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Abstract: Speech is critical for interpersonal communication, but not everyone has fluent communication
skills. Speech disfluency, including stuttering and interruptions, affects not only emotional expression
but also clarity of expression for people who stutter. Existing methods for detecting speech disfluency
rely heavily on annotated data, which can be costly. Additionally, these methods have not considered
the issue of variable-length disfluent speech, which limits the scalability of detection methods. To
address these limitations, this paper proposes an automated method for detecting speech disfluency
that can improve communication skills for individuals and assist therapists in tracking the progress
of stuttering patients. The proposed method focuses on detecting four types of disfluency features
using single-task detection and utilizes embeddings from the pre-trained wav2vec2.0 model, as well
as convolutional neural network (CNN) and Transformer models for feature extraction. The model’s
scalability is improved by considering the issue of variable-length disfluent speech and modifying the
model based on the entropy invariance of attention mechanisms. The proposed automated method
for detecting speech disfluency has the potential to assist individuals in overcoming speech disfluency,
improve their communication skills, and aid therapists in tracking the progress of stuttering patients.
Additionally, the model’s scalability across languages and lengths enhances its practical applicability.
The experiments demonstrate that the model outperforms baseline models in both English and
Chinese datasets, proving its universality and scalability in real-world applications.

Keywords: speech disfluency detection; stuttering; limited data; wav2vec2.0; entropy invariance

1. Introduction

As an important means of communication for human beings in terms of exchanging
ideas, expressing emotions, and transmitting information, speech has driven the develop-
ment of human civilization and social change. In daily life, speech is essential for normal
communication between people, and it has been proven to be the most efficient and widely
used method of communication. Generally, three basic dimensions are used to measure
a person’s oral expression ability, which include accuracy, clarity, and fluency. Fluency
determines the ability of speech to convey messages. Fluency is defined by the normal flow
of speech [1], which connects different phonemes to generate information. Fluency reflects
the speaker’s language organization and conversion ability and more directly reflects the
true level of oral expression. Continuity, rate, rhythm, and effort are four basic factors
used to distinguish between fluent and disfluent speech [2]. Continuity refers to the logical
connectivity of message transmission. Rate is the speed of message delivery. Rhythm and
effort, respectively, refer to the regularity and energy of sound in the message delivery
process. However, not everyone has normal oral expression ability, and speech disfluency
often occurs in communication. There are two main types of speech disfluency: normal
disfluency and stuttering, which are, respectively, targeted at the normal population and the
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stuttering population. Normal disfluency refers to the situation of speech disfluency that
exists in people’s daily lives, such as interruptions, pauses, or repetitions, which are related
to people’s emotional excitement, anxiety, or nervousness. Its main characteristics include
phrase repetition, syllable repetition of polysyllabic words, and the use of interjections,
rephrasing, and repeated revisions. This situation is a common phenomenon in daily life
and does not affect daily communication and emotional expression. Speech disfluency
also occurs in children, but as children grow older and develop stronger expressive abili-
ties, this disfluency tends to improve. Stuttering [3] is a language disorder characterized
by symptoms such as speech disfluency, repetition or prolongation of syllables, pauses,
and difficulty organizing language. The World Health Organization defines stuttering as a
disorder of speech rhythm [4] in which the stutterer cannot express themselves clearly due
to involuntary repetition, prolongation, or interruption of sounds. According to epidemio-
logical survey data, there are currently over 70 million stuttering patients worldwide, with a
far greater proportion of male patients than female patients [5,6]. Therefore, stuttering is
an important chronic speech disorder that deserves widespread attention.

Therefore, if normal disfluency is present, it is necessary to comprehensively improve
oral expression ability. Speakers may participate in speaking exams, such as the TOEFL
iBT speaking test for English or the Mandarin Proficiency Test (Putonghua Shuiping Ceshi,
PSC) for Chinese, to improve their oral abilities, where fluency is an important aspect of the
exam. However, the assessment of fluency, especially for spontaneous speech expression
tasks, is still manually scored, which is highly subjective and requires a significant amount
of manpower. Furthermore, these assessments usually only return a corresponding fluency
level or score without indicating specific disfluency features, making it difficult for speakers
to receive timely feedback and make corrections. If stuttering is present, it needs to be taken
seriously, and the individual should be trained to reshape fluency to reduce the impact of
stuttering on their life and psychology. Speech-language pathologists diagnose stutterers
and manually measure their fluency, calculate the incidence of disfluency, and evaluate
the stutterer’s response throughout the entire treatment process. However, assessments of
stuttering of this nature may be subjective, lack consistency, and be susceptible to errors.
This paper suggests that an automatic method is needed to detect speech disfluencies,
which can help people overcome speaking difficulties, improve their language expression
abilities, and assist therapists in tracking the progress of stuttering patients.

Existing automated methods for detecting speech disfluency require large-scale disfluency-
labeled speech data during training and are designed for specific languages, making it
difficult to extend their use to the detection of speech disfluency in other languages. Addi-
tionally, in practical detection scenarios, the length of disfluent speech is not fixed. However,
most existing research on fixed-length speech disfluency detection has overlooked the de-
tection of variable-length speech disfluency. In recent studies, researchers have started to
consider building disfluency detection models with limited data and have attempted to use
pre-training and fine-tuning models for disfluency detection. However, these methods still
have many limitations. For example, the latest models are still designed and trained for
specific languages and dialects, making it difficult to detect disfluencies in other languages
or dialects. Moreover, these models may not generalize well to other datasets or contexts.
Additionally, many of the latest models are based on fixed-length modeling, which may not
be suitable for detecting disfluencies of varying lengths. Furthermore, many of the latest
studies still adopt simple machine learning methods, although the use of deep learning
methods may potentially achieve better results in disfluency detection given the recent
advances in deep learning in the field of speech. In summary, while there have been some
recent advances in automatic speech disfluency detection, there are still several limitations
and challenges that need to be addressed. To address these issues, this study proposes a
disfluency detection method designed for limited disfluent speech data. The method ex-
tracts disfluency features from the wav2vec2.0 model for disfluency detection. In the model
construction process, the entropy invariance of attention mechanisms is used to enable the
model to generalize to disfluent speech of different lengths, allowing for variable-length
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speech disfluency detection. Finally, this paper conducts experiments on both an English
open-source database and a self-built database for Chinese and finds that the model can be
applied in different language environments with strong scalability.

In summary, the main contributions of this paper can be summarized as follows:

• This paper addresses the shortage of Chinese disfluent speech data by creating the
PSC-PS-DF dataset, which includes four disfluent features: interjections, blocks, pro-
longations, and repetitions.

• A classification network is developed in this paper for automated speech disfluency
detection by combining CNN and Transformer and utilizing context embeddings from
the pre-training model, wav2vec2.0. The network outperforms the baseline model in
terms of detection accuracy and training time, even when trained with limited data.

• Considering that the length of disfluent speech data varies in practical detection
scenarios, this paper improves the model based on the entropy invariance of attention
mechanisms, allowing the model’s results to generalize to speech data of different
lengths, which means that even if the training and testing data have different disfluent
data lengths, the model can still achieve good results.

• To ensure that the proposed model can achieve good disfluency detection results in
different language environments, this paper conducts experiments on the self-built
PSC-PS-DF dataset for Chinese and the open-source SEP-28k dataset for English
disfluent speech. The results demonstrate the potential of the proposed model to
detect speech disfluency in various language environments.

The paper is structured as follows. Section 2 provides an overview of related work,
while Section 3 presents the proposed method, including the model architecture and
the entropy invariance of attention mechanisms. Section 4 describes the dataset and the
experimental setup, while Section 5 analyzes the experimental results. Finally, Section 6
concludes the paper.

2. Related Work

Speech disfluency detection models are generally based on the concept of speech recog-
nition systems, which involve extracting speech features and classifying speech samples as
fluent or disfluent. Speech disfluency detection models typically have three stages: prepro-
cessing, speech feature extraction, and feature classification [7]. The preprocessing stage
involves preprocessing the raw speech signal to prepare for subsequent feature extraction
and classification. The speech feature extraction stage involves converting the preprocessed
speech signal into a set of feature vectors for subsequent classification. Speech signals are
time-domain signals that can be analyzed in the time domain and frequency domain to
extract features. Feature classification involves classifying the extracted speech feature
vectors into two categories: fluent and disfluent.

For speech disfluency detection, the focus is mainly on the extraction of disfluent
features and the classification of disfluent speech, which involves several main categories
of disfluent features, including repetitions, prolongations, interjections, and blocks. Differ-
ent feature extraction and classification techniques for speech disfluency detection have
been introduced in the literature [1,8–11], and the accuracy of different methods has been
compared and analyzed. Many of these studies were conducted on non-public datasets or
public datasets with non-public annotations [12,13]. There are now two publicly available
datasets with public annotations: the stuttering events in podcasts SEP-28k dataset [14] and
the KSoF dataset [15]. In the following sections, we will provide a detailed introduction to
the related work on feature extraction and disfluent speech classification tasks.

2.1. Feature Extraction

Common disfluent speech features in existing speech disfluency detection methods
include the Mel frequency cepstral coefficient (MFCC) [16–24], linear predictive coding
(LPC) [25–27], the linear prediction cepstral coefficient (LPCC) [20,28], perceptual linear
prediction (PLP) [23,27], and spectrograms [29–31]. In recent years, wav2vec features have
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shown strong performance in multiple speech tasks, such as speech recognition, speech
emotion recognition, and mispronunciation detection [32–34]. As an emerging speech
feature extraction method, wav2vec2 is capable of learning richer and more abstract speech
representations and has also been widely used in speech disfluency detection [35–39].

2.2. Disfluency Detection with Machine Learning

In 1995, Howell et al. [40] proposed using the autocorrelation function and envelope
parameters as input features and constructed an artificial neural network (ANN) to detect
disfluencies in repetitions and prolongations. In subsequent research, many scholars
have also used ANNs as classifiers for identifying stuttering events in speech [41,42].
In recent years, many researchers have used an increasing number of machine learning
models as classifiers for detecting disfluency events in speech, such as hidden Markov
models (HMM) [16,26], support-vector machines (SVM) [17,21,27,43], k-nearest neighbors
(KNN) [18,20,22,27,28], linear discriminant analysis (LDA) [18,20,27,28], dynamic time
warping (DTW) [19,44], and multilayer perceptrons (MLP) [45,46]. When using machine
learning models for stuttering event classification, it is generally necessary to manually
design some features to represent different aspects of speech, such as the spectrum, energy,
and speaking rate of the audio. Then, these features are used as inputs, passed to a machine
learning algorithm, and the algorithm learns how to map the input features to different
stuttering event categories, thereby training the classifier.

2.3. Disfluency Detection with Deep Learning

With the promising progress of deep learning in speech-related fields, such as speech
recognition and emotion classification, the application of DL in disfluency detection has
also increased in recent years. Zayats et al. [47] used a bidirectional long short-term memory
neural network (BLSTM) model for speech disfluency detection in 2016. The model not
only used word sequences but also included pattern matching features as inputs and used
integer linear programming in the final output to combine the constraints of the network
structure, achieving advanced performance. In their 2019 work on the same dataset, Za-
yats et al. [48] improved the speech disfluency detection model by using BLSTM with
prosodic cues and achieved better classification results. In the same year, Santoso et al. [49]
applied BLSTM and attention mechanisms to weight each frame based on its importance
rather than directly measuring the overall information from the speech, resulting in more
accurate classification. Kourkounakis et al. [29] used spectrograms as features and achieved
high accuracy in speech disfluency classification with a BLSTM model. Wang et al. [50]
proposed a method that combines multiple self-supervised tasks and fine-tunes a pre-
trained network using labeled disfluency detection training data, achieving good detection
results with limited data. Chen et al. [51] proposed a controllable time-delay Transformer
(CT-Transformer) model that jointly performs punctuation prediction and disfluency de-
tection tasks. The experimental results showed that the method outperformed existing
state-of-the-art models in terms of F-score and achieved a competitive inference speed.
Sheikh et al. [24] proposed a novel deep learning-based stutter detection model, StutterNet,
which uses time-delay neural network (TDNN) to capture disfluent speech in a contextual
aspect and significantly reduces the number of training parameters while obtaining reliable
results. Mohapatra et al. [35] constructed a DisfluencyNet network based on contextual
embeddings of the wav2vec2.0 model. The main building blocks of this network are convo-
lution layers with max-pooling and fully connected layers. The experiment showed that
this method trained a powerful network within just a few minutes of data and achieved
excellent disfluency detection results. Al-Banna et al. [31] proposed a new stutter event
detection model based on log melspectrograms and a 2D atrous CNN . The experimental
results showed that the model outperformed the state-of-the-art methods in prolongation.
In general, deep learning models have better performance than traditional machine learning
models because they can directly learn features from raw speech signals in an end-to-end
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manner and can use more complex models to model the time and frequency information in
speech signals, resulting in more accurate training of speech disfluency detection classifiers.

In summary, most of the existing work on disfluency detection in speech focuses on
English datasets, and few studies have validated the effectiveness of the models on datasets
in different languages. Additionally, the existing work mostly includes experiments on
large-scale datasets and is only suitable for detecting disfluencies of fixed lengths, while
the length of disfluent speech data is not fixed. Therefore, there is a lack of a disfluency
detection model that is applicable to different languages and variable-length disfluent
speech data. In this paper, we have constructed a disfluency detection model combining
wav2vec2.0 , a CNN, and a Transformer, which is inspired by [35]. The model can achieve
good results in different language scenarios with minute-level data training, and the
entropy invariance of attention mechanisms is employed to enable the model to generalize
to disfluent speech of different lengths, making it more applicable to real-world disfluency
detection scenarios.

3. Proposed Method

In this section, we introduce the network architecture of the disfluency detection
model shown in Figure 1, which mainly consists of three modules: wav2vec2.0 , a CNN,
and a Transformer. In the Transformer module, we introduce a length-scaling factor
when computing the attention matrix and demonstrate from an entropy perspective the
model’s ability to generalize to disfluent speech of different lengths. This makes the model
applicable for disfluency detection tasks of varying speech lengths.

3.1. Model Architecture

This paper proposes a disfluency detection network designed for disfluency classifica-
tion using limited, disfluent speech data. The paper uses the wav2vec2.0 model to extract
contextual speech embeddings from raw audio and achieves good disfluency classification
results with limited disfluent data. As shown in Figure 1, the contextual representation of
the speech input obtained through the wav2vec2.0 model is then used to more effectively
extract disfluency features through a CNN and Transformer model, and finally, a fully
connected layer is used to obtain binary classification results for fluent and disfluent speech.
Specifically, the disfluency detection network first employs a single-layer CNN to extract
specific disfluent features from speech signals, which are then passed to the Transformer
layer for further processing. The subsequent sections describe in detail the structure of the
proposed disfluency detection network.

Figure 1. The architecture of the proposed model.

First, the raw audio is input into the pre-trained wav2vec2.0 model, obtaining the
audio feature representation of the last hidden layer of the wav2vec2.0 model. As shown
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in Formula (1), where X ∈ RL×d represents the raw speech signal, L represents the length,
and d represents the dimension. fwav2vec2.0 represents the pre-trained wav2vec2.0 model.

Z = fwav2vec2.0(X) (1)

Afterwards, local features can be extracted through the CNN by sliding convolu-
tion kernels, and these feature representations contain local structures and speech fea-
tures in the audio, which can be further used for disfluency detection tasks. Specifically,
768-dimensional audio features are inputted into the CNN network structure, which has
50 output channels. The CNN layer applies 50 different filters to the input, each with a
width of 2 and with no padding added to the input, producing 50 output feature maps.
These feature maps reflect disfluent information in speech signals, such as repetitions,
blocks, and prolongations. After the CNN, the obtained features are fed into the Trans-
former model for more effective feature extraction. The encoder part of the Transformer
can be seen as a combination of a multi-head self-attention mechanism and a feed-forward
neural network. These network layers can effectively learn the relationships and sequence
information between features, generating a more abstract and high-level representation.
This part has an input vector dimension of 50 and is composed of two stacked Transformer
encoder layers. Each Transformer encoder layer uses the same set of parameters, including
10 multi-head self-attention mechanisms to capture different semantic information.

Ẑ = Transformer(ConvlD(Z)) (2)

Finally, the output of the encoder is classified through a fully connected layer to obtain
the results of the disfluency classification.

Due to the denser and more complex nature of speech data compared to text data,
the combined structure of wav2vec2.0 + CNN + Transformer can fully explore more details
and complexities in the speech signal, effectively extracting and classifying speech features.
This approach can improve the performance of disfluency detection models and has a
certain level of generality and applicability.

3.2. Entropy Invariance of Attention Mechanisms

By using attention mechanisms, it becomes possible to identify the most relevant
segments of input data and concentrate on them. In the scaled dot-product attention
mechanism, the scaling operation is used to ensure the entropy invariance of the attention
distribution. This is achieved by multiplying the attention distribution by a scaling factor
to adjust its magnitude, thus better controlling the learning efficiency and stability of the
model. In the scaled dot-product attention, the input sequence is first mapped to query the
vector Q, key vector K, and value vector V. The dot product of Q and K is then calculated
and scaled, and the scaled result is weighted and averaged with V to obtain the output of
the self-attention mechanism. Specifically, assuming there are n input vectors, each with
dimension d, the formula for calculating the scaled dot-product attention is

Attention(Q, K, V) = Softmax
(

QKT
√

dk

)
·V (3)

The softmax function is used to normalize the attention distribution into a probability
distribution.

√
d is the scaling factor used to prevent the dot-product result from being too

large or too small, keeping the attention distribution within a suitable range and avoiding
over-concentration, thus improving the model’s robustness and generalization ability.
In this paper, we introduce a method to maintain attention entropy invariance by using the
scaling operation in the attention mechanism in the Transformer model. In Transformer,
each attention head calculates attention for the input, and the results of multiple heads are
fused to obtain the final output. During attention calculation, scaling the attention vector
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can maintain the entropy invariance of the attention distribution, better controlling the size
and uniformity of the attention distribution.

This paper addresses the shortage of disfluent speech data resources and the issue
that the length of disfluent speech in practical scenarios is not fixed. We propose a model
optimization method based on attention mechanism entropy invariance, which enables the
model to generalize to speech data of different lengths, and achieve good results even when
the length of fine-grained disfluent speech data used for training and testing is different.
In this section, we optimize the model using attention mechanism entropy invariance
to enhance its extrapolation ability, that is, the ability to infer the whole from the part,
and enable a model trained on shorter disfluent speech data to be tested on longer data
sequences without fine-tuning, achieving good results. Optimizing the extrapolation ability
of the model length not only solves the problem of inconsistent lengths during training
and prediction but also improves the model’s generalization ability. Moreover, it allows an
effective model to be trained on shorter data for use on longer data when disfluent speech
data resources are limited, thus improving the practicality of the model.

This paper references previous research on the entropy invariance of attention mecha-
nisms [52–54] and, based on this perspective, redefines a new scaling factor for extrapolating
length and introduces a constant λ to improve the length generalization ability of the atten-
tion mechanism. This enables the model to perform better in length extrapolation without
changing its existing training performance. Information entropy is a measure of uncertainty,
and in research, it is necessary to minimize uncertainty, i.e., minimize entropy. In our study,
this uncertainty is considered the concentration of attention. Generally, training on longer
data requires attention to be evenly distributed among all parts, making the attention more
dispersed and resulting in greater entropy. Conversely, training on shorter data leads to
more concentrated attention, resulting in smaller entropy. Entropy invariance mainly refers
to reducing the correlation between this uncertainty and length, so that regardless of how
the length changes, the entropy remains essentially unchanged. From the perspective
of entropy invariance, the formula for scaled dot-product attention can be rewritten as
Formula (4).

aij =
eλqi ·kj

∑n
j=1 eλqi ·kj

(4)

where qi and k j represent the i-th query vector and j-th key vector, respectively, of the input
sequence, and qi · k j is the dot product of the two vectors, which reflects the correlation
between them. λ is the scaling factor, which is independent of qi and k j. aij is the conditional
distribution of a random variable, and the expression of entropy is shown in Formula (5).

Hi = −
n

∑
j=1

aij log aij (5)

Substituting aij into Formula (5) yields Formula (6).

Hi = −
n

∑
j=1

ai,j log ai,j

= log
n

∑
j=1

eλqi ·kj − λ
n

∑
j=1

aije
λqi ·kj

= log n + log
1
n

n

∑
j=1

eλqi ·kj − λ
n

∑
j=1

aije
λqi ·kj

(6)

Formula (6) comprises three terms, with the log 1
n ∑n

j=1 eλqi ·kj operation in the second
term involving taking the exponential function first and then averaging. To simplify the
computation, the mean-field approximation method can be used in place of this operation.
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This method involves first averaging the values and then exponentiating the result, thus
resulting in Formula (7).

log
1
n

n

∑
j=1

eλqi ·kj ≈ log exp

(
1
n

n

∑
j=1

λqi · k j

)
= log λqi · k j (7)

Since the softmax function emphasizes the position of the maximum value, an approx-
imate value for the third term in Formula (6), λ ∑n

j=1 aije
λqi ·kj , can be obtained, as shown in

Formula (8).

λ
n

∑
j=1

pije
λqi ·kj ≈ λ max

1≤j≤n

(
eλqi ·kj

)
(8)

It is important to note that the semi-quantitative estimations in Formulas (7) and (8)
are used to determine the appropriate scaling factor for compensating for the impact
of length on entropy rather than completely disregarding it. Therefore, by substituting
Formulas (7) and (8) into Formula (6), we can obtain

Hi ≈ log n + log λqi · k j − λ max
1≤j≤n

(
eλqi ·kj

)
≈ log n− λ

(
max

1≤j≤n

(
eλqi ·kj

)
− log λqi · k j

) (9)

The concept of entropy invariance aims to minimize the impact of sequence length n
on entropy. Based on Formula (9), we can set

λ ∝ log n (10)

Therefore, based on the principle of entropy invariance and some reasonable assump-
tions, we can derive a new scaling factor and a corresponding scaled dot-product attention
mechanism, as shown in Formula (11). Specifically, we compute the scaling factor by taking
the logarithm of the length of the target sequence and multiplying it with the dot-product
score matrix. This scaling factor rescales the values in the score matrix to better adapt
to the length of the target sequence. Although this scaling factor is just a scalar, it scales
every element in the score matrix, resulting in a scaled attention weight matrix. Finally,
the weighted average of the input value vectors with the scaled attention weights generates
the final context vector.

Attention(Q, K, V) = softmax
(

log nQKT
√

d

)
V (11)

In conclusion, this study obtained a new scaling factor, which makes the model
more robust to changes in input length. Based on the entropy invariance of the attention
mechanism, this study optimized the attention mechanism of the Transformer module
in the disfluency detection model while keeping the other steps the same. This enables
the model to generalize to speech data of different lengths and makes it more suitable for
real-world disfluency detection scenarios.

4. Experiments
4.1. Datasets

To verify the effectiveness of the proposed method for detecting disfluent speech,
we conducted experiments on the open-source English dataset SEP-28k and our self-
built Chinese dataset PSC-PS-DF. This section will provide a detailed introduction to
both datasets.
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4.1.1. SEP-28k

SEP-28k is an open-source English stuttering speech corpus consisting of data from
385 public online podcast collections. These podcast collections come from 8 shows cen-
tered around stuttering themes, mainly featuring interviews between people who stutter.
The dataset is composed of 28,177 segments, each consisting of 40–250 three-second clips
extracted from each podcast episode. The SEP-28k dataset has two different types of anno-
tation: stuttering and non-stuttering. Three annotators label stuttering segments with five
types of disfluencies: blocks, prolongations, sound repetitions, word repetitions, and inter-
jections. Additionally, the dataset annotates an additional 4144 stuttering segments from
the FluencyBank dataset using the same scheme. All audio segments in SEP-28k are 3 s long
and are sampled at 16 kHz. In this study, we mainly focus on stuttering annotations and
sample data from the SEP-28k dataset for training our model. We evaluate the model using
data from both SEP-28k and FluencyBank and validate the model using data of different
sizes. The data distribution used in our experiments is identical to that of Reference [35].

The current study utilizes the data processing method described in Reference [35] for
the SEP-28k dataset. Data points that all annotators agreed upon as unambiguous were
chosen for sampling, ensuring that both the training and test sets contained high-quality
data, thus increasing the reliability of the experimental results. Table 1 provides definitions
of the five different types of disfluencies along with specific examples.

Table 1. Definition and examples of different speech disfluencies in the SEP-28k dataset.

Disfluency Labels Definition Examples

Sound repetitions (Snd) Repetitions of syllables I (wh-wh-) whispered a secret
Word repetitions (WP) Repetitions of words I know (know) a secret

Prolongations (Pro) Extended syllables I kn(nnnnn)ow
Interjections (Intrj) Filler words or non-words I (um) know a (uh) secret

Blocks (Bl) Long stuttered pauses I know (pause) a secret

4.1.2. PSC-PS-DF

To address the issue of a lack of resources for Chinese disfluent speech data, this paper
used the construction method of the SEP-28k dataset as a reference to construct the Chinese
disfluent speech dataset PSC-PS-DF. PSC-PS-DF consists of propositional speaking files for
the Mandarin Proficiency Test (Putonghua Shuiping Ceshi, PSC). Previous work has shown
that, due to the nature of Chinese propositional speaking, which requires the speaker to
freely describe a topic for three minutes without any reference text, the speech files contain
a large number of disfluent features, such as “um”, “ah”, and “uh” interjections, blocks,
prolongations, and repetition, but such disfluent features are rarely marked and used in
research [55]. In this study, disfluent features were annotated in Chinese propositional
speaking data to obtain spontaneously spoken disfluent features in Chinese for the detection
of disfluent Chinese-language speech. A total of 4414 3 s disfluent segments were extracted
from 400 propositional speaking data in the PSC-PS-DF dataset. The disfluent segments
were labeled by three annotators with four types of disfluencies, namely WP, Pro, Intrj,
and Bl, whose definitions are the same as those in the SEP-28k dataset and can be referred
to in Table 1. The Chinese dataset does not include the annotation of Snd, and the repetition
of Chinese speech is limited to the annotation of repetitive words and phrases, which are
uniformly annotated with WP. The four types of disfluent annotations for the PSC-PS-DF
dataset can be visualized by referring to Figure 2. Fluent segments in the PSC-PS-DF dataset
are composed of speech unanimously identified by the three annotators as having a fluency
level of level 1 in the propositional speaking assessment results. The length of all audio
segments in the PSC-PS-DF was set to 3 s, with a sampling frequency of 16 kHz. The data
distribution is shown in Table 2.
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Figure 2. Example figure of the PSC-PS-DF dataset with prolongations (orange), interjections (red),
blocks (green), repetitions (blue), and normal parts (gray).

Table 2. Data distribution of the PSC-PS-DF dataset.

Disfluency Labels Train Dev Test Total Train Data Size in Minutes

WP 958 96 320 1374 48
Pro 576 58 218 852 29
Intrj 442 45 146 633 22
Bl 1086 109 360 1555 54

When annotating disfluent features in PSC-PS-DF, researchers labeled common words
such as “um”, “ah”, “uh”, and “well” as interjections, while word repetition generally
occurred when the speaker hesitated, supplemented, or modified their speech. As there is
no strict definition for blocks, this study followed Raupach’s [56] research viewpoint and
uses 0.3 s as the boundary for speech pauses within or between sentences. In addition, this
study uses 0.8 s as the boundary for prolongations. When annotating Chinese disfluent
features, researchers extract blocks longer than 0.3 s and prolongations longer than 0.8 s as
disfluent markers with the labels Bl and Pro, respectively. This study also analyzes Chinese
disfluent features, and Figures 3–10 show the distribution of their speech waveforms and
the speech spectrograms of the four types of features. The different disfluency features can
be more easily identified by analyzing the speech waveforms and speech spectrograms
for the five types of disfluencies. Figures 3–10 depict the waveforms (amplitude vs. time)
on the left and a time-frequency plot of the wavelet decomposition using these data on
the right. From the plots, we can observe that in the PSC-PS-DF dataset, the WP feature
is represented by multiple identical speech waveforms, which exhibit shorter articulation
time and narrower speech waveforms for words. The Pro feature in the plots exhibits
a fuller time-domain waveform with longer articulation durations for single words and
syllables. The difference between the Intrj and Pro features is that the Intrj feature has a
lower energy and a shorter duration than the Pro feature. The Bl feature contains large
pauses and is most easily distinguished by its lower energy.
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Figure 3. Speech waveform of WP for PSC-PS-DF.

Figure 4. Speech spectrogram of WP for PSC-PS-DF.

Figure 5. Speech waveform of Pro for PSC-PS-DF.
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Figure 6. Speech spectrogram of Pro for PSC-PS-DF.

Figure 7. Speech waveform of Intrj for PSC-PS-DF.

Figure 8. Speech spectrogram of Intrj for PSC-PS-DF.
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Figure 9. Speech waveform of Bl for PSC-PS-DF.

Figure 10. Speech spectrogram of Bl for PSC-PS-DF.

4.2. Basic Settings

The experimental hyperparameters setting of the proposed model are presented in
Table 3. The implementation of the wav2vec2.0 model is based on the Huggingface
Transformer code repository [57]. As the convergence speed of different fine-grained
fluency labels varies during training, the number of epochs in each experiment needs to be
adjusted accordingly. Based on the correspondence between the actual and predicted results,
samples were classified into four categories: true positives (TP), false positives (FP), false
negatives (FN), and true negatives (TN). The formulas for calculating the four evaluation
metrics are as follows:

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

F1 =
2

(1/Precision) + (1/Recall)
(14)

Accuracy = (TP + TN)/(TP + TN + FN + FP) (15)
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Table 3. The hyperparameters set in the experiments.

Hyperparameters Setting

Learning rate l × 10−4

Batch size 512
Optimizer Adam

Loss function CrossEntropyLoss
Audio feature dimension 768

Attention dimension/number of heads 50/10
CNN hidden layer dimension 50

wav2vec2.0 (Chinese) TencentGameMate/chinese-wav2vec2-base
wav2vec2.0 (English) facebook/wav2vec2-base-960h

5. Results and Analysis

To validate the performance of the proposed speech disfluency detection model,
experiments are conducted on both the open-source English dataset SEP-28k and the self-
built PSC-PS-DF dataset. The proposed method is experimentally validated in four aspects:
evaluation of its performance on the limited data of both datasets, comparison experiments
with baseline models, ablation study, and length-scaled attention experiments.

5.1. Evaluation on Limited Data

Given the limited resources of the disfluent speech dataset, this study aims to train a
more effective model using the limited disfluent speech data. Consequently, the dataset is
divided, and the proposed disfluent speech detection model is compared on the complete
SEP-28k dataset, 1/2 of the dataset, and 1/4 of the dataset, and the results are shown in
Table 4. The data in Table 4 indicates that the F1 of the proposed disfluency detection model
decreases as the number of datasets decreases. However, with only 1/4 of the dataset,
the F1 for all disfluent features, except for the Bl feature, remains above 0.7. This indicates
that the proposed model can effectively detect disfluencies even with limited data resources.
Figure 11 visualizes the F1 of different features under different dataset sizes.

Table 4. Results for all disfluencies on the SEP-28k dataset.

Disfluency Dataset Data Size in Minutes F1 Precision Recall Accuracy (%)

Snd
1/1 75 0.90 0.82 0.99 89.08
1/2 37 0.81 0.74 0.89 78.88
1/4 19 0.74 0.70 0.77 72.33

WP
1/1 148 0.90 0.84 0.96 86.76
1/2 74 0.79 0.78 0.81 76.36
1/4 37 0.75 0.74 0.77 70.17

Pro
1/1 75 0.89 0.82 0.98 88.11
1/2 37 0.78 0.71 0.87 75.97
1/4 19 0.72 0.68 0.77 70.39

Intrj
1/1 248 0.84 0.87 0.81 83.82
1/2 124 0.83 0.85 0.81 78.18
1/4 62 0.80 0.84 0.76 76.90

Bl
1/1 45 0.79 0.77 0.81 78.57
1/2 22 0.72 0.68 0.78 70.41
1/4 11 0.69 0.64 0.73 66.33
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Figure 11. The F1-score of all disfluencies on the SEP-28k dataset at different data sizes.

In addition, this paper also conducts experiments on different disfluency features on
the self-built PSC-PS-DF dataset, and the experimental results are shown in Table 5. The ex-
perimental results demonstrate that the proposed model also achieves excellent detection
results in the Chinese disfluent dataset, with the Bl, WP and Intrj features performing well
in Chinese speech disfluency detection, demonstrating that blocks and repetitions as well
as interjection features are more easily detectable types of disfluencies in spoken language.
In contrast, the performance of the Pro feature is not as good as the other disfluent features,
indicating that the prolongations feature of speech does not provide a clear distinction
between fluent and disfluent speech.

Table 5. Results for all disfluencies on the PSC-PS-DF dataset.

Disfluency Data Size in Minutes F1 Precision Recall Accuracy (%)

WP 48 0.98 0.99 0.98 98.44
Pro 29 0.84 0.73 0.98 81.73
Intrj 22 0.94 0.97 0.92 94.52
Bl 54 0.99 0.99 0.99 98.89

5.2. Comparison with Baseline Models

In this section, the proposed model is compared with the long short-term memory
(LSTM) model, MLP model, and the baseline model DisfluencyNet [35] on the 1/4 SEP-28k
dataset, and the results are shown in Table 6. The results indicate that the proposed model
in this paper yields superior detection results for the Snd, WP, Intrj, and Bl disfluency
features when compared to other baseline models. Regarding the Pro disfluency feature,
the proposed model in this paper achieves an F1-score that is 0.01 lower than that of the
baseline model DisfluencyNet. This suggests that there is still scope for improving the
detection of disfluencies such as prolongations. For a clearer comparison of how different
baseline models perform on 1/4 of the SEP-28k dataset, please refer to Figure 12.

In addition, this study also compares the convergence speed of the proposed model
with the baseline model DisfluencyNet during the training process. Figures 13–16 show
the training loss curves for the Snd, WP, Pro, and Bl labels at 400 epochs in the full
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SEP-28k dataset, respectively, from which it can be seen that the proposed model converges
significantly faster than the baseline model DisfluencyNet.

Table 6. Performance of baseline models on 1/4 of the SEP-28k dataset.

Disfluency Model F1 Precision Recall Accuracy (%)

Snd

LSTM 0.66 0.65 0.67 65.05
MLP 0.70 0.68 0.72 69.17

DisfluencyNet 0.72 0.67 0.79 70.00
Ours 0.74 0.70 0.77 72.33

WP

LSTM 0.72 0.71 0.74 67.70
MLP 0.71 0.72 0.69 69.68

DisfluencyNet 0.71 0.75 0.66 71.00
Ours 0.75 0.74 0.77 70.17

Pro

LSTM 0.60 0.64 0.60 60.44
MLP 0.63 0.62 0.65 62.14

DisfluencyNet 0.73 0.80 0.76 75.70
Ours 0.72 0.68 0.77 70.39

Intrj

LSTM 0.69 0.67 0.71 70.00
MLP 0.68 0.81 0.59 72.73

DisfluencyNet 0.79 0.79 0.79 74.50
Ours 0.80 0.84 0.76 76.90

Bl

LSTM 0.49 0.50 0.49 50.00
MLP 0.56 0.53 0.59 53.06

DisfluencyNet 0.58 0.54 0.61 55.00
Ours 0.69 0.64 0.73 66.33

Figure 12. Performance of baseline models on 1/4 of the SEP-28k dataset.
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Figure 13. Training Loss Curves for Snd.

Figure 14. Training Loss Curves for WP.

Figure 15. Training Loss Curves for Pro.
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Figure 16. Training Loss Curves for Bl.

In this study, comparison experiments with different baseline models were also con-
ducted on the self-built PSC-PS-DF dataset, and the results are shown in Table 7. The find-
ings indicate that the model proposed in this paper outperforms other baseline models in
detecting Pro, Intrj, and Bl labels in Chinese. However, there is no significant difference
between the proposed model and other models for WP labels. The performance of the
different models on the PSC-PS-DF dataset can be seen in Figure 17.

Table 7. Performance of baseline models on the PSC-PS-DF dataset.

Disfluency Model F1 Precision Recall Accuracy (%)

WP

LSTM 0.97 0.97 0.97 97.19
MLP 0.98 0.98 0.98 97.81

DisfluencyNet 0.98 0.99 0.98 98.44
Ours 0.98 0.99 0.98 98.44

Pro

LSTM 0.82 0.71 0.95 78.44
MLP 0.82 0.71 0.97 78.44

DisfluencyNet 0.83 0.83 0.83 82.57
Ours 0.84 0.73 0.98 81.73

Intrj

LSTM 0.92 0.94 0.90 92.47
MLP 0.93 0.96 0.90 93.15

DisfluencyNet 0.93 0.94 0.92 93.15
Ours 0.94 0.97 0.92 94.52

Bl

LSTM 0.95 0.94 0.96 95.00
MLP 0.96 0.95 0.98 96.11

DisfluencyNet 0.97 0.98 0.97 97.50
Ours 0.99 0.99 0.99 98.89

5.3. Ablation Study

To verify the impact of the CNN and Transformer modules on the performance of
the model proposed in this paper, we conducted ablation experiments on the SEP-28k
and PSC-PS-DF datasets. Figure 18 demonstrates the impact of removing the CNN and
Transformer modules from the model on the SEP-28k dataset, and Tables 8 and 9 show the
results of the ablation experiments on different datasets. First, we evaluated the impact
of removing the CNN module on the model. For the Snd, WP, Pro, Intrj, and Bl labels
in the SEP-28k dataset, removing the CNN module resulted in a decrease in F1-score of
0.05, 0.04, 0.04, 0.03, and 0.08, respectively. The effect of removing the CNN module on the
PSC-PS-DF dataset was not significant, with only a 0.04 decrease in the Bl label. Second, we
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removed the Transformer module, and the performance of the model on both the SEP-28k
and PSC-PS-DF datasets significantly decreased. For the Snd, WP, Pro, Intrj, and Bl labels
in the SEP-28k dataset, the F1-score decreased by 0.08, 0.05, 0.10, 0.13, and 0.13, respectively.
For the WP, Pro, and Bl labels in the PSC-PS-DF dataset, the F1-score decreased by 0.01, 0.02,
and 0.02, respectively. This indicates that the Transformer module has a significant impact
on the overall performance of the model. The ablation study verifies the functions of each
module in our model and validates the contributions of each module to the performance of
the model.

Figure 17. Performance of baseline models on the PSC-PS-DF dataset.

Figure 18. Results of the ablation experiment on the SEP-28k dataset.
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Table 8. Results of the ablation experiment on the SEP-28k dataset.

Disfluency Model F1 Precision Recall Accuracy (%)

Snd

w/o CNN 0.69 0.69 0.69 68.69
w/o

Transformer 0.66 0.68 0.65 67.23

Ours 0.74 0.70 0.77 72.33

WP

w/o CNN 0.71 0.66 0.76 69.18
w/o

Transformer 0.70 0.68 0.71 68.31

Ours 0.75 0.74 0.77 70.17

Pro

w/o CNN 0.68 0.63 0.73 65.53
w/o

Transformer 0.62 0.61 0.63 61.65

Ours 0.72 0.68 0.77 70.39

Intrj

w/o CNN 0.77 0.83 0.71 74.91
w/o

Transformer 0.67 0.71 0.63 71.45

Ours 0.80 0.84 0.76 76.90

Bl

w/o CNN 0.61 0.56 0.67 57.14
w/o

Transformer 0.56 0.56 0.55 56.12

Ours 0.69 0.64 0.73 66.33

Table 9. Results of the ablation experiment on the PSC-PS-DF dataset.

Disfluency Model F1 Precision Recall Accuracy (%)

WP

w/o CNN 0.98 0.98 0.98 97.81
w/o

Transformer 0.97 0.98 0.97 97.50

Ours 0.98 0.99 0.98 98.44

Pro

w/o CNN 0.84 0.73 0.98 80.73
w/o

Transformer 0.82 0.70 0.97 77.98

Ours 0.84 0.73 0.98 81.73

Intrj

w/o CNN 0.94 0.96 0.92 93.84
w/o

Transformer 0.94 0.97 0.90 93.84

Ours 0.94 0.97 0.92 94.52

Bl

w/o CNN 0.95 0.96 0.94 95.00
w/o

Transformer 0.97 0.96 0.97 96.67

Ours 0.99 0.99 0.99 98.89

5.4. Length-Scaled Attention

This paper presents length-scaled attention as a solution to the problem of fixed train-
ing sequence length and varying testing sequence length. In this method, the training
and testing sequences are standardized to a length of 3 s for standard input. To evaluate
the effectiveness of length-scaled attention, we tested the method by clipping the original
sequence to half its original length. Then, we conducted experiments to verify the impact
of length-scaled attention on the experiments while keeping all other configurations un-
changed. Tables 10 and 11, respectively, show the changes in model performance when
the length of training and testing sequences varies in different datasets. When trained
and tested on data of the same length, adding length-scaled attention leads to an improve-
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ment in experimental results, demonstrating the importance of length-scaled attention in
disfluency detection models.

In the SEP-28k dataset, WP and Intrj labels are enhanced by 0.14 and 0.03, respectively,
using length-scaled attention compared to removing length-scaled attention for the same
test length, while the training data length is reduced to half of the original length. In the
PSC-PS-DF dataset, when the training data are half of their original length, compared
to removing length-scaled attention, WP, Pro, and Intrj labels are enhanced by 0.03, 0.01,
and 0.01, respectively, using length-scaled attention. Experimental results for both datasets
show that the model without the addition of length-scaled attention performs worse in
most disfluent label detection experiments when the training sequence length is reduced to
half of the original length.

Furthermore, as shown in Tables 10 and 11, shorter testing sequences lead to a decrease
in the performance of length-scaled attention. Models that use length-scaled attention
do not show their advantages, possibly because the duration of disfluency speech varies,
and to standardize the length, zeros are sometimes padded at the end of the sequence.
These clipped data may consist of useless zero frames.

In conclusion, this experiment demonstrates that a model with length-scaled attention
can improve the results of disfluency detection experiments and can be applied to stuttering
detection in speech with inconsistent training and testing sequence lengths.

Table 10. F1-score comparisons on SEP-28k with different length distributions.

Disfluency Type Train All Test All Train 1/2 Test All Train All Test 1/2

Snd
Length-scaled 0.74 0.66 0.72

w/o
length-scaled 0.74 0.67 0.72

WP
Length-scaled 0.75 0.53 0.43

w/o
length-scaled 0.71 0.39 0.52

Pro
Length-scaled 0.72 0.67 0.70

w/o
length-scaled 0.70 0.67 0.71

Intrj
Length-scaled 0.80 0.79 0.50

w/o
length-scaled 0.79 0.76 0.79

Bl
Length-scaled 0.69 0.58 0.69

w/o
length-scaled 0.67 0.58 0.68

Table 11. F1-score comparisons on PSC-PS-DF with different length distributions.

Disfluency Type Train All Test All Train 1/2 Test All Train All Test 1/2

WP
Length-scaled 0.98 0.97 0.98

w/o
length-scaled 0.97 0.94 0.97

Pro
Length-scaled 0.84 0.84 0.77

w/o
length-scaled 0.79 0.83 0.70

Intrj
Length-scaled 0.94 0.94 0.88

w/o length
scaled 0.93 0.93 0.86

Bl
Length-scaled 0.99 0.96 0.99

w/o
length-scaled 0.98 0.97 0.98
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6. Conclusions

Speech is the most efficient and widely used means of communication among humans.
However, not everyone has normal communication abilities, and speech disfluency often
occurs during communication. Speech disfluency can manifest as normal speech disfluency
in daily life for the general population, which is related to people’s emotions, urgency,
or nervousness. It can also manifest as stuttering in individuals who involuntarily repeat,
prolong, or interrupt sounds, making it difficult for them to express themselves clearly.
Currently, detecting speech disfluency in daily life and stuttering detection both require
the assistance of experts, and there is a lack of validated automated evaluation methods.
The current methods for detecting speech disfluency heavily depend on annotated data,
which can be expensive. Furthermore, these methods do not address the issue of variable-
length disfluent speech, which restricts the scalability of detection methods. To address
these limitations, this paper proposes a method for detecting speech disfluency using
wav2vec2.0 , CNN, and Transformer. The main feature of this method is its applicability to
different languages and its ability to handle variable-length disfluent speech signals. Firstly,
this paper constructs the PSC-PS-DF dataset for Chinese disfluent speech, which consists
of four disfluent features: interjections, blocks, prolongations, and repetitions. Then,
the paper uses context embeddings from the pre-training model wav2vec2.0 and combines
CNN and Transformer to build a classification network for automated speech disfluency
detection. Considering that the length of disfluent speech data varies in practical detection
scenarios, the paper improves the model based on the entropy invariance of attention
mechanisms, allowing the model’s results to generalize to speech data of different lengths.
In the experiments, we tested the proposed method using speech signals of different
languages and lengths, and the results showed that the proposed method performed well
in these scenarios. The paper concludes that the proposed model achieved good disfluency
detection results in both self-built datasets and the open-source dataset for English disfluent
speech, indicating its potential for detecting speech disfluency in different languages and
different lengths.

Our method can be applied to different fields such as speech recognition, speech
synthesis, and human-computer interactions. In future research, we hope to improve the
proposed speech disfluency detection model in various ways, as follows:

• Since the accuracy of speech disfluency detection methods is directly related to the
size of the data, but the cost of collecting and labeling disfluent data is high, we can
use more efficient data processing and extraction methods to obtain more reliable
disfluency detection results with limited data.

• The wav2vec2.0 model has a good effect on extracting disfluent speech features.
In this paper, we only used the context representation of the last hidden layer of the
wav2vec2.0 model as the input to the model. In future research, we can consider
fine-tuning the wav2vec2.0 model to obtain effective detection results. In addition,
we can also try using other speech pre-training models such as HuBERT and WavLM
instead of the wav2vec2.0 model used in this paper to obtain better results.

• This paper conduct experiments on self-built and open-source English datasets, in-
cluding SEP-28k, to verify that the model can be applied in different language envi-
ronments. In the future, we can conduct experiments on this model in more languages
to verify its reliability.

• In the future, we can expand our work from single-task scenarios to multi-classification
scenarios, not only detecting disfluency but also distinguishing between different types
of speech disfluency events.
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Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
PSC Putonghua Shuiping Ceshi
MFCC Mel Frequency Cepstral Coefficient
LPC Linear Predictive Coding
LPCC Linear Prediction Cepstral Coefficient
PLP Perceptual Linear Prediction
ANN Artificial Neural Network
HMM Hidden Markov Model
SVM Support Vector Machine
KNN K-Nearest Neighbor
LDA Linear Discriminant Analysis
DTW Dynamic Time Warping
MLP Multilayer Perceptron
BLSTM Bidirection Long Short-Term Memory
CT-Transformer Controllable Time-delay Transformer
TDNN Time-delay Neural Network
LSTM Long Short-Term Memory
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