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Abstract: In order to cope with the influences of noise interference and variable load on rolling
bearing fault diagnosis in real industrial environments, a rolling bearing fault diagnosis method
based on CBAM_ResNet and ACON activation function is proposed. Firstly, the collected bearing
working vibration signals are made into input samples to retain the original features to the maximum
extent. Secondly, the CBAM_ResNet fault diagnosis model is constructed. By taking advantage
of the convolutional neural network (CNN) in classification tasks and key feature extraction, the
convolutional block attention module network (CBAM) is embedded in the residual blocks, to avoid
model degradation and enhance the interaction of information in channel and spatial, raise the key
feature extraction capability of the model. Finally, the Activate or Not (ACON) activation function, is
introduced to adaptively activate shallow features for the purpose of improving the model’s feature
representation and generalization capability. The bearing dataset of Case Western Reserve University
(CWRU) is used for experiments, and the average accuracy of the proposed method is 97.68% and
93.93% under strong noise interference and variable load, respectively. Compared with the other
three published bearing fault diagnosis methods, the results indicate that this proposed method has
better noise immunity and generalization ability, and has good application value.

Keywords: bearing fault diagnosis; attention mechanism; residual network; ACON activation
function; deep learning

1. Introduction

Rolling bearings, as essential parts of machinery, are widely used in various indus-
tries [1]. The faults of rolling bearings in rotating machinery and equipment may cause
production stoppage or even major accidents [2], so it is especially important to monitor
and diagnose the operating condition of rolling bearings. Monitoring based on vibration
signals is not affected by the mechanical structure and is simple to test, so it is one of the
widely studied and applied fault diagnosis techniques [3]. By using the collected rolling
bearing’s operating vibration signal data, the research of efficient and feasible fault diagno-
sis method, is of great significance to the timely detection of faults and normal works of
mechanical equipment, which also is the motivation for our study.

In recent years, with the purpose of relying on vibration data for fault diagnosis,
data-driven intelligent fault diagnosis techniques have been developed tremendously [4].
According to extensive reports, two keys to fault diagnosis are feature extraction and fault
classification [5]. For instance, H.Habbouche et al. [6] used variational modal decomposition
(VMD) for fault feature detection, then by virtue of convolution-pooling structures to trigger
multi-scale features for diagnosis, experimental results validated that their method has
good applicability in rolling bearing fault diagnosis. Jaouher B.A et al. [7] used empirical
modal decomposition (EMD) to search the features of signals to choose the paramount
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intrinsic mode function (IMF) and finally combined it with an artificial neural network
(ANN) for fault diagnosis of rolling bearings. Hou et al. [8] used wavelet transform (WT)
to decompose the signal at multiple scales, and then input it to the constructed IDCNN
to obtain very high results for rolling bearing fault diagnosis. The above studies have a
similar process, that is, they first extracted features in the vibration signal with the help
of different signal processing methods, then input features to a shallow neural network
for diagnostic classification. This process is known as machine learning applied to fault
diagnosis [9-11]. These studies have promoted the development of the field of rolling
bearing fault diagnosis, but there are problems of high manual feature extraction workload,
heavy reliance on expert experience and knowledge, and strong subjective factors.

Deep learning fault diagnosis methods without relying on expert experience, can
directly extract important features from vibration signals, which is difficult to achieve by
using traditional machine learning [12]. Convolutional neural networks are very effective
network structures in deep learning, and therefore, many scholars have used them for fault
diagnosis. Saucedo-Dorantes et al. [13] proposed a novel data-driven diagnosis method
based on deep feature learning for fault diagnosis of bearings with different advanced
material processes such as metal bearings, hybrid ceramic bearings, and ceramic bearings.
Yang et al. [14] used adversarial neural networks (GAN) to generate two-dimensional
grayscale images of faulty vibration signals, which were combined with two-dimensional
CNN (2DCNN) to complete the fault diagnosis of bearings. Wen et al. [15] proposed
a novel CNN model similar to the LeNet-5 structure, which can extract the features of
transformed 2D images and eliminate the influence of manually extracted features, and the
method is verified to have good fault diagnosis results. Although these methods achieve
good fault diagnosis results without the intervention of expert experience, however, in
reality, machinery and equipment often work in an environment of intermingled noise,
high speed, and variable load, on the one hand, the noise will greatly interfere with the
effective information in the vibration signal, on the other hand, high-speed variable load
significantly increases the complexity and uncertainty of the vibration signal.

Affected by noise interference and variable loads, deep learning fault diagnosis meth-
ods perform unstably in extracting fault features [16], and subsequently, the accuracy
decreases and the generalization deteriorates, which eventually makes fault diagnosis
challenging. Therefore, based on such considerations, some scholars have studied deep
learning methods of response. Cao et al. [17] used kernels of different sizes in the first part
of the model to construct a multi-scale IDCNN that can capture fault features at different
resolutions and enable fault diagnosis and simulated a noisy environment for diagnosis.
Zhang et al. [18] proposed a domain-adaptive rolling bearing fault diagnosis model, called
WDCNN, which has the significant advantage of resisting noise interference from vibration
signals by using a wider convolutional kernel size in the first layer of the CNN and can
be applied in the case of load variations. Liu et al. [19] proposed a multi-task 1IDCNN, to
improve fault diagnosis performance using two auxiliary tasks: speed identification task
(SIT) and load identification task (LIT). Zhang [20] et al. proposed a CNN with training
interference (TICNN), which achieves higher accuracy in noise and can be tested under
different load conditions. These methods are designed to cope with the effects of realistic
environments for fault diagnosis, but it is still room for improvement in these methods.
What has been demonstrated is that CNNs are sensitive to other information about the
real environment, such as noise and changing load conditions [21]. It can be improved
by using one of its variants, the residual network, similar to what Ref [22,23] did, which
focuses on improving the noise-resistant performance of CNN by increasing the number of
layers with the help of residual connections, verifies that this technique is efficient when
applied to fault diagnosis, unfortunately, however, they do not further explore the effect of
variable load. Furthermore, using novel activation functions or attention mechanisms can
help CNN to obtain better performance [24]. Such as in [12,25-28], more or less, they seek
or design suitable novel techniques to apply to their methods and enhance the performance
for fault diagnosis.
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In a general overview, we found three problems with the vibration signal-based fault
diagnosis method:

First, traditional machine learning applications for fault diagnosis emphasize the use
of signal processing to extract important features and then input them into a shallow fault
classifier. This relies heavily on expert experience.

Second, deep learning fault diagnosis methods do not emphasize expert experience
but still need to further consider the impact of a realistic environment on it, such as noise
and variable load.

Third, CNN, as an excellent representative of deep learning, is unsatisfactory when
applied to fault diagnosis considering realistic environments, and it is necessary to adopt
techniques such as using residual connections to deepen the network and adding attention
mechanisms to counteract useless information.

Hence, we designed a coping method based on CBAM_ResNet and ACON activation
functions. The main contributes of this paper are:

(1) A novel CNN named CBAM_ResNet is proposed and the ACON activation function
is used in it. Our method does not rely on expert experience for fault diagnosis, it
achieves 100% diagnosis of the experimental data.

(2) The effects of realistic environments such as noise and load variations on our method
are considered, and compared with other publicly available fault diagnosis methods
in the same consideration, our method performs better.

(3) By employing two optimization techniques: embedding the CBAM attention mech-
anism into the residual block and introducing the ACON activation function, the
performance of fault diagnosis is improved, which maintains high diagnostic accuracy
under noise interference and has the ability to generalize to cope with load variations.

The rest of this paper can be summarized as follows: Section 2 presents the materials
and methods used to construct the proposed model. The specific framework structure
and parameters of the proposed model are also given in Section 2. Section 3 verifies the
performance of the proposed model through several experiments and a discussion of
the ablation experiments. Section 4 concludes the whole paper and presents our future
research focus.

2. Materials and Methods
2.1. CNN

Convolutional neural networks (CNN) contain a two-stage structure of convolution
and classification [29]. The convolutional structure mainly uses convolutional layers to
learn features from the input layer data, pooling layers are connected after the convolutional
layer to accelerate learning, and the classification structure mainly contains fully connected
layers and output layers. The basic structure of a typical CNN is shown in Figure 1.

Fully Connected
Convolutional . Lager Output
Input Layer Pooling Layer
Layer

Figure 1. A typical CNN’s basic structure.
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2.1.1. Convolution Layer

The operation of the convolution layer is the core of CNN, which extracts the local
features in the input data, and its computational principle is shown in Equation (1):

z;.Jrl =0 <Z xf * wf]- + b}“) 1)
1

where (+) is an arbitrary activation function, * is the convolution calculation, I is the
number of layers, [-layer interior, xf is the i_th eigenvalue, wf j is the j_th convolution kernel,

bl+1 14+1
]

is the bias term, and z i s the j_th output eigenvalue.

2.1.2. Pooling Layer

The use of pooling in fault diagnosis can filter out irrelevant information [30]. The
operation of the pooling layer changes the dimensionality of the features, reducing the
complexity of the model, while speeding up the operation and alleviating overfitting, the
principle of pooling calculation is shown in Equation (2):

a} = Pyer (zé(n)) ()

where a} is the output after pooling, R is the pooling range, and # is the coordinate of the
pooling location.

2.1.3. ReLU Activation Function

The ReLU has become the default activation function for many types of neural net-
works because the models using it are easier to train. Unless otherwise stated, the activation
functions in this paper will use ReLU.

ReLU (x) = max(0, x) ©)]

2.1.4. Fully Connected Layer

In neural networks working on classification, the fully connected layer (FC) has a
crucial role. The layer before FC is to extract features, and the role of FC is to classify the
features. However, too many parameters of the FC will lead the model to be too redundant.
In this paper, we use adaptive average pooling (AAP) to compress the features and then
access the FC to output the classified results.

2.2. Residual Network

Residual networks [31] incorporate residual learning in serial convolutional layers.
This network has obvious hierarchical relationships, eliminates the problem of difficult
training of networks with too large depths, ensures the output feature expressiveness
and this structure of introducing constant mapping fundamentally solves the gradient
disappearance and degradation, only the difference between the input and the output is
learned. The structure of the residual block is shown in Figure 2.

Identity x

Z[reLu | = FGO) ¥ gy
—| S o) G(x)
& &)

X

Figure 2. Structure of the residual block.
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2.3. ACON Activation Function

The family of ACON activation functions was proposed by Ma Ningning [32] in 2021,
in which the Meta ACON-C activation function adaptively decides whether a neuron is
activated or not to help improve the transmission performance and the generalization
performance of the network, which can improve the phenomenon of “neuron necrosis” to
a certain extent and suppress the redundant information in the collected vibration signals.
The principle of the family of ACON activation functions is to make an approximate
smoothing of a standard maximum function, as shown in Equation (4):

Y x;ePi
n X
i=1 e.B i

Y/g(xl,...,xn): (4)

where x; is the input feature vector, n is the number of samples, and B is the switching
factor. If it is desired that the entire smoothing activation function behaves as a complete
nonlinear activation, B — oo is required, at which point Y approximates the maximum
value; instead, it behaves as a linear average then it does not activate, p — 0 is required, at
which point Yy approximates the average value.

2.3.1. ACON-C

The family of ACON activation functions mainly includes three subclasses with
different suffixes A, B, and C. The proposer verified that the subclass ACON-C is relatively
better, and its principle is shown in Equation (5):

Yp(11a(x),mp(x)) = kx - o[B(kx)] + pax ®)

where o] is the Sigmoid activation function, n,(x) = p1x, np(x) = pax are two linear
functions with slopes less than 1 and different, k is the difference between the slopes of the
linear functions, and the range of first-order derivatives of ACON-C can be determined by
controlling k.

2.3.2. Meta ACON-C

The Meta ACON-C activation function can accomplish adaptive switching between
linear and nonlinear mapping by iteratively defining the switching factor. It can be obtained
by making modifications on the basis of AOCN-C. Referring to the modification methods
in the image field [33], a multi-channel one-dimensional adaptive function based channel-
wise is designed as shown in Equation (6) to obtain the one-dimensional Meta ACON-C
activation function that is used in this paper.

W
Be = 0'<W1W2 Z xc,w) (6)

w=1

where B, is the value of the adaptive function of the input sample data channel, which
can be obtained by assigning the same weight to the same element across channels by the
switching factor, o(+) is the Sigmoid activation function, ¢ and w are the sample dimension
dimensions, W; € REXC/T W, € RE/™C 1 is the scaling factor, which is usually taken to
the power of 2.

2.4. CBAM

The attention mechanism borrows the way of resource allocation in human perceptual
behavior, and its ability to give more attention to important information to achieve the
purpose of obtaining more detailed information in the target task [34]. Among them, the
Convolutional Block Attention Module (CBAM) is widely used in deep learning networks
due to its fewer parameters, higher speed, and higher flexibility, and has been proved
that the network model learns more important features when it is applied. The CBAM is
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structured in such a way that the channel attention module is directly in series with the
spatial attention module, as shown in Figure 3.

(T Refined Feature
Spatial
Attention
Module Fr

Input Feature Channel

Attention
'/

Figure 3. Structure of the CBAM.

—

2.4.1. Channel Attention Module

This module is characterized by constant channel dimension and compressing spatial
dimension, focusing on the “why” of the sample divided into different categories. The
calculation process of the channel attention module is shown in Equation (7):

A = MLP[Avg P(F)]
M = MLP[Max P(F)] @)
Mc(F) = (A+ M)
F' = F® Mc(F)

where F’ is the feature matrix with fused channel attention weights, M (F) is the channel
attention weights, Avg P(-) is the average pooling operation, Max P(-) is the maximum
pooling operation, MLP[-] is the multilayer perceptron (MLP), and o(-) is the Sigmoid
activation function.

2.4.2. Spatial Attention Module

In contrast to the former, this module is characterized by maintaining spatial dimen-
sion and compressing channel dimension. What distinguishes the spatial attention module
from the former is it more concerned with “where” the information is. The calculation
process of the spatial attention module is shown in Equation (8):

M(F") = [Avg P(F'), Max P(F')]
Ms(F') = o(conv (M(F'))) ®)
F" = F' @ Mg(F')

where F” is the feature matrix incorporating the spatial attention weights, Ms(F’) is the
channel attention weights, and conv is the convolution operation, in this paper kernel size
of the spatial attention module is 3.

2.5. Proposed Methodology

Fault diagnosis is actually inseparable from the classification task. CNN has obvious
advantages in classification tasks and key feature extraction. However, on the one hand,
traditional CNN extracts deeper features by deepening the number of network layers.
Unfortunately, when the number of layers is too large, the network model faces the problem
of gradient dispersion or explosion and network degradation [35], which will lead to a
decrease in the accuracy of fault diagnosis models.

On the other hand, in actual industrial production, the vibration signal is highly
susceptible to interference from environmental noise, and the transforming load work
increases the complexity of the collected data, thus, weakening the ability of the model to
extract key features. To cope with these problems, this paper constructs a CNN with resid-
ual connections while combining the CBAM attention mechanism and ACON activation
function, and proposes a rolling bearing fault diagnosis model based on CBAM_ResNet
and ACON activation function.
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2.5.1. Proposed Model

The proposed model mainly consists of a convolutional layer, maximum pooling layer,
improved residual block, AAP layer, and FC layer. The network structure of the proposed
model is shown in Figure 4.
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Figure 4. Network structure of the proposed model.

Residual networks deepen the number of network layers through residual learning
to obtain deep features [31,35]. In this paper, we use modified residual blocks to extract
deeper features for fault diagnosis.

The construction of a suitable first feature extraction layer in CNN plays a vital role in
the performance of the whole model [18,20,30]. In this paper, we use a wider convolutional
kernel to enhance the perceptual field in the first layer of the model to reduce the influence
of noise on the model feature extraction in a small area and provide assurance for the
subsequent extraction of deeper key features.

By dynamically learning the parameters of the ACON activation function and design-
ing different forms of activation for each neuron, the feature representation capability of
the model can be improved, thus making the model more generalizable [36]. In this paper,
a convolutional layer based on the meta ACON-C activation function is designed between
a wide kernel convolutional layer and an improved residual block. After extracting local
features, it is used to improve the generalization performance of the model by exploiting
the adaptive activation properties of the ACON activation function.

CBAM, as an attention mechanism, captures both channel features and spatial features,
and has good embeddable ability [37], which first achieves control of global information
by establishing the connection between feature channels and then finding important infor-
mation in the channel axis space to enhance the sensitivity of the model to key features,
raises the model performance. In this paper, CBAM is embedded into the residual blocks
to obtain more feature information on channels and spaces within the residual connections
by improving the blocks of the residual network. The CBAM_ResNet is constructed, and
the model has deep key feature extraction ability, which can effectively suppress redun-
dant information interference and solve the problems of gradient dispersion and network
degradation at the same time.

2.5.2. Improved Residual Block

In the improved residual block, the input feature x is first calculated by two 3 x 1
convolutions to obtain the feature F(x), which then enters CBAM to calculate the weights
of the channel and spatial information. Next, the weights obtained are dotted with F(x),
and finally summed with x to obtain G(x). The structure of the improved residual block is
shown in Figure 5.
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Figure 5. Structure of improved residual block.

The 1 x 1 convolution of the dashed box will be used to obtain x’ when the number of
channels of the preceding and following features is inconsistent to ensure the operation of
the calculation.

2.5.3. Model Parameters

The software platform for the proposed model and experiments is PyTorch 1.8 deep
learning framework based on Python 3.8, which is available on their website [38]. Since
there is no consensus on how to set the model parameters, this paper sets them according
to popular recommendations [24,28,29,34]. A certain length of vibration signal is divided
as the sample to input to the model, and the output size of the sample after the network
structure is shown in Table 1.

Table 1. Model Parameters.

Network Structure Parameter Setting?  Output Size  Activation Function
Conv_1 k=64,s=16,p=24 32 x 64 ReLU
MaxPooling_1 k=s=2 32 x 32 -
Conv_2 k=3,s=1p=1 32 x 32 Meta ACON-C
MaxPooling_2 =s=2 32 x 16 -
Improved block with CBAM ! - 32 x 16 ReLU
MaxPooling_3 k=s=2 32x8 -
Improved block with CBAM - 64 x 8 ReLU
MaxPooling_4 k=s=2 64 x 4 -
Improved block with CBAM - 128 x 4 ReLU
Adaptive AvgPooling - 128 x 1 -
Fully connected layer in =128, out =10 10 -

! Improved block with CBAM is the same structure as in Section 2.5.2, and the parameters are already listed in the
text. 2 In Parameter Setting, “k” is kernel size, “s” is stride, “p” is padding, “in/out” is in/out features.

2.6. Experimental Data

The publicly available dataset from CWRU [39], which is the bearing timing signal
data collected by their experimental equipment shown in Figure 6. By artificial limitation,
the motor shaft supported by the bearing does not rotate at a single approximate speed, its
speed varies as the load changes [40], details of which can be known in Table 2.
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Figure 6. CWRU bearing faults experimental equipment.

Table 2. The one-to-one correspondence between load and speed.

Motor Load OHP 1HP 2HP 3HP
Approx. Speed 1797 r/min 1772 r/min 1750 r/min 1730 r/min

A portion of CWRU 12k drive-end bearing fault data, which a sampling frequency
is 12kHz, is selected for experiments in this paper, as shown in Table 3. For the drive-end
bearings, which type are SKF6205, single-point faults were artificially implanted into them
by using electro-discharge machining. The fault position is divided into three kinds: inner
race fault (IRF), rolling body fault (BF), and outer race fault located at 6 O’clock (ORF), each
fault position contains four fault sizes: 0.007 inches, 0.014 inches, 0.021 inches, 0.028 inches.
Some of the data are unavailable, so we do not take all data of fault size 0.028 for the sake
of experimental integrity. Therefore, in the experimental data, the bearing states under a
certain load can be divided into nine types of fault states and one type of normal states,
corresponding to the 10 time-domain vibration signals.

Table 3. Experimental data.

Fault Position Fault Sizes (Inches) Load

OHP 1HP 2HP 3HP

Normal / *y 1 x4 *4 %

0.007 *y *4 *y .

0.014 *4 *y *4 *_

IRF 0.021 *+ *+ 4 *

0.028 * *_ % *_

0.007 *4 *y *y *_

0.014 *+ *+ *4 *.

BE 0.021 *y *y ty s

0.028 *_ *_ *_ *_

0.007 *+ *+ *+ *-

0.014 *y *4 *y -

ORF 0.021 *4 *y *y *_

0.028 - - - _

1 Mark “*+” data available and will be used as experimental data, mark “*-” data available but will not be used as
experimental data, mark “-” data unavailable.

To make full use of the original features of data while appropriately expanding data,
a sliding window is used for each timing signal file with different loads. A sample will
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be obtained when the sliding window length is set to 1024 data points and the step size is
224 data points per move, the process is shown in Figure 7.

Window Step Sliding Window — Time domain signals

Sample N ---

Amplitude

Sample 1] 1~ " [ f ||

Sampling points / Time

Window Length (12,000 Sampling points = 1 seconds)

Figure 7. The process of sampling time domain signals using sliding windows.

Sliding window to obtain the same length of each sample for 1024, containing approx-
imately bearing work rotation contains about 2.5 turns of data points, feature information
is sufficient, the calculation principle of the data points of a single turn as in Equation (9):

—60x L
N =60 x R )
where N is the number of data points collected from one working revolution of the rolling
bearing, is the sampling frequency, and is the speed under the corresponding load. This
method makes the sample sets, according to the ratio of 3:1:1. Taking OHP as an example,

the specific fault conditions, quantity size, and fault type labels are shown in Table 4.

Table 4. The division of the experimental sample(0HP).

Fault Sizes (Inches) Fault Position Tra/Val/Test ! Fault Type Label

None Normal 240/80/80 0
IRF 240/80/80 1

0.007 RBF 240/80/80 2
ORF 240/80/80 3

IRF 240/80/80 4

0.014 RBF 240/80/80 5
ORF 240/80/80 5

IRF 240/80/80 7

0.021 RBF 240/80/80 8
ORF 240/80/80 9

! Tra/Val/Test represent the number of samples for training, validation and testing, respectively. In the diagnostic
process, for the model, the test/val samples is unlabeled.

Figure 8 shows the time domain history of the samples with different fault type labels,
which reveals that the vibration signals of different fault types are distinguishable.
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Figure 8. The time domain images, (a—j) corresponds to 0~9 of the fault type label.
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3. Experimental Results and Discussion
The following computer hardware configurations are required for the experiments:

CPU model is Intel Core i5-8300H, memory 8 GB; GPU model is NVIDIA GeForce GTX1050.
The fault diagnosis flows for a single experiment can be seen in Figure 9.

( Start fault diagnosis )

!

The collected time-domain vibration
signals are divided as samples, which are
used for training, validation and testing,

respectively

Construct the proposed model and
initialize it

.

Input training samples, start forward
propagation to get the training loss, and
calculate backward propagation to update
the parameters of the model

using the validation sample to observe and
record the fault diagnosis results of the
current model

Fhe current iteration has input a
samples and is the last iteration

Yes

The proposed model training is completed 4—<A“ testing (
samples

I

Obtain the fault diagnosis results

Figure 9. Fault diagnosis flows.

e  Step 1: Use sliding window sampling to partition the training set, validation set and
testing set.
Step 2: Construct a neural network model consistent as in Section 2.5.
Step 3: By feeding samples from the training set into the model for training, forward
and backward propagation is achieved to update the parameters of the model.

e  Step 4: At the end of a single iteration, use the validation set to observe and record the
fault diagnosis results of the current model.

e  Step 5: Determine if the total number of iterations is reached, if yes, stop the iteration
and save the model, otherwise repeat steps 3 and 4.

e  Step 6: Samples from the testing set that are not involved in the training process are
input to the saved model.

e  Step 7: Obtain the fault diagnosis results.
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3.1. Diagnostic Results of the Proposed Model
The initial learning rate (LR) is set to 0.001, all iterations are set to 30, and the learning
rate is halved every 10 iterations by combining the StepLR learning rate decay mechanism.

The batch size is set to 32, and use the Cross-Entropy Loss function, which is defined as in
Equation (10):

batch_size n

Y. Y —yilogyi— (1—y;)log (1 — y}-) (10)

=1 i=1

Loss =———
batch_size

Common evaluation metrics used in neural networks are accuracy, precision, recall
and F1 score, and they are calculated as shown in Equation (11):
— TP+TN
Accuracy = 1prENTNTFD
.. . TP
precision = 15 rp

_ _TP (11)
recall = 1p3 N
recision * recall
Fl_score =2X Preason ¥ e

(precision + recall)

where TP is True Positive, FP is False Positive, TN, and FN were true negative and false
negative, respectively.

We recorded the accuracy and loss after each iteration in the experiment and plotted
the accuracy and loss lines as the experimental results show in Figure 10. It is known that
these two evaluation metrics of the model fluctuate dramatically at the beginning of the
iteration. After completing the 6th iteration, the accuracy and loss of the model level led
off, indicating the ability of the model to learn fault characteristics quickly and eventually
reach a steady state, presenting almost zero loss values, as well as fully correct accuracy.
In addition, according to the same division, we do experiments with the 1 HP, 2 HP, and
0~2 HP data, respectively. The accuracy can be seen in Table 5, which confirmed that the
model has good diagnostic performance under these three load cases.

Accuracy-line Loss-line
1.0 — 1.0 1
0.8 0.81
2 0.6 . 0.61 .
] —— train_acc @ —— train_loss
§ —-—- valid_acc S —— valid_loss
< 0.4 0.4
0.2 0.24
| S
001" 0.0 1 e e s
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Epochs Epochs
(a) (b)

Figure 10. Experimental results: (a) Accuracy line; (b) Loss line.
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Table 5. Diagnostic accuracy in certain load condition data.

Load Condition of Data Accuracy (%)
0 HP 100
1 HP 100
2HP 100
0~2HP! 100

1 0~2HP means that the tra3 x 240, val3 x 80, and test3 x 80 in single Fault Type Label, samples are uniformly
from these three different loads.

3.2. Diagnostic Results under Noise Interference

The actual working operation of the rolling bearing is bound to generate noise because
of the relative friction of the parts, which both damage the bearing’s health status and
interferes with the collected vibration signal. In this subsection, we use the samples in
Table 1 and only add Gaussian white noise to the samples in the testing set, and the
calculation principle is shown in Equation (12):

SNRyz = 101g (P“g””’ ) (12)
Proise
where SNRp is the signal-to-noise ratio, Psupscript1 is the energy of this subscript.

Five testing sets with SNR of 2 dB, 4 dB, 6 dB, 8 dB, and 10 dB are constructed for
experiments, and the proposed model is compared with three different models MSCNN [41],
1DCNN [8], and WDCNN [18].

(1) The MSCNN is structured with convolutional layers containing 3 x 1,5 x 1,7 x 1,
and 32 x 1 convolutional kernels of various sizes. The first part is a convolutional layer
with a pooling layer. The kernel size is 32 x 1 and the pooling reduces the dimensionality
by half, ultimately extracting the short-time features in the original vibration signal. The
second part is three different branches corresponding to the use of convolutional kernel
sizes of 3, 5, and 7, and the short-time features are passed through the three convolution-
pooling structures of each branch. The final part is the output of each branch is subjected to
concat operation and then diagnosed using softmax classification.

(2) The 1DCNN is structured with 11 sequentially concatenated layers, having an
input layer, three convolutional with batch norm (BN) layers, a pooling layer of 2 x 1 size,
a Dropout layer, a fully connected layer, and an output layer. The size of the kernel is
64 x 1 for the first convolution layer and 3 x 1 for the remaining two layers, the number
of channels after the short-time features pass from the input layer is always 128, and the
Dropout layer coefficient is 0.5.

(3) The structure of WDCNN has five layers in a series of convolutional-batch normali-
zation-pooling, the size of the first kernel is set to 64 x 1, and the remaining kernels
are 3 X 1 except for the first layer. The hidden layer has 100 neurons and uses Softmax
classification results as the total output.

To obtain reliable values, the average value of five replicate experiments is used as
the results. The comparison with three similar models for five different noise scenarios is
presented in Table 6, which shows the average accuracy results.

Table 6. Comparison of similar approaches.

Average Accuracies

Reference Domain of Input Data ~ Whether End-to-End Results (%) 1
Wang et al. [41] Time Yes 90.58
Hou et al. [8] Frequency No 91.44
Zhang et al. [15] Time Yes 94.90
Proposed model Time Yes 97.68

! Average accuracy of five replicate experiments is considered as one result, five different noises have five results,
and finally the five results are averaged.
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More detail about fault diagnosis results of different models under variable noise is

shown in Figure 11.

As can be seen from Figure 11, the average accuracy of this paper’s proposed model
under noise reaches 97.68%, which is improved by 7.1%, 6.24%, and 2.78%, respectively,
compared with the other three literature methods. By using improved residual blocks
with embedding CBAM attention mechanism and introducing Meta ACON-C activation
function, the model network maximizes the learning of sample features, mitigates the
interference of noise, improves the transmission capability and robustness of the model,
and finally obtains good fault diagnosis accuracy.

MSCNN
__1oo
< 95
7~ 90
o/
5 8
- 80
! :
; 75
= 70
9p]
= 65
60
2dB
MSCNN | 81.975
IDCNN | 76.75
WDCNN | 85.425
Proposed 91.475

1IDCNN WDCNN
4dB 6dB 8dB
85.925 ' 90.875 95.225
87.95 93.85 98.90
92.90 97.625 98.65
97.525 99.55 99.875

Variation of SNR(dB)

Proposed
il
10dB AVG
98.925 | 90.585
99.77 91.444
99.90 94.90
99.975 97.68

Figure 11. Fault diagnosis results of different models under variable noise.

Further, we plotted two confusion matrices of the fault diagnostic results of two
models which close performance in the experiments with an SNR of 4 dB, as shown in
Figure 12. The evaluation metrics of the proposed model in a single experiment (4 dB),
which can reveal the diagnostic performance of the model for a certain fault type, are

shown in Table 7.

Table 7. Evaluation metrics of the proposed model.

Fault Type Label Precision (%) Recall (%) F1 Score (%)
0 98.76 100 99.38
1 100 100 100
2 100 95 97.43
3 100 100 100
4 84.21 100 91.43
5 91.95 100 95.81
6 100 75 85.71
7 100 100 100
8 98.76 100 99.38
9 100 100 100
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Figure 12. The confusion matrix of the fault diagnostic results (4 dB): (a) Confusion matrix of
WDCNN;; (b) Confusion matrix of the proposed model.

From Figures 11 and 12, with SNR of 4 dB, the average accuracy of the WDCNN model
which with wide kernel in the first convolutional layer, is better than that of IDCNN and
MSCNN in fault diagnosis, but the samples of four fault type label are misdiagnosed under
noise interference, for example, 48 samples with a fault label-0 were diagnosed with a fault
label-4. In addition, only two types of misdiagnosis occur in the proposed model and the
number of misdiagnoses is very small, its biggest mistake is to diagnose 15 samples with
a fault label-6 as being a fault label-4. Relatively speaking, it performs more undisturbed
than the models in these three different articles.

3.3. Diagnostic Results under Variable Load

In an actual manufacturing environment, the load conditions are variable, which
requires the fault diagnosis method to have high generalization ability. In CWUR’s experi-
ments, changes in load and speed are artificially linked, meaning that the work conditions
of the bearings are different. The vibration data are acquired under different work con-
ditions and lead to large distribution divergences which may cause the performances of
fault diagnosis approaches to drop dramatically. This is usually known as the domain shift
phenomenon [42], and its theory is shown in Figure 13.

! domain shift !
}

Same machine, different load conditions

x Normal

—
. —
—
—

—

target domain

source domain

Figure 13. The domain shift phenomenon theory.
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In studying this problem, the data used to train the model is usually referred to as the
source domain, and the unlabeled data taken to test the model but relevant is the target
domain [43], the goal is to generalize the fault diagnosis knowledge learned from the source
domain to the target domain [44]. To obtain the generalization performance of the proposed
model, experiments on bearing fault diagnosis under variable loads are required. The data
samples of 0 hp, 1 hp, and 2 hp are taken as the source domain in turn, and then the data
under the remaining loads are taken as the target domain. Ten dB noise is added to the
samples in the target domain. Comparing the proposed model with the other three models,
the average of the accuracy of the five repeated experiments as the experimental results
that are shown in Figure 14. For example, “1—0"” means that train samples of 1 HP are
taken as the source domain, and test samples of 0 HP as the target domain to validate and
test, more domain details of the experiments can be seen in Table 8.

MSCNN 1 IDCNN ®m WDCNN M Proposed

S 95
g S
< 9 : I I 5
&8s
g 80
<
=75
= 70
1—0 2—0 2—1 0—1 0—2 1-2 AVG
MSCNN 87.35 88.60 92.05 88.475 90.125 97.89 90.748
IDCNN 90.475 90.70 91.85 81.875 80.70 99.875 89.246
WDCNN'  91.85 88.55 94.50 84.25 84.77 99.75 90.612
mProposed  93.925 92.375 97.65 92.125 87.55 99.95 93.929
Variation of Load Domain
Figure 14. Fault diagnosis results of different models under variable load domain.
Table 8. Domain details of the experiments.
Domain Type Source Domain Target Domain
Labeled signal
Description samples under a Unlabeled signal samples under another load

single load

Train samples of 0 HP  Test samples of 1 HP  Test samples of 2 HP

Domain details Train samples of 2 HP  Test samples of 1 HP  Test samples of 0 HP

Train samples of 1 HP  Test samples of 0 HP  Test samples of 2 HP

Objectives of the Generalize the fault diagnosis knowledge learned from source domain
experiments to target domain, diagnose samples in the target domain

As can be seen from Figure 14, the accuracy of 1DCNN for fault diagnosis under
variable load fluctuates greatly, and the generalization performance is inadequate, the
lowest result is 80.70%. WDCNN performs similarly to MSCNN, and relies on the extracted
multi-scale features, MSCNNN shows better generalization at 0—2, as in the figure where
the circle is located, achieving 90.125%. However, also because of the susceptibility to noise
interference, even a small amount of 10 dB noise makes the fault diagnosis of MSCNN
under variable load become worse than other models, at 1—2, only 97.89% when the
other three were over 99%. The average accuracy of the proposed model reaches 93.93%
under variable load, which is 3.18%, 4.68%, and 3.32% higher than the other three models,
respectively, indicating that our method can be applied for bearing fault diagnosis under
variable loads because it has more superior generalization performance.
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3.4. Discussion

To facilitate the discussion, three models for ablation comparison are set up in the
experiments for exploring the fault diagnosis performance of the proposed models, and the
details of differentiating them are shown in Table 9.

Table 9. The details of differentiating ablation comparison models.

Optimization Techniques !

Names of the Models
Embedding CBAM Using Meta ACON-C
Base X X
Base + A Vv X
Base +B X v
Base + A + B (proposed model) Vv v

1 Mark “y/” means that the optimization techniques is applied. Mark ”x” means that the optimization techniques
is not applied.

(1) The first model is without embedding the CBAM attention mechanism inside the
residual block and without using the Meta ACON-C activation function, named Base.

(2) The second model is to embed the CBAM attention mechanism inside the residual
block, but without using the Meta ACON-C activation function, named Base + A.

(3) The third model is to use the Meta ACON-C activation function in the second feature
extraction layer of the model, but without embedding the CBAM attention mechanism
in the residual block, named Base + B.

(4) The proposed model is named Base + A + B.

3.4.1. Discussion 1

It is necessary to have a discussion on the improvement of the fault diagnosis perfor-
mance of the different optimization modules of the proposed model.

Similarly, we recorded the average of the experimental accuracy with five repetitions as
the experimental results, and the results of the ablation experiment are shown in Figure 15.

S 9
=
=
2
S 92 —— BASE
Z BASE+A
&= BASE+B
BASE+A+B
88
84
2dB 4dB 6dB 8dB 10dB
—e—BASE 87.45 94.75 98.07 99.2 99.95
BASE+A 88.9 96.47 98.875 99.57 99.975
BASE+B 89.35 9525 08.2 99.85 99.95
BASE+A+B| 91475 97.525 99.55 99.875 99.975

Figure 15. The ablation experiment’s results.



Appl. Sci. 2023,13,7593

19 of 23

From Figure 15, embedding the CBAM attention mechanism and using the Meta
ACON-C activation function significantly improves the model performance, and the av-
erage accuracy of the model fault diagnosis improves by 4.03% compared to Base when
the SNR of 2 dB. In the 4 dB result, Base + A improves by 1.72% and 1.22% compared to
Base and Base + B, respectively. In the 6dB result, Base + B seems to have no boost to Base,
however, after embedding CBAM, Base + A + B to Base improves by 1.48%. The diagnostic
results of all four models exceed 99% under the effect of slight noise of 8dB and 10 dB.

The effectiveness of the different optimization modules used in the proposed model
is verified by ablation experiments, using either of these two optimization methods can
improve Base’s fault diagnosis performance in the presence of noise interference, and where
the contribution of the embedded CBAM attention mechanism is greater.

3.4.2. Discussion 2

Another point worth discussing is whether the generalization of the proposed model
for fault diagnosis can be improved after the optimization is applied. The t-SNE [45]
technique is applied to feature visualization.

In this discussion, we set the scenario that trains without load to test with load (0—1)
and compare the proposed model with the other two models. Where different color labels
correspond to different fault type labels in Table 4, the visualization of fault diagnosis
results is shown in Figure 16a—c.

%o e 0 & e 0

A 1 Sos 1
17044

2 2

e 3 e 3

e 4 e 4

v ® 5 ® 5

e e 6 e 6

e 7 e 7

e 8 O, o 8

e 9 i e 9

o.
Iy
<8
]
@

(a) MSCNN (b) WDCNN
o e O 4% e O
» 2 2
1 e 3 e 3
e 4 e 4
e 5 e 5
el e 0 ) o6
] 98:91'.3, e 7 '.".‘3?.“ o 7
%0 - Te 8 (/@8
LK. ©e
-
'..;f\‘.\'s';".‘.
DA
%e®
(c) Proposed model (Base + A + B) (d) Base + A

Figure 16. Cont.



Appl. Sci. 2023,13,7593 20 of 23

e O ] e 0
1 -'71- o, 1
2 EON 2
e 3 ® e 3
e 4 e 4
5 s
/ \ ® 6 s, @ 6
° 7 . &S o 7
Toeee o 8 y N o 8
| . e 9 / \ e 9
/ e 4\ / e
LN ! / O
o:.";:‘:
e
(e) Base + B (f) Base

Figure 16. The visualization of fault diagnosis results (0—1): (a) MSCNN; (b) WDCNN; (c) Proposed
model; (d) Proposed model without using Meta ACON-C; (e) Proposed model without embedding
the CBAM,; (f) Proposed model without embedding the CBAM and without using Meta ACON-C.

In addition, to observe the enhancement of the Meta ACON-C activation function on
the proposed model in response to load changes, other ablation experiments are performed
and shown in Figure 16d{.

Figure 16a,b reveals that the diagnosis of fault 2 and fault 8 are easily confused by
MSCNN and WDCNN under the “0—1" variable load condition, overlapping together
and difficult to distinguish. This leads to a decrease in diagnostic accuracy, indicating
that the generalization ability needs to be improved. Figure 16c¢ is the diagnosis results
of the proposed model (Base + A + B) in the same scene, which has significantly better
fault diagnosis performance than MSCNN and WDCNN, and can effectively distinguish
between fault 2 and fault 8. This is also consistent with most related studies that inner race
faults are more difficult to diagnose.

As part of the ablation experiments, Figure 16d,e reveals that if the Meta ACON-C
activation function (Base + A) is not used, or if the CBAM attention mechanism (Base + B)
is not embedded, the diagnostic accuracy of the proposed model will deteriorate slightly. It
is worth noting that by comparing with Figure 16d, the generalization improvement is not
very obvious when the proposed model only embeds the CBAM attention mechanism to
cope with the variable load. A simple comparison demonstrates that this optimization is
proven: the proposed model has better fault diagnosis and better generalization when the
Meta ACON-C activation function is used.

Figure 16f reveals that without embedding the CBAM attention mechanism and
without using the Meta ACON-C activation function (Base), the proposed model fails to
better distinguish the inner race faults.

4. Conclusions

The impact of noise interference and variable load on fault diagnosis in a realistic
industrial environment needs to be alleviated, so a rolling bearing fault diagnosis method
based on CBAM_ResNet and ACON activation function is proposed in this paper. The
experiments use the rolling bearing dataset of CWRU, results indicate that the proposed
method demonstrates better noise immunity and generalization ability compared to other
deep-learning diagnostic methods. In discussion, the effectiveness of the optimization in
this paper is confirmed. It serves as a rolling bearing fault diagnosis method that can be
applied in real industry. The main conclusions are as follows.

(1) To diagnose the location and degree of bearing faults, a fault diagnosis model based
on CBAM_ResNet and ACON activation function is proposed. It achieves 100%
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diagnostic accuracy for experimental data without considering noise interference and
variable loads.

(2) After considering five different noise interferences from 2 to 10 dB, in increments of 2,
the diagnostic accuracy using our method is 97.68%, which is 7.1%, 6.24%, and 2.78%
higher, respectively, compared with the other three published methods.

(38) Six groups of experiments are set up with a test set of 10 dB noise and variable
load domain, and the diagnostic accuracy of our method is 93.93%. It exceeds the
comparison methods by 3.18%, 4.68%, and 3.32%, respectively.

This paper has explored the fault diagnosis performance of the proposed model in
a realistic industrial environment with noise interference and variable loads, but fault
diagnosis methods should not be limited to a single device. Therefore, we will endeavor
to research fault diagnosis methods that have the ability to cope with real industrial
production environments and across devices.
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