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Abstract: In this contribution, we consider computed tomography (CT) as a diagnostic tool for
identifying coronavirus disease 2019 (COVID-19) pneumonia. However, interpreting CT scans can
be subjective, leading to interobserver variability and potential misdiagnosis. To address these
challenges, a deep learning-based chest approach was developed to create a precise diagnostic tool
for COVID-19 pneumonia and a personalized therapeutic strategy for individual patients. The
study collected chest CT images from patients with different lung conditions, creating a diverse
convolutional neural network (CNN) training material. Three different CNN-based models were
tested for diagnostic purposes, with the output stating whether the patient was healthy or infected.
The models facilitated selecting regions of interest (ROIs) and extracting the radiomic features from
the input data, resulting in satisfactory results with core classification quality measures above the
50% threshold. For therapeutic purposes, a custom U-Net-based model was used to extract lung
and infection masks from a provided CT slice. The percentage of the pathologically altered tissue
was calculated, and the COVID-19 severity score was computed and then matched with an optimal
therapeutic strategy. Overall, the models delivered high-quality results, representing a functioning
deep learning-based application that could be advantageous as a doctor-friendly support tool. The
use of deep learning techniques in medical imaging shows promising results, improving the accuracy
and speed of diagnosis and treatment of not only COVID-19 but also many different diseases.

Keywords: radiomics; COVID-19; deep learning; chest computed tomography scan; convolutional
neural networks; U-Net; pathologically changed lung tissue; treatment planning; diagnostic tool;
clinical decision support; personalized therapeutic strategy

1. Introduction

Accurate detection and diagnosis of coronavirus disease 2019 (COVID-19) are pivotal
in curbing its spread and managing affected individuals. Currently, a combination of
molecular tests, serology tests, and chest computed tomography (CT) scans forms the
backbone of diagnostic strategies. However, these established methods, while essential,
have limitations. Therefore, there is an ongoing pursuit of alternative approaches that offer
improved sensitivity and specificity and faster detection times [1].

Among the commonly used molecular tests, the reverse transcription polymerase
chain reaction (RT-PCR) technique stands out as a widely employed method endorsed by
the World Health Organization (WHO). Despite this endorsement, PCR-based methods
have drawbacks; particularly, limited sensitivity, especially during the early stages of
infection, which can result in false-negative results. Moreover, RT-PCR tests focus solely
on detecting the presence of the virus, making them unable to track individuals who have
silently recovered from asymptomatic infection [1].

In contrast, chest CT scans have emerged as a promising tool for identifying abnormal
findings associated with COVID-19 and other types of pneumonia. By providing valuable
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support in cases with strong clinical suspicion, CT scans offer several advantages, includ-
ing non-invasiveness and swiftness. However, the use of chest CT scans is constrained
by the requirement for expensive equipment and trained technicians. Furthermore, the
overlapping features shared between COVID-19 and other types of viral pneumonia pose
challenges in terms of specificity. Therefore, careful consideration is necessary before rou-
tinely implementing CT scans for screening purposes, especially due to potential radiation
exposure risks [2,3].

Comparative studies have shed light on the limitations of PCR-based methods and
highlighted the superior sensitivity of chest CT scans in detecting COVID-19. These studies
have consistently demonstrated the ability of chest CT scans to identify abnormalities
in nearly all COVID-19 patients, including those who are asymptomatic or initially test
negative with RT-PCR tests, underlining the superior effectiveness of CT scans as a primary
diagnostic method, particularly in epidemic areas [1,4].

The continuous search for improved approaches to COVID-19 diagnosis and treatment
has led to the exploration of machine learning-based techniques. In this article, we aim to
investigate the potential of these techniques in enhancing the sensitivity, specificity, and
efficiency of COVID-19 diagnosis through the analysis of chest CT scans. Additionally,
we explore how these techniques may offer valuable insights for therapeutic suggestions
regarding the effective management of the disease. While the field of machine learning
holds promise, it is important to approach these techniques with careful consideration and
evaluate their feasibility and practical applications in the context of COVID-19.

Typical findings related to patients’ chest CT scans are depicted in Figure 1. In
particular, they include:

1. Ground glass opacities (GGOs): The most common finding in COVID-19-infected
patients’ CT scans. They are commonly present as multifocal, bilateral, peripheral,
and asymmetric lesions. In the less advanced disease, they may appear as a unifocal
pathology in the inferior lobe of the right lung [5];

2. Crazy paving: An alveolar filling associated with thickened interlobular and intralob-
ular lines. This pathology is recognized in the later stages of the disease [5];

3. Vascular dilatation: An asymmetrical internal enlargement of pulmonary arterial
branches [6];

4. Architectural distortion within the lung tissue that usually leads to the formation of
subpleural bands [7];

5. Traction bronchiectasis: An asymmetrical varicose dilatation of the segmental bronchi [8].

However, the primary objective of this contribution was to test various radiological
tools for detection, classification, and treatment planning for COVID-19 pneumonia. The
study also aimed to demonstrate the effectiveness of radiomics methods in clinical decision
making for COVID-19 patients. To achieve this, lung CT scans were selected and analyzed
in consultation with experienced radiologists. Their feedback was used to identify spe-
cific features of COVID-19 infection and choose optimal deep learning methods for data
processing and classification.

A program utilizing a convolutional neural network model was subsequently devel-
oped. This program extracts characteristic features from the regions of interest and analyzes
them to deliver a final diagnosis to clinicians. This program indicates whether the patient
is healthy or infected with COVID-19, estimates the percentage of pathologically changed
tissue, and determines the severity of the disease. These findings are then used to propose
the most appropriate therapeutic approach. The effectiveness of this approach highlights
the potential of radiomics methods in aiding clinical decision making for patients with
COVID-19 infection.



Appl. Sci. 2023, 13, 7565 3 of 18
Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 18 
 

 

Figure 1. (A) GGOs (black arrows): left lower and right middle lobes. (B) Crazy paving (arrow-

heads), confluent tissue concentrations (clear arrows), and extensive bilateral GGOs (black arrows). 

(C) Subpleural peripheral GGOs (orange arrows), pulmonary vascular enlargement (PVE), and 

asymmetrically dilated right lower lobar pulmonary arterial branches (blue square). (D) Traction 

bronchiectasis visible in anterior segmental bronchus and right upper lobe (yellow arrows). (E) 

Secondary bronchial dilation (short arrows), architectural distortion of the pulmonary tissue, and 

subpleural parenchymal bands (long arrows). 
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Figure 1. (A) GGOs (black arrows): left lower and right middle lobes. (B) Crazy paving (arrow-
heads), confluent tissue concentrations (clear arrows), and extensive bilateral GGOs (black arrows).
(C) Subpleural peripheral GGOs (orange arrows), pulmonary vascular enlargement (PVE), and asym-
metrically dilated right lower lobar pulmonary arterial branches (blue square). (D) Traction bronchiec-
tasis visible in anterior segmental bronchus and right upper lobe (yellow arrows). (E) Secondary
bronchial dilation (short arrows), architectural distortion of the pulmonary tissue, and subpleural
parenchymal bands (long arrows).

Recent Progress in Convolutional Neural Networks

Neural networks imitate the behavior and properties of neurons in the human brain.
They can recognize patterns in data and are the essential basis of artificial intelligence. An
artificial neural network (ANN) consists of interconnected nodes organized into layers. The
first layer is the input layer and the last is the output layer. There can be multiple hidden
layers in between, with the number depending on the complexity of the task. The input
layer accepts and transfers the input data matrix, which includes relevant features. Hidden
layers apply mathematical transformations to the input matrices to improve accuracy
and the output layer provides the final results. For classification tasks, the number of
neurons in the output layer corresponds to the number of classes [9]. They consist of
interconnected nodes, and the connections between them have varying weights to optimize
the learning process.

Neural networks are advantageous due to their learning ability, whereby they process
many examples to analyze associations within and between data groups. In this regard,
supervised learning is mainly discussed, where the output from the model is compared
with the default output during the training phase.

Generally, there are three common types of neural networks: ANNs, recurrent neural
networks (RNNs), and convolutional neural networks (CNNs). CNNs are the primary
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research focus in deep learning and are useful for image recognition, classification, and
processing tasks. A CNN has multiple layers and each layer detects different image features
through the application of new filters as the input image passes through each layer. On
the whole, CNNs have several advantages, such as the ability to automatically capture an
image’s spatial and temporal dependencies without the need for manual pre-processing
of data. The architecture includes three main types of layers: convolution, pooling, and
fully connected (FC) layers. Furthermore, CNNs are flexible, and pre-trained models can
be used for new image recognition tasks [10].

The convolution layer is a crucial component of the CNN architecture responsible for
feature extraction through a combination of linear and nonlinear operations. The layer
requires an RGB image input with three dimensions (height, width, and depth), a filter,
and a feature map. The feature detector or filter moves across the image and conducts
mathematical operations to check for the presence of specific features. The filter is typically
a 3 × 3 matrix that is shifted by a stride across the image to extract distinct feature maps
representing different characteristics of the input tensor. The feature detector’s weights
are shared as it moves across the image, allowing for fixed local feature patterns and
spatial hierarchies of feature patterns and reducing the number of parameters to learn.
The convolution layer’s hyperparameters, including the number of filters, stride, and
zero-padding, need to be adjusted before training to affect the output’s volume size. A
rectified linear unit (ReLU) transformation is applied to the feature map to introduce
nonlinearity to the model. If one convolution layer follows another, the CNN structure
becomes hierarchical [11].

The pooling layer is an essential component of CNNs responsible for reducing the
input’s dimensionality by decreasing its spatial size. Unlike the convolutional layer, the
pooling operation does not carry any weights but applies an aggregation function to the
values within the receptive field. The two most commonly used types of pooling are max
pooling, which outputs the maximum value from a selected set of pixels, and average pool-
ing, which returns the average value of the given pixel portion as an output. Max pooling
is more commonly used nowadays and can be considered a denoising operation applied to
the input. These layers limit the risk of overfitting and improve classification efficiency.

The final crucial element of a CNN is the FC layer. This layer effectively processes
and learns from the output of the previous layer, which typically represents complex,
nonlinear combinations of high-level features. In an FC layer, each output node is directly
connected to the previous layer’s node, making it particularly effective for classification
tasks. To produce a probability distribution as the final output, FC layers often use a
softmax activation function.

It should be mentioned that there are a wide range of pre-trained CNN architectures
available for download, each specialized for different classification tasks. When applied
appropriately to the input data, these architectures have demonstrated versatility and
efficiency [9,12–14].

2. Materials and Methods

The entire program script and the models were created using the Python programming
language. As it is developed under an open-source license, it gives the user access to many
libraries, including the ones used for working with deep learning, neural networks, and
artificial intelligence (AI).

2.1. Python Libraries Used and Data Selection

The libraries used included TensorFlow and Keras, which provide an interface for
solving classification problems and essential building blocks for developing deep learning
models, and Matplotlib, NumPy, Pandas, Plotly, SciPy, Scikit-learn, OpenCV, Pydicom,
Pyradiomics, NiBabel, Imageio, Pillow, and Tkinter.
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The datasets used for training the deep learning models were downloaded from
Kaggle. They are summarized in Table 1. Below, they are presented together with
their descriptions:

1. COVID-19 CT scans [15]: This image collection encompasses a set of 20 CT scans
obtained from patients diagnosed with COVID-19. The dataset also includes the
results of lung segmentation in the form of annotated lung and infection masks
produced by experienced radiologists;

2. Large COVID-19 CT scan slice dataset [16]: A curated COVID-19 CT scan collection
with a compilation of images drawn from six publicly available datasets. The scans
have been meticulously divided into three distinct categories: “COVID-19 Positive”,
“Normal”, and “Community-Acquired Pneumonia (CAP)”. This dataset encompasses
a total of 7593 images of COVID-19-positive cases obtained from 466 infected individu-
als, 6893 images of healthy individuals categorized as “Normal” obtained from 604 pa-
tients, and 2618 images categorized as “CAP” obtained from 60 additional individuals;

3. COVID-19 Lung CT Scans [17]: This dataset comprises a total of 349 CT scans, of which
216 were obtained from individuals diagnosed with COVID-19. In compliance with
the ethical guidelines, all patient information was anonymized prior to inclusion in
the set. The CT scans were sourced from a range of peer-reviewed journals, including
medRxiv, bioRxiv, NEJM, JAMA, and The Lancet, and were carefully annotated by a
team of radiologists.

Table 1. Summary of the contents of the databases used for model fitting and subsequent training.

Dataset Used
Number of Patients

COVID-19-Infected Healthy CAP

COVID-19 Lung CT Scans 216 133
Large COVID-19 CT scan slice dataset 466 604 60

COVID-19 CT scans 20

2.2. CT Image Segmentation

Lung segmentation is a critical step in CT scan analysis, focusing on identifying and
analyzing the specific region of interest within the lungs. By eliminating surrounding tissue,
this technique enhances analysis accuracy and efficiency, as illustrated in Figure 2. However,
it is crucial to avoid losing any part of the ROI, such as lung nodules near the thoracic
wall and structures such as bronchi within the lung area, during segmentation [18]. In CT
scans, the lung area typically appears darker than neighboring sections, while brighter
regions within the lungs may indicate air, blood vessels, or pathologically altered tissue.
The following steps are involved in lung segmentation [19]:

• Conversion of the image with RGB channels into a grayscale image;
• Binarization of the CT slice using a user-defined threshold value;
• Removal of objects outside the ROI but still connected to the image border;
• Labeling of regions within the image;
• Measurement of the properties of labeled image regions and elimination of everything

except for the two largest entities (right and left lung);
• Conducting binary erosion with a disk of a chosen radius to separate the lung nodules

attached to the blood vessels from surrounding tissue;
• Removal of blood vessels from the image;
• Filling in the holes created during the previous operation while preserving the nodules

attached to the pleura;
• Detection of lung edges using the Roberts operator to estimate and highlight the

spatial gradient zones in the image;
• Filling in any remaining holes within the ROI;
• Superimposing both binary and infected lung masks on the original chest CT scan.
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2.3. Preliminary Data Processing and Analysis

To prevent overfitting or underfitting in a deep learning model, it is necessary to split
the available CT images into separate sets for training and validation, as outlined in Table 2.
This ensures that the model does not use the same information twice and helps to mitigate
potential errors.

Table 2. Dataset division characteristics.

Main Dataset Division into Three Smaller Sets

Training Validation Testing

Fits the parameters of each
proposed model

Helps evaluate the model’s predictive
performance and adjust the hyperparameters

Enables estimation of the generalization
error for one chosen model

Data augmentation is a technique used to artificially increase the training dataset when
access to a comprehensive set is not possible. It involves generating multiple versions of a
single image, which can prevent overfitting and improve the model’s ability to generalize.

When working with small datasets, it is important to ensure adequately high accuracy
for the model’s output. By modifying the images in the training set with translations,
distortions, rotations, flips, shifts, brightness adjustments, sheerness adjustments, and scale
changes, the model is exposed to a variety of slightly different images in each epoch. This
method helps ensure that the model trains with a more diverse set of images and ultimately
leads to improved accuracy [20,21].

2.4. Neural Networks Characteristics Utilized

Transfer learning is conducted prior to model training when a pre-trained model is
used for feature detection/classification. A user can freeze all or some layers, add new ones
on top of the model, and then retrain it with a fine-tuning process after an initial training
session. The Keras CNN library [22] offers pre-trained VGG19 and InceptionResNetV2
models for image multiclassification [23,24].

The U-Net-based model was primarily intended to extract the infection masks from
the CT lung slices. The infection mask is the entire infected area within the lung tissue
border. Extracting it can also be considered a further segmentation step.

These data allowed us to calculate the percentage of the lung area covered by patho-
logical changes in a given CT cross-section. This percentage helped to assess the COVID-19
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severity score, which can be used as a basis for appropriate therapeutic strategy implementation.
The patient will be treated differently depending on how advanced their condition is.

Additionally, the extracted infection mask can be graphically converted into a heatmap,
which helps the viewer visualize which lung areas have been affected by the pathological
changes the most.

For all the models summarized in Table 3, accuracy and loss functions were chosen
as quality measures for classification. If the loss function value increased or stopped
improving, the learning rate was decreased. The best-performing epoch was selected at the
end of training and the associated weights or entire model were saved.

Table 3. Summary of the proposed models’ characteristics.

Type of Model Basic Architectural Attributes

Standard VGG19 model 19 layers

Input characteristics

RGB images of size 224 × 224
Input matrix: (224, 224, 3)

Output characteristics

Softmax activation function

New VGG19-inspired model
Eight new layers on top of a frozen, pre-trained VGG19 model

Input matrix: (128, 128, 3)
The new model has 75,074 trainable parameters

Standard InceptionResNetV2 model 164 layers

Input characteristics

RGB images of size 299 × 299
Input matrix: (299, 299, 3)

Output characteristics

Softmax activation function

New InceptionResNetV2-inspired model
Four new layers on top of a frozen, pre-trained model

Input matrix: (128, 128, 3)
The model has 54,673,507 trainable parameters

New custom CNN model
54,673,507 trainable parameters
960 non-trainable parameters
1,898,202 parameters in total

Input characteristics

Greyscale images of size 128 × 128
Input matrix: (128, 128, 1)

Output characteristics

Softmax activation function

Custom U-Net

The contracting path has a structure where many convolution blocks are followed by
maxpool downsampling and ReLU. This helps encode the input image into varied

complexity- and depth-feature representations.
The expansive path semantically links the input features to the pixel space. As a result,

a dense classification is obtained. It is achieved thanks to the upsampling,
concatenations, and a sequence of upconvolutions with high-resolution features

2,158,417 trainable parameters
2,158,417 parameters in total

2.5. Neural Network Training and Model-Specific Overview

It is essential to adjust the weights during model training to achieve the best clas-
sification results. The weights are gradually modified to increase the accuracy of the
outcomes. Log loss/binary cross-entropy is a commonly used loss function for binary
classification tasks.

Various gradient-based optimization algorithms are available to optimize the learning
process and thus lower the value of the loss function, including Adam and RMSprop. The
learning rate needs to be manually set. Monitoring the loss function during training and
adjusting the learning rate accordingly are essential.
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Callbacks such as ModelCheckpoint and ReduceLROnPlateau can automate tasks and
optimize the training process. ModelCheckpoint saves the model at a specific frequency at
the end of every epoch. ReduceLROnPlateau reduces the learning rate if the monitored
classification quality metric is not improving. Implementing these callbacks can help
achieve better accuracy and faster training times. In summary, adjusting weights and loss
function, selecting the appropriate learning rate, monitoring the training process, and using
callbacks are essential components in optimizing a model’s training process [25–27].

To ensure high-quality classification in all models, the accuracy and loss function were
carefully monitored during the training. If the loss function value ceased to improve, the
learning rate was automatically decreased in all cases. Once the training was complete, the
best-performing epoch was identified, and the associated weights and the entire model
were saved. The training parameters of different models are summarized in Table 4.

Table 4. Overview of the different models’ training and parameter settings.

Type of Model Epochs Steps per Epoch Tolerance Additional Remarks

VGG19 100 16 Five epochs The learning rate was lowered if the loss function
value remained unchanged over five epochs

InceptionResNetV2 40 Dependent on the
batch size One epoch

Training stopped after the 20th epoch, as the loss
function value stopped decreasing and remained

unchanged over five subsequent epochs

Custom CNN 20 363 Five epochs The learning rate was lowered if the loss function
value remained unchanged over five epochs

U-Net 315 315 Five epochs The learning rate was lowered if the loss function
value remained unchanged over five epochs

During the binary classification training task, the performance of the first three dis-
tinct models was evaluated based on their validation accuracy (see Figures 3–5). The
custom CNN model achieved the highest value for accuracy of 98.21%, followed by the
InceptionResNetV2-based model with a score of 97.20%. This particular model performed
the classification task by sorting the data into three distinct classes instead of two as in the
other models. This is also why the appearance of the graphs (see Figure 4) was different.
The VGG-19-based model had the lowest performance, with a validation accuracy of 83%.
Based on the overall performance in the binary classification task, the custom CNN model
was determined to be the most appropriate architecture for the investigated problem.
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The fourth model, the U-Net model, was trained on numerous lung CT slices obtained
from various patients, each previously annotated by a radiologist (see Figure 6). Each
CT slice was associated with a corresponding lung mask, infection mask, and superim-
posed lung with an infection mask. The U-Net model was trained to accurately extract
both the lung and infection masks from each CT slice. To assess the quality of the ex-
traction results, the accuracy and loss function were computed and compared against the
original annotations.
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2.6. COVID-19 Severity Score

The manifestation of COVID-19 in the lungs can take various forms, underscoring the
importance of an accurate numerical assessment of tissue damage. A COVID-19 severity
score is critical for patient triage, predicting disease progression, and developing effective
treatment plans. While RT-PCR is currently the most common diagnostic tool, CT scans may
be necessary for patients suspected of COVID-19 infection and those who have negative
RT-PCR test results.

The U-Net-based model can generate masks that facilitate the calculation of the per-
centage of lung tissue affected by the pathological process. The following steps can be
taken to obtain this information:

1. Determine the number of pixels corresponding to the total lung area;
2. Calculate the number of pixels corresponding to the infected area within the seg-

mented lung borders;
3. Utilize the values from the previous steps to calculate the percentage of lung tissue

affected by the pathological process.

The resulting percentage can be used to derive a COVID-19 severity score, which pro-
vides valuable insights for optimal patient hospital management and therapeutic approaches.

3. Results

Machine learning models are frequently used for binary classification problems. Statis-
tical analysis in the form of a confusion matrix can help understand their performance, with
each row representing the actual class and each column representing the predicted class.
A color-coded matrix can make it easy to determine whether the model can accurately
differentiate between the classes.

The receiver operating characteristic (ROC) curve is another statistical measure that
can be used for binary classification problems. The ROC curve is a plot that visualizes the
diagnostic ability of a binary classification model. It presents sensitivity as a function of
specificity, with each point on the curve representing a different threshold for the model’s
prediction. A perfect ROC curve is obtained when the model’s performance is plotted in
the upper-left corner, representing that both sensitivity and specificity are approximately
100%. The ROC curve is an efficient tool that can be used for optimal model selection.

The diagonal line in the ROC space splits it into two parts, with points in the upper
part representing good classification. The area under the ROC curve (AUC) should also be
considered when comparing different models. The AUC ranges from 0 to 1, with a score of
1 representing perfect model performance and 0 representing random categorization to a
given category.

3.1. Summary of the Models’ Performance

1. VGG-19-based model

A model was used to accurately differentiate between lung images with COVID-19-
induced pathological tissue changes and those images without such changes. The number
of true-negative and true-positive cases was much higher than that of false-positive and
false-negative cases, indicating that the model did not randomly assign objects to either of
the two available classes.

The model’s performance was assessed (Figure 7) using a confusion matrix and ROC
curve, which showed that 75% of the processed images were correctly categorized into one
of the two classes. The final accuracy achieved by the model was considered appropriate
for research settings. Therefore, the model accurately distinguished between pathological
changes induced by COVID-19 and healthy lungs.
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2. InceptionResNetV2-based model

This model was trained to categorize objects into three classes, as shown in the confu-
sion matrix. The ROC curve, however, only assessed the performance in differentiating
COVID-19 cases from two other diagnostic possibilities. These results are shown in Figure 8.
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The confusion matrix indicated that the model effectively sorted images into categories
without randomly assigning them. This was confirmed by the ROC curve, which showed a
high number of true-positive and true-negative cases for all three conditions. The model
performed best in detecting community-acquired pneumonia from lung CT slices, while
it struggled the most with categorizing COVID-19-infected patients. Nonetheless, the
confusion matrix and ROC curve demonstrated that the model correctly identified 84% of
COVID-19 cases. Therefore, the model’s final accuracy is suitable for research use.

3. Custom CNN model

The confusion matrix and ROC curve demonstrated that the model accurately per-
formed binary classification without randomly assigning images to either class. The ROC
curve closely aligned with the left corner of the plot, indicating a high number of true-
positive and true-negative cases (see Figure 9).
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The model achieved a diagnostic accuracy of 98.01%, as shown by both the confusion
matrix and ROC curve. This result was considered satisfactory and demonstrates that the
model can be applied in clinical research settings.

Table 5 shows the model testing results. Organizing the results into a table facilitated
a comprehensive and in-depth analysis of the statistical measures. This approach enabled
a more straightforward comparison of the outcomes of the three models evaluated in
this study.

When reviewed, it was found that the custom CNN model achieved the highest
diagnostic quality. Most of its cells corresponding to specific statistical measures were
shaded in green, indicating superior performance compared to the other two models.
It needs to be highlighted that the custom CNN model also demonstrated the highest
accuracy, precision, specificity, and sensitivity, which are considered the most critical
statistical measures.

The results for the two other models investigated in this study can be considered
satisfactory, but the custom CNN model clearly outperformed them. The VGG-19-based
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model demonstrated the lowest diagnostic quality, while the InceptionResNetV2-based
model produced better outcomes, with accuracy, precision, specificity, and sensitivity scores
above 50% in both cases.

The testing process for all three models can be considered successful and their di-
agnostic ability confirmed, and they can be efficiently utilized for research and scientific
purposes. The primary goal was to develop a tool that supports radiologists and improves
their efficiency. For this purpose, the custom CNN-based model was the best-suited model
from the three discussed models.

Table 5. Comparison of the statistical measures associated with the quality and efficiency of the
classification task undertaken by the three tested models. Color coding: green—best outcome,
yellow—medium outcome, red—worst outcome.

Classification Quality Measures Models

VGG-19-Based InceptionResNetV2-Based Custom CNN Model
Accuracy 0.75 0.97 0.98
Sensitivity 0.71 0.94 0.97
Specificity 0.79 0.98 0.99
Precision 0.77 0.97 0.99

Negative predictive value 0.73 0.97 0.97
False-negative rate 0.29 0.97 0.03
False-positive rate 0.21 0.06 0.01

False discovery rate 0.23 0.02 0.01
False omission rate 0.27 0.03 0.03

Threat score 0.59 0.03 0.96
F1 score 0.74 0.91 0.98

Positive likelihood ratio 2.43 0.97 34.37
Negative likelihood ratio 0.37 15.75 0.03

Balanced accuracy 0.75 0.06 0.98
Prevalence threshold 0.35 0.11 0.10

Log loss score 0.20 0.01 0.01

The U-Net-based model underwent testing with a lung CT slice that was not included
in its training data. To ensure compatibility with the model input, the image dimensions
were adjusted to fit the default matrix. Furthermore, the image was converted into grayscale.
The model output was an infection mask that was presented as a heatmap and overlaid on
a segmented lung image. As illustrated in Figure 10, the heatmap captured all the regions
impacted by lung tissue degeneration effectively. The intensity of the color in the heatmap
correlated with the severity of the observed damage. Thus, the model provided accurate
information about the location and intensity of the detected pathologies.
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Figure 10. The testing outcome for the U-Net-based model in the form of an infection heatmap. It was
produced using (A) a CT slice with visible lung tissue degeneration caused by COVID-19 infection.
The next steps were (B) lung segmentation and (C) infection mask extraction. (D) The extracted
mask in the form of a heatmap was superimposed on the segmented lung area to visualize where the
infection focus points were localized.
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3.2. Guidelines concerning the Optimal Therapeutic Approach for Patients with
COVID-19 Infection

Various therapies have been developed to target severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). Some of these therapies are effective for patients with mild
lung involvement, while others are more suited for those with severe lung damage. CT
scans are only performed on COVID-19 positive patients when they are hospitalized.
Hence, a severity score is needed to determine the optimal therapeutic approach and
patient management framework for these patients.

The COVID-19 lung involvement score, which can be objectively determined using
the masks yielded by the U-Net-based model, plays a crucial role in establishing patient
treatment plans.

Here are the updated guidelines for the optimal therapeutic approach for COVID-19
patients with different severity levels [28]:

1. Severity scores of 1 and 2—patients in stable condition who do not require
oxygen supplementation:

• Do not use dexamethasone or other corticosteroids;
• Use remdesivir for patients who are at high risk of progressing to severe COVID-19;
• Administer a prophylactic dose of heparin;

2. Severity score of 3—patients who require conventional oxygen supplementation:

• Use remdesivir for patients who require minimal oxygen supplementation;
• For most patients, administer dexamethasone and remdesivir or just dexametha-

sone (if remdesivir is unavailable);
• Add either baricitinib or tocilizumab if the oxygen is needed and inflammation

markers are rapidly increasing;
• Administer a therapeutic dose of heparin for nonpregnant patients with D-dimer

levels above the upper limit of normal without increased bleeding risk;

3. Severity score of 4—patients who require high-flow nasal cannula oxygen supplemen-
tation or noninvasive ventilation:

• Use just dexamethasone, dexamethasone with baricitinib, or dexamethasone
with tocilizumab;

• Administer a prophylactic dose of heparin;

4. Severity score of 5—patients who require mechanical ventilation or extracorporeal
membrane oxygenation:

• Use just dexamethasone, dexamethasone with baricitinib, or dexamethasone
with tocilizumab;

• Administer a prophylactic dose of heparin.

Figure 11 summarizes the guidelines and highlights the most important information
based on lung damage severity [28].
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4. Discussion

This study aimed to examine the potential of deep learning as a precise COVID-19
diagnostic tool and for suggesting a patient-tailored therapeutic strategy. The results of this
scientific investigation imply that these objectives have been achieved.

The first step involved the collection and preparation of CT medical images from
various patients with different conditions. A considerable number of diverse scans were
obtained to ensure that the tested models would reach a high level of accuracy.

Three different models based on convolutional neural network architectures were
constructed and tested for diagnostic purposes. They provided satisfactory results, with
accuracy, sensitivity, and specificity that were well above the 50% threshold. The over-
all performance of the models was compared, and the third custom-made model deliv-
ered the best outcomes. This model was then used in the development of a prototype
window application.

The next phase involved predicting the condition’s severity and suggesting a therapeu-
tic strategy. A U-Net-based model was trained on lung and infection masks, which enabled
it to extract these masks from a CT slice and then calculate the percentage of pathologically
altered tissue. This measure was then matched with the COVID-19 severity score, and a
patient-tailored therapeutic approach was proposed accordingly. This functionality was
also incorporated into the prototype window application.

The study results provide a functioning deep learning-based approach that may prove
advantageous in experimental medical and/or scientific settings. The quality of the results
ensures reliability, and the approach constitutes a simple clinical decision-support tool.

5. Conclusions

In conclusion, the results obtained from the study were generally satisfactory, high-
lighting the potential for further development and refinement of the application. However,
several areas require attention and improvement.
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Firstly, it is essential to acknowledge that the study utilized a limited dataset of medical
images. Future research should consider incorporating different and more extensive
databases to enhance the robustness and generalizability of the findings by providing a
broader representation of cases.

Moreover, the segmentation of the lungs may have unintentionally excluded relevant
surrounding tissues and structures, such as tracheal tubes. Modifying the segmentation
process and algorithm is crucial to ensure the inclusion of these structures and thus enhance
the range of features used in the diagnostic model training.

Additionally, the study only tested three neural network architectures for medical
image classification in the diagnostic task. However, exploring a more comprehensive range
of architectures may help identify potential superior alternatives. Different architectures
offer distinct strengths and capabilities, potentially improving performance in medical
image classification tasks.

In terms of therapeutic suggestions, the current U-Net model provided outcomes in
terms of the percentage involvement of pathological tissue within the total lung area on
each CT slice. However, modifications of the model are required for a more objective and
accurate analysis. Analyzing 3D reconstructions of the lungs derived from all CT slices of
an individual patient’s scan would allow for a more precise evaluation of the extent of the
disease. Assessing the percentage involvement of pathologically altered tissue within the
total lung volume would allow for the optimization of therapeutic suggestions, mitigating
the risk of misdiagnosis associated with relying solely on a limited number of CT slices.

Furthermore, constructing and training multiple models specifically for this task
would facilitate a thorough performance comparison, enabling the identification of potential
disadvantages associated with each model. This approach would make it possible to select
the optimal model for accurate and personalized therapeutic suggestions.

To further enhance patient care and management, it is crucial to consider the integra-
tion of the developed models with other diagnostic modalities and medical procedures
beyond lung-related CT imaging. This integration would broaden the scope of clinical
decisions for COVID-19 patients, enabling a comprehensive approach to diagnosis and
treatment. Moreover, it is worth noting that the potential applications of machine learning
extend beyond the scope of this study, encompassing various medical conditions and
imaging modalities. As medical imaging devices continue to advance, providing improved
visualization of previously undetectable features, the utilization of machine learning holds
promise for further enhancing the quality of results and expanding its impact in the field
of healthcare.

AI integration in radiology holds promise for improving the early detection and
diagnosis of malignancies. One significant advancement is the development of a deep
learning model that can predict an individual’s lung cancer risk up to six years in advance
using a single low-dose computed tomography (LDCT) scan. This proactive approach
enables personalized treatment plans, leading to improved patient outcomes [29].

The broader adoption of AI in radiology has the potential to revolutionize clinical
practices by streamlining workflows and enhancing interpretative speed and accuracy. AI
algorithms empower radiologists to deliver more precise and timely diagnoses, optimizing
patient care [30,31].

In conclusion, AI and deep learning solutions are transformative in radiology. They
enhance early detection, improve diagnostic accuracy, and optimize patient care across
diverse medical conditions and imaging modalities. Continued research and development
in this field will unlock further potential, benefiting medical professionals, patients, and
engineers alike.
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