-objective and multi-objective optimization problems. Many authors are also interested in the single-objective optimization problem. I. Römhild and H. Linke [2] presented formulas for calculating gear ratios for two-, three-, and four-stage helical gearboxes in order to obtain the smallest gear mass. Milou et al. [3] presented a practical approach for reducing the mass of a two-stage helical gearbox in their paper. The method entailed analyzing data from gearbox manufacturers. Their findings suggested a center distance ratio (aw2/aw1) between the second and first stages in the range of 1.4 to 1.6 to achieve the minimum mass. Once the optimal center distance ratio has been determined, the corresponding partial gear ratios are obtained using a lookup table. Various objective functions are utilized to solve the single-objective optimization problem of determining the optimal gear ratio of helical gearboxes. These objective functions include minimizing gearbox length [4,5,6,7], minimizing gearbox cross section area [6,8,9,10], minimizing gearbox mass [6,11], minimizing gearbox volume [12], and minimizing gearbox cost [13,14,15,16]. All of these studies share a common feature in that only one design parameter, the partial gear ratio, is defined in the form of an explicit model.



The multi-objective optimization problem for designing helical gearboxes has also been of interest to researchers. M. Patil et al. [1] conducted a study in which a two-stage helical gearbox was subjected to multi-objective optimization with a broad range of constraints using a specially formulated discrete version of non-dominated sorting genetical algorithm II (NSGA-II). The study formulated two objective functions, namely the minimum gearbox volume and minimum total gearbox power loss. Moreover, the study considered constraints, such as bending stress, pitting stress, and tribological factors. Wu, Y.-R. and V.-T. Tran [17] introduced a new microgeometry modification for helical gear pairs, leading to substantial enhancements in performance with regards to noise and vibration. In their research, C. Gologlu and M. Zeyveli [18] utilized a genetic algorithm (GA) to optimize the volume of a two-stage helical gearbox. To handle the design constraints, such as bending stress, contact stress, number of teeth on pinion and gear, module, and face width of gear, the objective function was subject to static and dynamic penalty functions. The results from the GA were compared to those of a deterministic design procedure, with the GA being found to be the superior method. D. F. Thompson and colleagues [19] presented a generalized optimization technique for reducing the volume of two-stage and three-stage helical gearboxes, while considering tradeoffs with surface fatigue life. In their study, Edmund S. Maputi and Rajesh Arora [20] explored multi-objective optimization by simultaneously considering three objectives: volume, power output, and center-distance. They employed the NSGA-II evolutionary algorithm to generate Pareto frontiers in their research. From the results of the study, insights for the design of compact gearboxes can be gained. The NSGA-II method was also applied by C. Sanghvi et al. [21] to solve the multi-objective optimization problem of a two-stage helical gearbox for minimum volume and maximum load. The results of the multi-objective optimization of the tooth surface in helical gears using the response surface method were presented by Park C.I. [22].



The best or optimal level of the selected criterion is determined by single-objective optimization, which is an absolute optimization. A multi-objective optimization problem is one with two or more simple goals (or criteria). As a result, the solution to the multi-objective optimization problem cannot best satisfy all criteria simultaneously. For instance, it is not possible to meet both the efficiency and cost requirements of the gearbox. In simple terms, determining a solution to a problem that is both “white” and “black” is impossible; only a “gray” solution can be determined. The gray solution is the one that falls between the best and worst solutions, or between “white” and “black” in the multi-objective optimization problem. As a result, it is known as optimization based on gray relation analysis. The original Taguchi method is used to solve the single-objective problem, and the Taguchi method and gray relation analysis are required to solve the multi-objective optimization problem.



While numerous studies have focused on multi-objective optimization for helical gearboxes, the identification of optimal main design factors for such gearboxes has not received adequate attention. Furthermore, previous research on multi-objective optimization for helical gearboxes has not demonstrated the relationship between optimal input factors and total gearbox ratio. This is a critical issue to consider when designing a new gearbox. In this paper, we present a multi-objective optimization study for a two-stage helical gearbox, considering two single objectives: minimizing gearbox mass and maximizing gearbox efficiency. The proposal of five optimal main design factors for the two-stage helical gearbox is the most significant result of this research. These variables include the CWFW for both stages, the ACS for both stages, and the first stage’s gear ratio. Furthermore, by combining the Taguchi method and the GRA in a two-stage process not previously described, we present a novel approach to addressing the multi-objective optimization problem in gearbox design. Additionally, a link between optimal input factors and the total gearbox ratio was proposed.




2. Optimization Problem


2.1. Gearbox Mass Calculation


The mass of the gearbox    m  g b     can be found by the following equation:


   m  g b   =  m g  +  m s  +  m  g h   +  m b   



(1)




where    m g   ,    m  g h    ,    m b   , and    m s    designate the mass of the gears, the shafts, the bearings, and the gearbox housing, respectively. The component mass will be specifically calculated below:



2.1.1. Gearbox Housing Mass Calculation


The gearbox housing mass (   m  g h    ) can be found by:


   m  g h   =  ρ  g h   ·  V  g h    



(2)




in which    ρ  g h     is the weight density of gearbox housing materials referred; as the material of the gearbox housing is gray cast iron (the most common material for the gearbox housing),    ρ  g h   = 7300    (  k g /  m 3   )   ;    V  g h     is the gearbox housing volume (m3), which is determined by the following equation (see Figure 1):
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Figure 1. Calculated schema. 






Figure 1. Calculated schema.
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   V  g h   = 2 ·  V A  + 2 ·  V B  + 2 ·  V C   



(3)




where    V A   ,    V B   , and    V C    are the volumes of side A, B, and C (m3), respectively.


   V A  = L · H ·  S G   



(4)






   V B  = L ·  B 1  · 1.5 ·  S G   



(5)






   V C  =  B 2  · H ·  S G  =  (   B 1  − 2 ·  S G   )  · H ·  S G   



(6)







Substituting Equations (4) to (6) into (3) obtains:


   V  g h   = 2 · L · H .  S G  + 3 · L ·  B 1  ·  S G  + 2 ·  (   B 1  − 2 ·  S G   )  · H ·  S G   



(7)







In the above equations, L, H, B1, and SG can be calculated by [2]:


  L = (  d  w 11   +  d  w 21   / 2 +  d  w 12   / 2 +  d  w 22   / 2 + 22.5 ) / 0.975  



(8)






  H =  d  w 22   + 6.5 ·  S G   



(9)






   B 1  =  b  w 1   +  b  w 2   + 6 ·  S G   



(10)






   S G  = 0.005 · L + 4.5  



(11)








2.1.2. Gear Mass Calculation


The gear mass can be determined by:


   m g  =  m  g 1   +  m  g 2    



(12)




in which    m  g 1     and    m  g 2     are the gear mass of the first and the second stages (kg), which can be calculated by:


   m  g 1   =  ρ g  ·  (    π ·  e  1 ·    d  w 11  2  ·  b  w 1    4  +   π ·  e  2 ·    d  w 21  2  ·  b  w 1    4   )   



(13)






   m  g 2   =  ρ g  ·  (    π ·  e  1 ·    d  w 12  2  ·  b  w 2    4  +   π ·  e  2 ·    d  w 22  2  ·  b  w 2    4   )   



(14)




where    ρ g    is the weight density of gear material (kg/m3); as the gear material is steel,    ρ g  = 7800    (  k g /  m 3   )   ;    e 1    and    e 2    are the volume coefficients. Because the pinion has a small diameter, its structural form can be plain whereas the gear has a large diameter and thus requires a hub. As a result, the volume coefficient of the pinion    e 1  = 1  , and the volume coefficient of the gear is    e 2  = 0.6   [13];    b  w 1     and    b  w 2     are the gear width of the first and the second stages (mm);    d  w 1 i     and    d  w 2 i     are the pinion and the gear pitch diameters of the i stage (i = 1 and 2). These parameters are determined by:


   b  w 1   =  X  b a 1   ·  a  w 1    



(15)






   b  w 2   =  X  b a 2   ·  a  w 2    



(16)






   d  w 1 i   = 2 ·  a  w i   /  (   u 1  + 1  )   



(17)






   d  w 2 i   = 2 ·  a  w i   ·  u i  · /  (   u i  + 1  )   



(18)







In the above equations,    u 1    is the gear ratio of the first stage; the center distance of i stage    a  w i     is found by the surface fatigue strength [23]:


   a  w i   =  k a  ·  (   u i  + 1  )  ·    T  1 i   ·  k  H β   /  (  A  S i 2  ·  u i  ·  X  b a i    )   3   



(19)




where    k a    is the material coefficient;    k  H β     is the contacting load ratio for pitting resistance; ASi is the allowable contact stress of the ith stage (MPa);    X  b a i     is the wheel face width coefficient of ith stage; and    T  1 i     is the drive shaft torque of the ith stage (N.mm), which can be calculated by:


   T  1 i   =    T r      ∏   j = i  3  (  u i  ·  η  h g   3 − i   ·  η  b e   4 − i   )    



(20)







After calculating the gear parameters, the bending strength of the ith gear stage must be checked using the following formulas [23]:


   σ  F 1 i   = 2 ·  T  1 i   ·  K  F i   ·  Y  ε i   ·  Y  β i   ·  Y  F 1 i   /  (   b  w 1 i   ·  d  w 1 i   ·  m i   )  ≤  [   σ  F 1    ]   



(21)






   σ  F 2 i   =  σ  F 1 i   ·  Y  F 2 i   /  Y  F 1 i   ≤  [   σ  F 2    ]   



(22)




in which    m i    is the module of the ith gear stage (mm);    K  F i     is load factor;    Y  ε i   = 1 / ε   is the contact factor;  ε  is the contact ratio;    Y  β i   = 1 − β / 140   is factor taking into account the helix angle; and    Y  F 1 i     and    Y  F 2 i     are the geometry factor of the pinion and gear of ith gear stage.




2.1.3. Calculation of Shaft Mass


The shaft mass can be found by:


   m s  =   ∑   i = 1  3   m  s i    



(23)




where    m  s i     is the mass of ith shaft of the gearbox (kg), which is determined by:


   m  s i   = π ·  ρ s  ·  (    ∑   j = 1  n   d j 2  ·  l j  +   ∑   k = 1  2   d  b k  2  ·  B k   )   



(24)




in which    d j    and    l j    are the diameter and the length of jth shaft part (mm);    d  b k     and    B k    are the diameter and the width of kth shaft part on which the bearing is istalled. The values of    d j      and    d  b k     also are determined by [23]:


   d j  =      M e    0.1 ·  [   σ s   ]     3   



(25)




wherein    [   σ s   ]    is the allowable shaft stress (MPa), which can be determined by the material and size of the shaft [23].    M e    is the equivalent moment (Nmm), which is found by [23]:


   M e  =    M y 2  +  M x 2  + 0.75 ·  T 2     



(26)




where    M x    and    M y    are the bending moment in x and y directions (Nmm); T is the torque (Nmm). These parameters can be defined based on the diagram for finding shaft dimensions. Figure 2 describes this diagram for calculation of the first shaft of the gearbox.



In Equation (22),    B k      is the bearing width (mm). In this work, radical ball bearings with angular contact were used. From the data in [24], the following regression was proposed to calculate the width of the bearings (with    R 2  = 0.9951  ):


   B k  = 0.0017 ·  d  b k  2  + 0.0277 ·  d  b k   + 13.869  



(27)








2.1.4. Calculation of Bearing Mass


The bearing mass of the gearbox is calculated by:


   m b  =   ∑   i = 1  6   m  b i    



(28)







As mentioned above, radical ball bearings with angular contact were used in this work. From the data about these type of bearings in [24], the mass of the ith bearing can be found by the following regression equation (with    R 2  = 0.9833  ):


   m  b i   = 0.0007 ·  d  b i  2  − 0.0513 ·  d  b i   + 1.2108  



(29)




in which i is the number of bearings (i = 6);    d  b i     is the diameter of the shaft part on which the ith bearing is mounted.





2.2. Determination of Gearbox Efficiency


The gearbox efficiency is determined by:


   η  g b   =   100 ·  P l     P  i n      



(30)




where    P l    is the total power loss in the gear box [25]:


   P l  =  P  l g   +  P  l b   +  P  l s    



(31)




where    P  l g     is the power losses in the gears;    P  l b     is the power loss in the bearings; and    P  l s     is the power loss in seals. These factors can be determined as follows:








	
(+) The power losses in the gears:










   P  l g   =   ∑   i = 1  2   P  lgi    



(32)




in which    P  l g i     is the the power losses in the gears of the i stage, which is found by:


   P  l g i   =  P  g i   ·  (  1 −  η  g i    )   



(33)




where    η  g i     is the efficieny of the i stage of the gearbox, which can be determined by [26]:


   η  g i   = 1 −  (    1 + 1 /  u i     β  ai   +  β  ri      )  ·    f i   2  ·  (   β  ai  2  +  β  ri  2   )   



(34)




where    u i    is the gear ratio of i stage; f is the friction coefficient;    β  ai     and    β  ri     are the arc of the approach and recess on the i stage, which is calculated by [26]:


   β  ai   =      (   R  e 2 i  2  −  R  02 i  2   )    1 / 2   −  R  2 i   ·  sin α     R  01 i      



(35)






   β  ri   =      (   R  e 1 i  2  −  R  01 i  2   )    1 / 2   −  R  1 i   ·  sin α     R  01 i      



(36)




in which    R  e 1 i     and    R  e 2 i       are the outside radius of the pinion and gear, respectively;    R  1 i     and    R  2 i     are the pitch radius of the pinion and gear, respectively;    R  01 i     and    R  01 i     are the base-circle radius of the pinion and gear, respectively; α is the pressure angle.



From the data in [26], the friction coefficient can be determined by the folowing regression equations:








	-

	
When the sliding velocity is v ≤ 0.424 (m/s), the friction coefficient is calculated by (with    R 2  = 0.9958  ):


  f = − 0.0877 · v + 0.0525  



(37)








	-

	
When the sliding velocity is v > 0.424 (m/s), the friction coefficient is calculated by (with    R 2  = 0.9796  ):


  f = 0.0028 · v + 0.0104  



(38)


















	
(+) The power losses in the bearings [25]:








The power losses in rolling bearings can be found by:


   P  l b   =   ∑   i = 1  6   f b  ·  F i  ·  v i   



(39)




where    f b    is the coefficient of the friction of the bearing; as the radial ball bearings with angular contact were used,    f b  = 0.0011   [25]; F denotes the bearing load in Newtons (N) while v represents the peripheral speed. Additionally, i represents the ordinal number of the bearing, ranging from 1 to 6.








	
(+) The total power losses in the seals are determined by [25]:










   P s  =   ∑   i = 1  2   P  si    



(40)




in which i is the ordinal number of the seal (i = 1 ÷ 2);    P  s i     represents the power loss caused by the sealing for a single seal (w), which can be calculated by:


   P  s i   =  [  145 − 1.6 ·  t  l i l   + 350 · log log  (  V  G  40   + 0.8  )   ]  ·  d s 2  · n ·   10   − 7    



(41)




where   V  G  40     is the ISO viscosity grades number.




2.3. Objective Functions and Constrains


2.3.1. Objectives Functions


The multi-objective optimization problem in this study comprises two single objectives:



	-

	
Minimizing the gearbox mass:


  min  f 1   ( X )  =  m  g b    



(42)








	-

	
Maximizing the gearbox efficiency:









  min  f 2   ( X )  =  η  gb    



(43)




in which X is the design variable vector reflecting variables. In this work, five main design factors, including    u 1   ,   X b  a 1   ,   X b  a 2   ,   A  S 1   , and   A  S 2    were selected as variables, and we have:


  X =  {   u 1  , X b  a 1  , X b  a 2  , A  S 1  , A  S 2     }   



(44)








2.3.2. Constrains


For a helical gear set, the maximal gear ratio is 9 [23]. Additionally, the coefficient of the wheel face width of both gear stages of a two-stage helical gearbox ranges from 0.25 to 0.4 [23]. In addition, the gear materials used in this work are steel 40, 45, 40X, and 35XM refining, with teeth hardness on the surface of 350 HB (These are the most commonly used gear materials in gearboxes). As a result of the calculated results, the allowable contact stresses of the first and second stages range from 350 to 420 (MPa). Therefore, the following constraints were derived from these comments:


   1 ≤  u 1  ≤ 9     and   1 ≤  u 2  ≤ 9   



(45)






   0.25 ≤ X b  a 1  ≤ 0.4     and   0.25 ≤ X b  a 2  ≤ 0.4   



(46)






   350 ≤ A  S 1  ≤ 420     and   350 ≤ A  S 2  ≤ 420   



(47)










3. Methodology


As stated in Section 2.3.1 five main design factors were selected as variables for the multi-objective optimization problem. Table 1 describes these factors and the min and max values of them. In this work, the Taguchi method and grey relation analysis were employed to address the multi-objective optimization problem with five variables. In order to easily determine the solutions of the optimization problem, the larger the number of levels of the variables, the better. To maximize the number of levels for each variable, the L25 (55) design was selected. However, among the variables mentioned, u1 has a very wide distribution (u1 ranges from 1 to 9 as stated in Section 2.3.2). As a result, the gap between levels of this variable remained significant even with five levels (in this case, the gap is ((9 − 1)/4 = 2)). To reduce this gap, save time, and improve the accuracy of the solutions, a procedure for solving a multi-objective problem was proposed (Figure 3). This procedure consists of two phases: Phase 1 solves the single-objective optimization problem to close the gap between levels, and phase 2 solves the multi-objective optimization problem to determine the optimal main design factors.




4. Single-Objective Optimization


In this work, the direct search method is used to solve the single-objective optimization problem. Additionally, a computer program has been built using the Matlab language to solve two single-objective problems, including minimizing the gearbox mass and maximizing the gearbox efficiency. From the results of this program, the relation between the optimal value of the gear ratio of the first stage u1 and the total gearbox ratio ut is shown in Figure 4. Additionally, new constraints for the variable u1 were found, as shown in Table 2.




5. Multi-Objective Optimization


The multi-objective optimization problem in this research aims to identify the optimal main design factors that satisfy two single-objective functions: minimizing the maximum optimization and maximizing gearbox efficiency in the design of a two-stage helical gearbox with a specific total gearbox ratio. To address this problem, a simulation experiment was conducted. The experiment was designed using the Taguchi method, and the analysis of the results was performed using Minitab R18 software. In addition, as noted above, the design L25 (55) was chosen for obtaining maximal levels of the variable. A computer program has been developed to perform these experiments. An investigation was conducted to minimize programming intricacy by examining the influence of five key design parameters on gearbox mass. The input first pinion speed of 1480 (rpm) was selected as it is the most common. The steel 45 was selected as the shaft material as it is a very common shaft material. The total gearbox ratios considered for analysis were 10, 15, 20, 25, 30, and 35. Employing a five-level Taguchi design (L25), a total of 25 simulation experiments were carried out for each total gearbox ratio mentioned above. Table 3 describes the main design factors and their levels, and Table 4 presents the experimental plan and the corresponding output results, encompassing the gearbox mass and efficiency, specifically for the total gearbox ratio of 15.



The multi-optimization optimization problem is solved by applying the Taguchi and GRA methods. The main steps for this process are as follows:



	
(+) Determining the signal to noise ratio (S/N) by the following equations as the object of this work is to reduce the gearbox mass and to increase the gearbox efficiency:






	-

	
For the gearbox mass objective, the-smaller-is-the-better S/N:









   S N = − 10 l o  g  10   (  1 n    ∑   i = 1  m   y i 2  )   



(48)







	-

	
For the gearbox efficiency objective, the-larger-is-the-better S/N:









  S N = − 10 l o  g  10   (  1 n    ∑   i = 1  m   1   y i 2    )  



(49)




where yi is the ouput response value; m is number of experimental repetitions. In this case, m = 1 because the experiment is a simulation; no repetition is required.



The calculated S/N indexes for the two mentioned output targets are presented in Table 5.



In fact, the data of the two considered single-objective functions have different dimensions. To ensure comparability, it is essential to normalize the data, bringing them to a standardized scale. The data normalization is performed using the normalization value Zij, which ranges from 0 to 1. This value is determined using the following formula:


   Z i  =   S  N i  − m i n  (  S  N i  , = 1 , 2 , … n  )    max  (  S  N i  , j = 1 , 2 , … n  )  − m i n  (  S  N i  , = 1 , 2 , … n  )     



(50)







In the formula, “n” represents the experimental number, which in this case is 25.



	
(+) Calculating the grey relational coefficient:






The grey relational coefficient is calculated by:


   y i   ( k )  =    Δ  min   + ξ .  Δ  max    ( k )     Δ i   ( k )  + ξ .  Δ  max    ( k )     



(51)




with   i = 1 ,   2 , … ,   n  . In the formula, “k” represents the number of objective targets, which is 2 in this case;    Δ j   ( k )    is the absolute value,    Δ j   ( k )  = ‖  Z 0   ( k )  −  Z j   ( k )  ‖   width; Z0(k) and Zj(k) are the reference and the specific comparison sequences, respectively;    Δ  m i n     and    Δ  m a x     are the min and max values of Δi(k); ζ is the characteristic coefficient, 0 ≤ ζ ≤ 1. In this work ζ = 0.5.



	
(+) Calculating the mean of the grey relational coefficient:






The degree of grey relation is determined by calculating the mean of the grey relational coefficients associated with the output objectives.


     y i   ¯  =  1 k    ∑   j = 0  k   y  i j    ( k )   



(52)




where yij is the grey relation value of the jth output targets in the ith experiment.



Table 6 displays the calculated results of the grey relation value (yi) and the average grey relation value of all experiments.



To ensure harmony among the output parameters, a higher average grey relation value is desirable. As a result, the objective function of the multi-objective problem can be transformed into a single-objective optimization problem, with the mean grey relation value serving as the output.



The impact of the main design factors on the average grey relation value (   y ¯   ) was analyzed using the ANOVA method, and the corresponding results are presented in Table 7. From the results in Table 7, AS2 has the most influence on    y ¯    (57.35%), followed by the influence of u1 (25.16%), Xba1 (5.38%), Xba2 2.50%), and AS1 (0.84%). The order of influence of the main design factors on    y ¯    through ANOVA analysis is described in Table 8.



	
(+) Determining optimal main design factors:






Theoretically, the set of main design parameters with the levels that have the highest S/N values would be the rational (or optimal) parameter set. Therefore, the impact of the main design factors on the S/N ratio was determined (Figure 5). From Figure 3, the optimal levels and values of main design factors for multi-objective function were found (Table 9).



	
(+) Evaluation of experimental model:






The adequacy of the proposed model is assessed using the Anderson–Darling method, and the results are presented in Figure 6. From the graph, it is evident that the data points corresponding to the experimental observations (represented by blue dots) fall within the region bounded by upper and lower limits with a 95% standard deviation. Furthermore, the p-value of 0.226 significantly exceeds the significance level α = 0.05. These findings indicate that the empirical model employed in this study is appropriate and suitable for the analysis.



Continuing from the previous discussion, the optimal values for the main design parameters corresponding to the remaining ut values of 10, 20, 25, 30, and 35 are presented in Table 10.



Based on the data in Table 10, the following conclusions can be drawn:



The optimal values for Xba1 are mostly their minimum values (Xba1 = 0.25) and for Xba2 are the maximum values (Xba2 = 0.4). This is due to the desire for a low gearbox mass, and because the second gear stage is more loaded than the first, a larger Xba is required to reduce the diameter and thus the total gear mass. This is also consistent with the instructions in [23] for determining the factor Xba for a two-stage helical gearbox.



Similarly, the optimal values for AS1 and AS2 are also their maximum values. This is because minimizing the gearbox mass requires maximizing the values of AS1 and AS2. By increasing these values, the center distance of gear stage i (as represented by Equation (19)) can be minimized. It will lead to the gear widths (as determined by Equations (15) and (16)), the pinion, and the gear pitch diameters of the ith stage (i = 1 and 2) (as calculated by Equations (17) and (18)), and therefore, the gear mass (as represented by Equations (13) and (14)) can be minimized.



Figure 7 depicts an obvious first-order relationship among the optimal values of u1 and ut. Additionally, the following regression equation (with R2 = 0.9992) to find the optimal values of u1 was found:


   u 1  = 0.1126 ·  u t  − 0.1495  



(53)







After finding    u 1   , the optimum value of    u 2    can be determined by    u 2  =  u t  /  u 1   .



To assess the effectiveness of the proposed method, the multi-objective optimization problem was solved using the constraints of u1, as shown in Table 1 (referred to as the solution by the traditional method). The optimal values for the main design parameters discovered by this method are shown in Table 11. Figure 8 depicts the optimal values of u1 as determined by the traditional method (data from Table 10) and the new method (data from Table 9). This figure clearly shows that the optimal values of u1 for the new method are easily determined and obey a very simple first-order function (Equation (52)). Furthermore, when determined by traditional methods, these values are distributed randomly rather than according to common rules (Figure 8), and they will almost certainly be less accurate than when determined by the new method.




6. Conclusions


The Taguchi method and the GRA are used in this paper to solve the multi-objective optimization problem in designing a two-stage helical gearbox. The goal of the study is to discover the optimal main design parameters that maximize gearbox efficiency while minimizing gearbox mass. To accomplish this, five major design factors were chosen: the CWFW for the first and second stages, the ACS for the first and second stages, and the first-stage gear ratio. In addition, the multi-objective optimization problem is solved in two stages. Phase 1 is concerned with solving the single-objective optimization problem of closing the gap between variable levels, while Phase 2 is concerned with determining the optimal main design factors. The following conclusions were proposed as a result of this work:



	-

	
A novel approach to handling the multi-objective optimization problem in the gearbox design was presented by combining the Taguchi method and the GRA in a two-stage process. The distance between the values of the lower and upper bounds of the constants of u1 is shortened as a result of this approach, which leads to an easier and a more accurate determination of optimal values.




	-

	
The solution of the single-objective optimization problem bridges the gap between variable levels, making the solution of the multi-objective optimization problem easier and more accurate.




	-

	
From the results of the study, optimal values for the five main design factors in the design of a two-stage helical gear gearbox were proposed (Equation (52) and Table 10).




	-

	
The effect of the main design parameters on    y ¯    was analyzed using the ANOVA method. The results revealed that AS2 had the highest influence on    y ¯    (57.35%), followed by u1 (25.16%), Xba1 (5.38%), Xba2 (2.50%), and AS1 (0.84%).




	-

	
The proposed model of u1 demonstrates a high level of consistency with the experimental data, validating their reliability. This model can be effectively utilized for multi-objective optimization of a two-stage helical gearbox, providing a valuable application.
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Figure 2. Diagram for determining shaft dimensions. 
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Figure 3. The procedure for solving a multi-objective problem. 
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Figure 4. Gear ratio of the first stage versus total gearbox ratio. 
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Figure 5. Influence of main design factors on S/N ratios of     y ¯    . 
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Figure 6. Probability plot of     y ¯    . 
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Figure 7. Optimal gear ratio of the first stage versus total gearbox ratio. 
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Figure 8. Optimal gear ratio of first stage of traditional and new method. 
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Table 1. Input parameters.






Table 1. Input parameters.





	Factor
	Notation
	Lower Bound
	Upper Bound





	Gearbox ratio of first stage
	u1
	1
	9



	CWFW of stage 1
	Xba1
	0.25
	0.4



	CWFW of stage 2
	Xba2
	0.25
	0.4



	ACS of stage 1 (MPa)
	   A  S 1    
	350
	420



	ACS of stage 2 (MPa)
	   A  S 2    
	350
	420
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Table 2. New constraints of u1.
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ut

	
u1




	
Lower Bound

	
Upper Bound






	
10

	
1

	
3.6




	
15

	
1.5

	
4.6




	
20

	
2.1

	
5.6




	
25

	
2.7

	
6.6




	
30

	
3.2

	
7.1




	
35

	
3.8

	
8.1
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Table 3. Main design factors and their levels for ut = 15.
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Factor

	
Notation

	
Level




	
1

	
2

	
3

	
4

	
5






	
Gear ratio of first stage

	
u1

	
1.5

	
2.275

	
3.05

	
3.825

	
4.6




	
CWFW of stage 1

	
Xba1

	
0.25

	
0.2875

	
0.325

	
0.3625

	
0.4




	
CWFW of stage 2

	
Xba2

	
0.25

	
0.2875

	
0.325

	
0.3625

	
0.4




	
ACS of stage 1 (MPa)

	
AS1

	
350

	
367.5

	
385

	
402.5

	
420




	
ACS of stage 2 (MPa)

	
AS2

	
350

	
367.5

	
385

	
402.5

	
420
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Table 4. Experimental plans and output responses for ut = 15.
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Exp. No.

	
Main Design Factors

	
   m  g b     (kg)

	
   η  g b      

(%)




	
u1

	
Xba1

	
Xba2

	
AS1

	
AS2






	
1

	
1.500

	
0.2500

	
0.2500

	
350.0

	
350.0

	
106.711

	
98.141




	
2

	
1.500

	
0.2875

	
0.2875

	
367.5

	
367.5

	
97.001

	
98.215




	
3

	
1.500

	
0.3250

	
0.3250

	
385.0

	
385.0

	
88.818

	
98.192




	
4

	
1.500

	
0.3625

	
0.3625

	
402.5

	
402.5

	
81.850

	
98.166




	
5

	
1.500

	
0.4000

	
0.4000

	
420.0

	
420.0

	
75.928

	
98.149




	
6

	
2.275

	
0.2500

	
0.2875

	
385.0

	
402.5

	
67.773

	
97.882




	
7

	
2.275

	
0.2875

	
0.3250

	
402.5

	
420.0

	
62.617

	
97.936




	
8

	
2.275

	
0.3250

	
0.3625

	
420.0

	
350.0

	
79.302

	
97.942




	
9

	
2.275

	
0.3625

	
0.4000

	
350.0

	
367.5

	
72.893

	
97.918




	
10

	
2.275

	
0.4000

	
0.2500

	
367.5

	
385.0

	
74.007

	
97.883




	
11

	
3.050

	
0.2500

	
0.3250

	
420.0

	
367.5

	
65.483

	
97.665




	
12

	
3.050

	
0.2875

	
0.3625

	
350.0

	
385.0

	
63.794

	
97.781




	
13

	
3.050

	
0.3250

	
0.4000

	
367.5

	
402.5

	
59.249

	
97.767




	
14

	
3.050

	
0.3625

	
0.2500

	
385.0

	
420.0

	
57.973

	
97.638




	
15

	
3.050

	
0.4000

	
0.2875

	
402.5

	
350.0

	
71.479

	
97.658




	
16

	
3.825

	
0.2500

	
0.3625

	
367.5

	
420.0

	
54.465

	
97.528




	
17

	
3.825

	
0.2875

	
0.4000

	
385.0

	
350.0

	
66.095

	
97.605




	
18

	
3.825

	
0.3250

	
0.2500

	
402.5

	
367.5

	
64.069

	
97.461




	
19

	
3.825

	
0.3625

	
0.2875

	
420.0

	
385.0

	
58.905

	
97.456




	
20

	
3.825

	
0.4000

	
0.3250

	
350.0

	
402.5

	
59.109

	
97.598




	
21

	
4.600

	
0.2500

	
0.4000

	
402.5

	
385.0

	
57.246

	
97.369




	
22

	
4.600

	
0.2875

	
0.2500

	
420.0

	
402.5

	
55.637

	
97.223




	
23

	
4.600

	
0.3250

	
0.2875

	
350.0

	
420.0

	
57.175

	
97.357




	
24

	
4.600

	
0.3625

	
0.3250

	
367.5

	
350.0

	
67.270

	
97.296




	
25

	
4.600

	
0.4000

	
0.3625

	
385.0

	
367.5

	
62.034

	
97.425
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Table 5. Values of S/N of each experimental run of ut = 15.
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Exp. No.

	
Main Design Factors

	
    m  g b     

	
    η  g b     




	
u1

	
Xba1

	
Xba2

	
AS1

	
AS2

	
Value (kg)

	
S/N

	
Value (%)

	
S/N






	
1

	
1.500

	
0.2500

	
0.2500

	
350.0

	
350.0

	
106.711

	
−40.5642

	
98.141

	
39.8370




	
2

	
1.500

	
0.2875

	
0.2875

	
367.5

	
367.5

	
97.001

	
−39.7355

	
98.215

	
39.8436




	
3

	
1.500

	
0.3250

	
0.3250

	
385.0

	
385.0

	
88.818

	
−38.9700

	
98.192

	
39.8415




	
4

	
1.500

	
0.3625

	
0.3625

	
402.5

	
402.5

	
81.850

	
−38.2604

	
98.166

	
39.8392




	
5

	
1.500

	
0.4000

	
0.4000

	
420.0

	
420.0

	
75.928

	
−37.6080

	
98.149

	
39.8377




	
6

	
2.275

	
0.2500

	
0.2875

	
385.0

	
402.5

	
67.773

	
−36.6211

	
97.882

	
39.8141




	
7

	
2.275

	
0.2875

	
0.3250

	
402.5

	
420.0

	
62.617

	
−35.9338

	
97.936

	
39.8188




	
8

	
2.275

	
0.3250

	
0.3625

	
420.0

	
350.0

	
79.302

	
−37.9857

	
97.942

	
39.8194




	
9

	
2.275

	
0.3625

	
0.4000

	
350.0

	
367.5

	
72.893

	
−37.2537

	
97.918

	
39.8173




	
10

	
2.275

	
0.4000

	
0.2500

	
367.5

	
385.0

	
74.007

	
−37.3855

	
97.883

	
39.8141




	
11

	
3.050

	
0.2500

	
0.3250

	
420.0

	
367.5

	
65.483

	
−36.3226

	
97.665

	
39.7948




	
12

	
3.050

	
0.2875

	
0.3625

	
350.0

	
385.0

	
63.794

	
−36.0956

	
97.781

	
39.8051




	
13

	
3.050

	
0.3250

	
0.4000

	
367.5

	
402.5

	
59.249

	
−35.4536

	
97.767

	
39.8038




	
14

	
3.050

	
0.3625

	
0.2500

	
385.0

	
420.0

	
57.973

	
−35.2645

	
97.638

	
39.7924




	
15

	
3.050

	
0.4000

	
0.2875

	
402.5

	
350.0

	
71.479

	
−37.0836

	
97.658

	
39.7942




	
16

	
3.825

	
0.2500

	
0.3625

	
367.5

	
420.0

	
54.465

	
−34.7224

	
97.528

	
39.7826




	
17

	
3.825

	
0.2875

	
0.4000

	
385.0

	
350.0

	
66.095

	
−36.4034

	
97.605

	
39.7894




	
18

	
3.825

	
0.3250

	
0.2500

	
402.5

	
367.5

	
64.069

	
−36.1330

	
97.461

	
39.7766




	
19

	
3.825

	
0.3625

	
0.2875

	
420.0

	
385.0

	
58.905

	
−35.4030

	
97.456

	
39.7762




	
20

	
3.825

	
0.4000

	
0.3250

	
350.0

	
402.5

	
59.109

	
−35.4331

	
97.598

	
39.7888




	
21

	
4.600

	
0.2500

	
0.4000

	
402.5

	
385.0

	
57.246

	
−35.1549

	
97.369

	
39.7684




	
22

	
4.600

	
0.2875

	
0.2500

	
420.0

	
402.5

	
55.637

	
−34.9073

	
97.223

	
39.7554




	
23

	
4.600

	
0.3250

	
0.2875

	
350.0

	
420.0

	
57.175

	
−35.1441

	
97.357

	
39.7673




	
24

	
4.600

	
0.3625

	
0.3250

	
367.5

	
350.0

	
67.270

	
−36.5564

	
97.296

	
39.7619




	
25

	
4.600

	
0.4000

	
0.3625

	
385.0

	
367.5

	
62.034

	
−35.8526

	
97.425

	
39.7734
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Table 6. Values of    Δ i   ( k )    and      y i   ¯   .
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Exp. No

	
S/N

	
Zi

	
Δi (k)

	
Grey Relation Value yi

	
      y i   ¯    




	
     m  g b      

	
     η  g b      

	
     m  g b      

	
     η  g b      




	
Reference Value

	

	
     η  g b      

	
     m  g b      

	
     η  g b      




	
1.000

	
1.000






	
1

	
−40.5642

	
39.8370

	
0.0000

	
0.9258

	
1.000

	
0.074

	
0.333

	
0.871

	
0.602




	
2

	
−39.7355

	
39.8436

	
0.1418

	
1.0000

	
0.858

	
0.000

	
0.368

	
1.000

	
0.684




	
3

	
−38.9700

	
39.8415

	
0.2729

	
0.9769

	
0.727

	
0.023

	
0.407

	
0.956

	
0.682




	
4

	
−38.2604

	
39.8392

	
0.3944

	
0.9508

	
0.606

	
0.049

	
0.452

	
0.910

	
0.681




	
5

	
−37.6080

	
39.8377

	
0.5060

	
0.9338

	
0.494

	
0.066

	
0.503

	
0.883

	
0.693




	
6

	
−36.6211

	
39.8141

	
0.6750

	
0.6654

	
0.325

	
0.335

	
0.606

	
0.599

	
0.603




	
7

	
−35.9338

	
39.8188

	
0.7926

	
0.7198

	
0.207

	
0.280

	
0.707

	
0.641

	
0.674




	
8

	
−37.9857

	
39.8194

	
0.4414

	
0.7258

	
0.559

	
0.274

	
0.472

	
0.646

	
0.559




	
9

	
−37.2537

	
39.8173

	
0.5667

	
0.7017

	
0.433

	
0.298

	
0.536

	
0.626

	
0.581




	
10

	
−37.3855

	
39.8141

	
0.5441

	
0.6665

	
0.456

	
0.334

	
0.523

	
0.600

	
0.561




	
11

	
−36.3226

	
39.7948

	
0.7261

	
0.4468

	
0.274

	
0.553

	
0.646

	
0.475

	
0.560




	
12

	
−36.0956

	
39.8051

	
0.7649

	
0.5637

	
0.235

	
0.436

	
0.680

	
0.534

	
0.607




	
13

	
−35.4536

	
39.8038

	
0.8748

	
0.5496

	
0.125

	
0.450

	
0.800

	
0.526

	
0.663




	
14

	
−35.2645

	
39.7924

	
0.9072

	
0.4196

	
0.093

	
0.580

	
0.843

	
0.463

	
0.653




	
15

	
−37.0836

	
39.7942

	
0.5958

	
0.4398

	
0.404

	
0.560

	
0.553

	
0.472

	
0.512




	
16

	
−34.7224

	
39.7826

	
1.0000

	
0.3085

	
0.000

	
0.691

	
1.000

	
0.420

	
0.710




	
17

	
−36.4034

	
39.7894

	
0.7122

	
0.3863

	
0.288

	
0.614

	
0.635

	
0.449

	
0.542




	
18

	
−36.1330

	
39.7766

	
0.7585

	
0.2408

	
0.241

	
0.759

	
0.674

	
0.397

	
0.536




	
19

	
−35.4030

	
39.7762

	
0.8835

	
0.2358

	
0.117

	
0.764

	
0.811

	
0.396

	
0.603




	
20

	
−35.4331

	
39.7888

	
0.8783

	
0.3792

	
0.122

	
0.621

	
0.804

	
0.446

	
0.625




	
21

	
−35.1549

	
39.7684

	
0.9260

	
0.1478

	
0.074

	
0.852

	
0.871

	
0.370

	
0.620




	
22

	
−34.9073

	
39.7554

	
0.9683

	
0.0000

	
0.032

	
1.000

	
0.940

	
0.333

	
0.637




	
23

	
−35.1441

	
39.7673

	
0.9278

	
0.1357

	
0.072

	
0.864

	
0.874

	
0.366

	
0.620




	
24

	
−36.5564

	
39.7619

	
0.6860

	
0.0739

	
0.314

	
0.926

	
0.614

	
0.351

	
0.482




	
25

	
−35.8526

	
39.7734

	
0.8065

	
0.2045

	
0.193

	
0.796

	
0.721

	
0.386

	
0.553
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Table 7. Factor effect on    y ¯   .
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Analysis of Variance for Means




	
Source

	
DF

	
Seq SS

	
Adj SS

	
Adj MS

	
F

	
P

	
C (%)






	
u1

	
4

	
0.022663

	
0.022663

	
0.005666

	
2.87

	
0.166

	
25.16




	
Xba1

	
4

	
0.004846

	
0.004846

	
0.001212

	
0.61

	
0.676

	
5.38




	
Xba2

	
4

	
0.002256

	
0.002256

	
0.000564

	
0.29

	
0.874

	
2.50




	
AS1

	
4

	
0.000757

	
0.000757

	
0.000189

	
0.10

	
0.978

	
0.84




	
AS2

	
4

	
0.051656

	
0.051656

	
0.012914

	
6.54

	
0.048

	
57.35




	
Residual Error

	
4

	
0.007900

	
0.007900

	
0.001975

	

	

	
8.77




	
Total

	
24

	
0.090079

	

	

	

	

	




	
Model Summary




	
S

	
R-Sq

	
R-Sq(adj)




	
0.0444

	
91.23%

	
47.38%
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Table 8. Order of main design factor effect on    y ¯   .
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Response Table for Means




	
Level

	
u1

	
Xba1

	
Xba2

	
AS1

	
AS2






	
1

	
0.6684

	
0.619

	
0.5978

	
0.6071

	
0.5395




	
2

	
0.5956

	
0.6288

	
0.6045

	
0.6202

	
0.5829




	
3

	
0.5992

	
0.6119

	
0.6047

	
0.6065

	
0.6148




	
4

	
0.6032

	
0.6002

	
0.6222

	
0.6047

	
0.6418




	
5

	
0.5827

	
0.5891

	
0.6198

	
0.6105

	
0.67




	
Delta

	
0.0858

	
0.0397

	
0.0243

	
0.0154

	
0.1305




	
Rank

	
2

	
3

	
4

	
5

	
1




	
Average of grey analysis value: 0.610
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Table 9. Optimal levels and values of main design factors.






Table 9. Optimal levels and values of main design factors.





	No.
	Input Parameters
	Code
	Optimum Level
	Optimum Value





	1
	Total gearbox ratio
	u1
	1
	1.5



	2
	CWFW of stage 1
	Xba1
	2
	0.2875



	3
	CWFW of stage 2
	Xba2
	1
	0.3625



	4
	ACS of stage 1 (MPa)
	AS1
	5
	367.5



	5
	ACS of stage 2 (MPa)
	AS2
	5
	420
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Table 10. Optimum main design factors finding by traditional method.






Table 10. Optimum main design factors finding by traditional method.





	
No.

	
ut




	
10

	
15

	
20

	
25

	
30

	
35






	
u1

	
1

	
1.5

	
2.1

	
2.7

	
3.2

	
3.8




	
Xba1

	
0.25

	
0.2875

	
0.2875

	
0.25

	
0.25

	
0.25




	
Xba2

	
0.4

	
0.3625

	
0.4

	
0.4

	
0.4

	
0.4




	
AS1

	
350

	
367.5

	
367.5

	
367.5

	
367.5

	
420




	
AS2

	
420

	
420

	
420

	
420

	
420

	
420
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Table 11. Optimum main design factors finding by new method.






Table 11. Optimum main design factors finding by new method.





	
No.

	
ut




	
10

	
15

	
20

	
25

	
30

	
35






	
u1

	
1

	
1.5

	
2.1

	
2.7

	
3.2

	
3.8




	
Xba1

	
0.25

	
0.2875

	
0.2875

	
0.25

	
0.25

	
0.25




	
Xba2

	
0.25

	
0.25

	
0.25

	
0.25

	
0.25

	
0.25




	
AS1

	
367.5

	
420

	
420

	
420

	
420

	
420




	
AS2

	
420

	
420

	
420

	
420

	
420

	
420
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