
Citation: Haji Mohd, M.N.; Mohd

Asaari, M.S.; Lay Ping, O.; Rosdi, B.A.

Vision-Based Hand Detection and

Tracking Using Fusion of Kernelized

Correlation Filter and Single-Shot

Detection. Appl. Sci. 2023, 13, 7433.

https://doi.org/10.3390/

app13137433

Academic Editors: Yudong Zhang

and Haidi Ibrahim

Received: 15 February 2023

Revised: 29 May 2023

Accepted: 12 June 2023

Published: 23 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Vision-Based Hand Detection and Tracking Using Fusion of
Kernelized Correlation Filter and Single-Shot Detection
Mohd Norzali Haji Mohd 1 , Mohd Shahrimie Mohd Asaari 2,* , Ong Lay Ping 2 and Bakhtiar Affendi Rosdi 2

1 Faculty of Electrical and Electronics Engineering, Universiti Tun Hussein Onn Malaysia, Parit Raja,
Batu Pahat 86400, Johor, Malaysia; norzali@uthm.edu.my

2 School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Engineering Campus,
Nibong Tebal 14300, Penang, Malaysia

* Correspondence: mohdshahrimie@usm.my; Tel.: +60-45996086

Abstract: Hand detection and tracking are key components in many computer vision applications,
including hand pose estimation and gesture recognition for human–computer interaction systems,
virtual reality, and augmented reality. Despite their importance, reliable hand detection in cluttered
scenes remains a challenge. This study explores the use of deep learning techniques for fast and
robust hand detection and tracking. A novel algorithm is proposed by combining the Kernelized
Correlation Filter (KCF) tracker with the Single-Shot Detection (SSD) method. This integration enables
the detection and tracking of hands in challenging environments, such as cluttered backgrounds and
occlusions. The SSD algorithm helps reinitialize the KCF tracker when it fails or encounters drift
issues due to sudden changes in hand gestures or fast movements. Testing in challenging scenes
showed that the proposed tracker achieved a tracking rate of over 90% and a speed of 17 frames
per second (FPS). Comparison with the KCF tracker on 17 video sequences revealed an average
improvement of 13.31% in tracking detection rate (TRDR) and 27.04% in object detection error (OTE).
Additional comparison with MediaPipe hand tracker on 10 hand gesture videos taken from the
Intelligent Biometric Group Hand Tracking (IBGHT) dataset showed that the proposed method
outperformed the MediaPipe hand tracker in terms of overall TRDR and tracking speed. The results
demonstrate the promising potential of the proposed method for long-sequence tracking stability,
reducing drift issues, and improving tracking performance during occlusions.

Keywords: human–computer interaction; hand detection; hand tracking; single-shot detection;
kernelized correlation filter

1. Introduction

Hand detection and tracking are crucial front-end procedures for many human hand-
gesture tasks and remain challenging topics for researchers. They play a vital role in various
computer vision applications, including hand pose estimation, human–computer interac-
tion (HCI) systems, virtual reality (VR), augmented reality (AR), and more. These tasks are
essential in numerous human–machine applications, such as providing navigational assis-
tance for the visually impaired [1], enabling contactless navigation for surgeons to minimize
contamination during surgery [2], recognizing and interpreting sign language through
hand gestures [3], and facilitating interactive remote control for VR video games [4].

Hand gestures can be classified into two categories: static gestures and dynamic
gestures. Static hand gestures refer to hand postures where the position remains unchanged
for a certain period of time, while dynamic hand gestures involve hand postures where
the hand position changes over time. Static gestures are characterized by factors such as
orientations, shape, and contextual environment, whereas dynamic gestures, also known
as trajectory-based gestures, are characterized by factors such as trajectory and motion
speed [5]. In the context of trajectory-based gestures, the accurate detection and tracking of
the hand play a vital role. Recognizing and interpreting dynamic hand gestures requires

Appl. Sci. 2023, 13, 7433. https://doi.org/10.3390/app13137433 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13137433
https://doi.org/10.3390/app13137433
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8503-7432
https://orcid.org/0000-0002-0225-4819
https://doi.org/10.3390/app13137433
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13137433?type=check_update&version=1

Appl. Sci. 2023, 13, 7433 2 of 16

capturing the hand’s motion trajectory and accurately tracking its movement. Detection
ensures that the hand is identified and localized within the frame, while tracking enables
the continuous monitoring of the hand’s position, orientation, and motion throughout a
sequence of frames. The detection and tracking of the hand are critical for trajectory-based
gesture recognition. By extracting the trajectory pattern from landmarks such as the center
of the palm, user can analyze the hand’s motion and obtain meaningful features for gesture
recognition algorithms. The integration of detection and tracking techniques allows the
user to capture and analyze the temporal dynamics of hand gestures, providing more
accurate and reliable recognition results.

In general, two main approaches can be implemented for hand detection and tracking:
marker-aided and vision-based marker-less methods. The former approach requires the
user to wear a glove-like device, which provides more accurate results. However, wearing
such a device inconveniences the user and restricts the naturalness of HCI [6]. The latter
technique is undoubtedly a better approach as it allows for natural HCI interaction without
the need for wearable devices. However, its accuracy may vary when the vision system is
exposed to external factors such as extreme lighting conditions and cluttered backgrounds.

In addition to accurate hand detection, tracking hand movement is essential for many
hand-based computer vision applications. The hand tracking must be smooth, fast, and
accurate to extract and decode information correctly. However, reliably detecting hands
from cluttered scenes remains a challenging task. This is due to the complex appearance
diversities of dexterous human hands in color images, including variations in hand shapes,
skin colors, illuminations, orientations, scales, etc. [7]. Human hands are dynamic and tend
to move quickly, making tracking difficult (e.g., clenching and releasing a fist, scratching
the nose, waving hands). Furthermore, occlusion is a common issue encountered in hand
detection systems [8]. Occlusion occurs when the hand is obstructed by other objects
during real-time detection, such as covering the left hand with the right hand or placing the
hand in front of the face. This introduces higher complexity to the system as the extracted
information is limited for achieving the goal of hand detection.

Apart from the occlusion with external objects, the human hand can also be self-
occluded; for example, when clenching a fist, the fingertips are occluded by the palm.
Moreover, real-time object-detection mechanisms require heavy I/O operations and ac-
curate processing [9], making them computationally expensive. The system needs to
continuously capture image frames from the camera feed, detect the object, draw the pre-
dicted bounding box, and track the target object in every frame. This heavy and complex
computation can slow down the system, making it undesirable even with high accuracy.
Therefore, a wise trade-off between speed and accuracy also needs to be considered.

2. Related Works and Motivation

Vision-based marker-less hand tracking holds great promise for HCI applications,
including sign language recognition, augmented reality, telesurgery, home automation,
and gaming. However, its implementation faces several challenges, including tracking
inaccuracy caused by complex articulated hand motion, high appearance variability, and
demanding computational and real-time requirements [10–14]. Consequently, research in
this field continues to be a challenging problem that has gained significant attention from
the computer vision community.

Sharp et al. [11] presented a real-time hand tracking system based on a single depth
camera. The system tracked hands in various poses and environments and demonstrated
fast and accurate recovery from tracking failures. They utilized the analysis by synthesis
technique, generating candidate poses and scoring them against the input image to deter-
mine the most likely hand pose. Machine learning and temporal propagation contributed
to a large set of candidate hand-pose hypotheses. The evaluation showed accurate tracking
of different hand poses, including open, closed, and gesturing hands. However, the system
had limitations regarding occlusions and changes in lighting conditions.

Appl. Sci. 2023, 13, 7433 3 of 16

Recent studies have shown that the accuracy of vision-based tracking can be improved
by the adoption of deep learning methods through the Convolutional Neural Network
(CNN) technique. Mueller et al. [15] proposed an innovative real-time 3D hand tracking
method using monocular RGB images. Their approach combined a CNN with a kinematic
3D hand model to achieve accurate tracking. They predicted 2D joint heatmaps, enabling
the 3D hand model to infer corresponding 3D joint positions. A noteworthy contribution
was the introduction of a novel synthetic data generation method using a Generative
Adversarial Network (GAN). This GAN was trained to generate hand images that closely
resemble real images, enhancing the CNN’s robustness to variations in lighting, pose, and
occlusion. However, the authors acknowledged certain limitations in their approach. They
addressed scenarios where the hand and background had similar appearances, which
posed challenges for their network model, leading to unstable tracking and inaccurate
predictions. Furthermore, tracking became problematic when multiple hands were in close
proximity within the input image, resulting in unreliable detections and posing a challenge
for accurate tracking.

Zhang et al. [16] proposed MediaPipe hands, a real-time hand detection and tracking
system based on the BlazePalm CNN architecture. This method accurately predicted
hand poses using image inputs and detected hand bounding boxes and landmarks. The
system followed a “tracking by detection” approach, with the palm detector locating hand
regions and the hand landmark model estimating precise 2.5D landmarks. These landmarks
accurately depicted specific key points on the hand, such as fingertips, knuckles, and the
center of the palm. However, challenges arose when hands were occluded, in extreme poses,
or appeared very small in the image due to large distances. Additionally, factors such as
lighting conditions and cluttered backgrounds could affect system performance. MediaPipe
hands offered robust hand tracking with accurate pose estimation, but limitations had to
be considered.

The CNN sub-libraries such as Regional-based Convolutional Neural Network (R-
CNN), Faster R-CNN, You Only Look Once (YOLO), and Single-Shot Detection (SSD)
algorithms have also gained attention in this research field. In Wu et al. [8], hand pose
estimation was achieved by performing skeleton-difference network (SDNet) analysis to
predict the locations of hand joints. To train the network for detecting hand location, a
deep learning model based on CNN was implemented. For model training, the dataset was
pre-processed by cropping the hand region and labelling the hand joints. The employed
CNN network model had another layer added to it known as a position-sensitive region
of interest (RoI) pooling layer, based on ZFnet, to further improve its accuracy. From
their experiments, the proposed model was able to detect hands and three other classes
accurately, achieving a mAP of 91.6%.

On the other hand, Liu et al. [17] implemented two popular CNN backbones, the
VGG-16 and ResNet 50 to compare their performance in a hand detection system. Both
backbones were trained on the same dataset, ImageNet, to ensure a fair comparison.
Additional features such as rotational map were introduced to the CNN network to enable
the detector to draw bounding boxes near rotated hands in images. Implementation
results showed a significant improvement in mAP, with the VGG-16 network achieving
92.3% mAP and a frame rate of 13.10 FPS and ResNet 50 attaining 94.8% mAP and frame
rate of 19.80 FPS, outperforming the other existing detection benchmarks such as YOLO
(76.4% mAP and frame rate of 35 FPS). In Gao et al. [18], the existing SSD network was
improved by replacing the original backbone of SSD, VGG-16 net with ResNet 101, and
fusing the feature maps’ three Conv4 layers with two Conv6 layers. These improvements
are aimed at improving the accuracy of the existing SSD network in detecting smaller
objects, such as distanced hand gestures to a space robot in a space station. Results from
their proposed design showed significant enhancement of SSD model in terms of mAP, as
their model was able to achieve mAP of 89.4% on public hand datasets such as the Oxford
hands dataset [19], EgoHands dataset [20], and self-developed Space Robot Simple Sign
Language (SRSSL) dataset [18].

Appl. Sci. 2023, 13, 7433 4 of 16

In another recent work, Mukherjee et al. [21] proposed the Faster R-CNN network in
their fingertip detection and tracking system for air-writing recognition. The system was
decomposed into several sections: detecting writing hand pose, keeping track of fingertips
in every successive frame, and recognition of the air-writing characters. For hand pose
detection, the Faster R-CNN network was trained on EgoFinger [22] and EgoHands datasets
with four losses: RPN regression loss, RPN classification loss, R-CNN regression loss, and
R-CNN classification loss. Other than focusing on detecting the hand pose in video streams,
they also proposed implementing hand centroid localization to locate the position of the
hands accurately. Visual trackers such as Kernelized Correlation Filter (KCF) tracker [23],
Tracking-Learning-Detection (TLD) [24] tracker, and Multiple Instance Learning (MIL) [25]
tracker were implemented as the hand tracking mechanism to assist the Faster R-CNN
detector in keeping track with the fingertips movement during air-writing process. Their
experimental results showed that the proposed method outperformed the rest of the visual
trackers, achieving a mAP of 73.1% as compared with TLD tracker (mAP of 66.7%), KCF
tracker (mAP of 55.4%), and MIL tracker (mAP of 42.4%).

The focus of this work is to develop a fast and robust hand detection and tracking
system that is reliable to support a real-time application. To achieve this objective, a
tracking-by-detection algorithm is proposed by integrating the well-known correlation
filter-based trackers, the KCF tracker [23], with the state-of-the-art deep learning object-
detection algorithm, Single-Shot Detection (SSD) [26]. The KCF tracker is considered in this
work because of its widespread acceptance due to its competitive performance in terms of
speed and accuracy. For instance, the KCF tracker has been implemented in face tracking
systems alongside a Continuously Adaptive Mean-Shift (CamShift) algorithm to optimize
the tracking performance and to recover the tracker when the CamShift algorithm failed to
track faces midway during inference [27]. Despite its promising characteristics, the KCF
tracker still struggles to maintain seamless tracking in the occurrence of occlusion and
objects falling out-of-view, and it is unable to correct errors during the tracking process [28].
This limitation is due to the principle of the KCF tracker that traces the target based
on the correlation of the appearance and position of the target in the previous frames.
Therefore, the presence of challenging scenes that result in a significant mismatch between
the appearance of the target and the reference object will lead to tracking failure [10].

In this paper, a robust hand tracking method is proposed which integrates the cor-
relation filter with a correction strategy using the fast object-detection model, the SSD
algorithm. With this integration, the tracker can be reinitialized when hand movement is
not tracked properly, ensuring consistent and accurate tracking. By detecting the tracked
object only during the first frame and when it is lost by the tracker, heavy computational
costs of the detector are minimized, leading to an improvement in real-time performance.
To assess the performance of the proposed tracker, it is compared with the state-of-the-art
KCF tracker in terms of mean average precision (mAP) and frame per second (FPS).

3. Methodology
3.1. SSD Hand Detection Model

In order to support ideal real-time application, the deep learning object-detection
model needs to be fast, accurate, and as light as possible to avoid resource exhaustion
issues. However, training a robust deep learning model from scratch is very challenging
and time-consuming. Thus, the transfer learning approach is preferred to reduce model
training time. In this work, SSD MobileNet V2 with Feature Pyramid Network (FPN) Lite
320 × 320 is chosen as the pre-trained model due to its light weight, fast detection speed,
and good mAP results of the Common Objects in Context (COCO) dataset [29].

Unlike the conventional SSD models which employed the default VGG-16 backbone,
the selected version of the SSD model employed an FPN feature extractor that consists of
three main elements: a bottom-up pathway, top-down pathway, and lateral connections.
The top-down pathway and lateral connections are interconnected by addition, whereas
the bottom-up pathway is a feedforward pathway with its spatial resolution gradually

Appl. Sci. 2023, 13, 7433 5 of 16

decreasing, and semantic values of each layer increasing as the pathway goes up. This
results in relatively low semantic values in the bottom-most layer, which is the main reason
for the poor performance of SSD in detecting smaller objects. On the other hand, the top-
down pathway is responsible for reconstructing higher resolution features by up-sampling
the feature maps from higher pyramid levels [30]. The higher resolution features generated
by the top-down pathway and the features generated by the bottom-up pathway are then
interconnected via the lateral connections, which help to improve the ability of the SSD
model in predicting the locations of the detected objects.

To initiate transfer learning for the training process, the pre-trained SSD MobileNet
V2 FPN Lite model is first downloaded to the workspace. The base model is loaded with
its pre-trained weights and the classification layers of the model (i.e., the top layers in the
FPN bottom-up pathway) are frozen to avoid destroying the pre trained information stored
in the model. Besides freezing the top classification layers, the batch normalization layer,
which contained the weights of mean and variance of the pre-trained model, is also frozen
to avoid updating the stored weights of the model during training. With the rest of the
layers are frozen, only four layers from the feature extraction layers will be re-trained.

For the re-training procedure, the public hand detection dataset EgoHands (http://vision.
soic.indiana.edu/projects/egohands/, accessed on 29 September 2021) [20], developed by
Indiana University, is chosen. The EgoHands dataset was mainly used for egocentric
hand detection and segmentation tasks. It consists of video sequences captured from a
head-mounted camera. The dataset contains 48 video sequences captured in diverse indoor
and outdoor environments. The videos feature various activities such as cooking, playing
instruments, painting, typing, and more. Each frame of the videos is annotated with hand
bounding box annotations and pixel-level segmentation masks. The annotations mark the
location and extent of the hands in the frames, allowing for both detection and segmentation
tasks. This dataset provides high-quality pixel-wise segmentation of hands in an egocentric
view and full annotations of hands. The dataset is randomly split into two sets: 80% of
images train the dataset and 20% test the dataset. As we target to detect only one hand
from the input image, the number of the class is set to 1, while the batch size is set to 4 to
speed up the model training process. The training iteration is set to 20K iterations and the
cosine learning rate base is set to 0.08 to train a large batch of datasets. Model training is
performed by executing the training script provided by the Tensorflow Object Detection
API. Once the training loss has dropped to the optimistic value range (around 0.15–0.20),
the model training process will be halted to prevent the model from overfitting.

3.2. Evaluation of Hand Detection Model

Before integrating the hand detection model with the KCF tracker, the trained hand
detection model is evaluated based on the average recall (AR) and mean average precision
(mAP) for different intersection over union (IoU) threshold. Mean average precision is the
mean of average precision evaluated in overall detection classes and/or all IoU thresholds,
while average precision is the area under the curve of the precision–recall graph. On the
other hand, average recall is the measure of assertiveness or the confidence level of the
detector model in detecting a given class [31]. In this work, COCO detection evaluation
metrics are used to evaluate the model. In the context of COCO evaluation metrics,
the average precision equals mean average precision, standardly evaluated for 10 IoU
thresholds from 0.5 to 0.95 with a step size of 0.05 (denoted as IoU ∈ (0.5:0.05:0.95)) [32].
Generally, mAP evaluates the accuracy of the detector model by comparing the predicted
bounding boxes over the ground truth bounding boxes based on a given IoU threshold.
For example, when evaluated at IoU = 0.50, only the predicted bounding boxes with the
overlapped area with respect to the ground truth bounding boxes exceeding the threshold
value is considered as true positive (TP). The more TP obtained at the given IoU threshold,
the greater the mAP value, and thus the more accurate the model.

http://vision.soic.indiana.edu/projects/egohands/
http://vision.soic.indiana.edu/projects/egohands/

Appl. Sci. 2023, 13, 7433 6 of 16

3.3. Integration of SSD and KCF Tracker

Running hand detection on every frame of camera inference or video feed is computa-
tionally expensive and requires heavy computation. Thus, the SSD detector is proposed
to combine with KCF visual tracker to reduce the heavy computation of the system and
as a backup when the visual tracker fails to track hand movement by reinitializing the
detector. Figure 1 shows the workflow of the tracking-by-detection algorithm by combining
the SSD detector with the KCF visual tracker. The system consists of two phases, namely,
the detection phase and the tracking phase. The detection phase is activated on the first
frame and when the tracking state fails to recover the correct position. For this purpose,
the tracking mode is controlled by a Boolean state “Trackable” as “True or False” as an
indicator to activate or deactivate the tracking process on every successive frame. In the
detection phase, first, the system will check for tracking status. If no tracking process is
running, i.e., “Trackable = False”, the SSD detector will be activated.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 17

Figure 1. Flowchart of the integration of SSD and KCF Tracker.

4. Result and Discussion
This section presents the performance analysis of the proposed hand detection and

tracking framework. The evaluation primarily focuses on the performance of the SSD
hand detection model on the EgoHands dataset, specifically the testing dataset portion.
The evaluation utilizes COCO’s detection evaluation metrics, including mean Average
Precision (mAP) at different Intersection over Union (IoU) thresholds, average recall (AR),
and detection speed, to assess the model’s ability to detect hand objects from input images.
The evaluation results are then compared with a benchmark model, the Faster R-CNN
algorithm, which is widely recognized as one of the most popular and accurate object-
detection models.

In the latter part of the experiments, the evaluations focused on the performance anal-
ysis of the proposed hand tracking algorithm, as well as the integration of the SSD model
with the KCF tracker. The evaluation was performed by running the model inference on
sequences of video containing hand movements forming trajectory-based hand gestures
and some free hand motions without describing any specific gesture meaning. All videos
were recorded using Microsoft LifeCam NX-3000 (Microsoft, China), and the relative dis-
tance from the camera to the subject (the hand object) was about 0.5 m. For the trajectory-
based hand gestures, there were ten trajectories used to simulate the tracking of hand mo-
tion, which described gesture numbers zero to nine. For the free hand motion, there were

Figure 1. Flowchart of the integration of SSD and KCF Tracker.

In this phase, if a hand is detected, a set of bounding boxes will be drawn on the
inference window, and the tuple (data variable) which is used to store the bounding box
coordinates will be updated with the new set of bounding box coordinates. The KCF
tracker is then initialized and activated, and the system will proceed for the tracking phase.
Moving forward in the tracking phase, the system will always check the bounding box
tuples to prevent passing the empty bounding box coordinates to the tracker, which may

Appl. Sci. 2023, 13, 7433 7 of 16

cause the KCF tracker to crash due to an initialization error. If the bounding box tuple
is not empty, the Boolean state “Trackable” is set to “True” to indicate that the tracking
process is in progress. The tracker will be updated with the bounding box coordinates
obtained from the SSD detector. If the update process is successful, a new set of bounding
boxes will be drawn on the inference window on every successive frame, and the bounding
box tuples will be updated with the new set of bounding box coordinates. However, if
the KCF tracker failed midway during the hand tracking process, the SSD detector will be
reinitialized by setting the “Trackable” parameter to “False”. The system will then be looped
back to the detection phase for reinitialization purposes. The performance of tracking
rate and accuracy of this tracking-by-detection algorithm is evaluated by computing its
Tracker Detection Rate (TRDR) and Object Tracking Error (OTE) [33], as obtained by
Equations (1) and (2), respectively:

TRDR =
Σ True Positives

Σ Ground Truth Points
× 100 (1)

OTE =
∑N

i=1

√(
Gxi − Pxi)

2 + (Gyi − Pyi)
2

N
(2)

where True Positives indicates the predicted bounding box position overlapped with
respect to the Ground truth position at IoU threshold of 0.5, N is the number of tracked
frames, (Gxi, Gyi) represents the ground truth of the hand’s centroid position, and (Pxi, Pyi)
represents the estimated hand’s centroid position for the i-th frame.

4. Result and Discussion

This section presents the performance analysis of the proposed hand detection and
tracking framework. The evaluation primarily focuses on the performance of the SSD
hand detection model on the EgoHands dataset, specifically the testing dataset portion.
The evaluation utilizes COCO’s detection evaluation metrics, including mean Average
Precision (mAP) at different Intersection over Union (IoU) thresholds, average recall (AR),
and detection speed, to assess the model’s ability to detect hand objects from input images.
The evaluation results are then compared with a benchmark model, the Faster R-CNN
algorithm, which is widely recognized as one of the most popular and accurate object-
detection models.

In the latter part of the experiments, the evaluations focused on the performance
analysis of the proposed hand tracking algorithm, as well as the integration of the SSD
model with the KCF tracker. The evaluation was performed by running the model inference
on sequences of video containing hand movements forming trajectory-based hand gestures
and some free hand motions without describing any specific gesture meaning. All videos
were recorded using Microsoft LifeCam NX-3000 (Microsoft, China), and the relative
distance from the camera to the subject (the hand object) was about 0.5 m. For the trajectory-
based hand gestures, there were ten trajectories used to simulate the tracking of hand
motion, which described gesture numbers zero to nine. For the free hand motion, there
were seven video sequences used to simulate different scenes such as slow movement,
fast movement, occlusion behind objects, outdoor lighting conditions, less background
contrast, and deformable hand shapes. The tracking rate and accuracy of estimating hand
position were evaluated using the TRDR (tracking detection rate) and OTE (object detection
error) measures [33]. To observe any improvements in tracking performance, the proposed
algorithm was compared to the original KCF tracker. All experiments were conducted on a
local computer equipped with an Intel Core i5 CPU 2.50 GHz processor, 8.00 GB RAM, and
running the Windows 10 operating system.

Table 1 presents the performance of the SSD and Faster R-CNN hand detection models
on the testing data of the EgoHands dataset. The computed metrics reveal that the overall
detection accuracy of the SSD model is slightly lower than that of the Faster R-CNN model.

Appl. Sci. 2023, 13, 7433 8 of 16

However, in terms of detection speed, the Faster R-CNN model performs significantly
slower, taking approximately 15 times longer for inference compared to the SSD model.
The slower computation speed of the Faster R-CNN model can be attributed to the heavy
workload of the selective search method utilized in the model. This method requires
computing four similarity measures, including color similarity, texture similarity, size
similarity, and shape similarity, for every detecting frame. Additionally, the Faster R-
CNN model necessitates two shots of the image—one for region proposal generation and
another for object detection—further contributing to slower real-time computation speed.
Considering the trade-off between speed and accuracy, this evaluation justifies the selection
of the SSD model for implementation in a real-time hand tracking system.

Table 1. Performance comparison between SSD and Faster-RCNN for hand detection on Ego-
Hands dataset.

Mean Average Precision SSD Model Faster R-CNN

mAP (IoU = 0.5:0.95) 67.74% 72.29%
mAP (IoU = 0.5) 92.22% 98.64%
mAP (IoU = 0.75) 81.71% 87.57%

AR (IoU = 0.5:0.95) 72.7% 77.9%

Detection time per images 0.0667 s 1.00 s

In the following experiments, the performance of the hand tracking framework is eval-
uated using image frames from the webcam feed. The SSD detection model is configured
with an IoU threshold of 0.5 to suppress false positives during the inference process. Table 2
presents the results of the proposed tracking-by-detection algorithm on video sequences
captured from the webcam feed, specifically for ten trajectory-based gestures ranging from
‘0’ to ‘9’. The comparison with the original KCF tracker and the improvement achieved by
the proposed algorithm are also provided.

Table 2. Performance comparison between the proposed algorithm and KCF tracker on ten trajectory-
based gestures.

Trajectory
Gesture

Frame
Num.

KCF + SSD (Proposed) KCF Improvement (%)

TRDR
(%) OTE FPS TRDR

(%) OTE FPS TRDR OTE

0 307 96.1 32.550 17.0 87.8 79.989 31.0 9.4077 59.3112
1 229 96.7 11.920 15.0 86.1 10.316 38.0 12.2634 −15.5461
2 266 88.9 18.072 14.0 85.2 25.434 34.0 4.3432 28.9425
3 281 95.1 38.137 17.0 94.6 36.743 38.0 0.47559 −3.7939
4 318 98.4 9.688 17.0 90.9 12.246 39.0 8.1839 20.8834
5 328 96.2 10.368 18.0 91.7 9.943 39.0 4.95255 −4.2776
6 282 95.2 17.633 16.0 89.1 19.254 35.0 6.8327 8.4199
7 244 90.9 10.535 15.0 88.2 15.642 35.0 3.0258 32.6538
8 283 95.2 9.020 18.0 88.7 32.390 38.0 7.2709 72.1535
9 301 90.0 8.027 17.0 81.9 62.087 36.0 9.8633 87.0709

Average 94.3 16.595 16.4 88.4 30.405 36.3 6.6546 28.5818

It can be observed that the integration of the SSD algorithm (i.e., the proposed algo-
rithm) has significantly enhanced the overall accuracy and tracking rate of the KCF tracker.
The proposed algorithm achieves a lower OTE value of 16.595 and a higher tracking rate
of 94.3%. However, in terms of average frame rate, the performance of the KCF tracker
surpasses that of the proposed algorithm, with an average speed of 36.3 FPS compared to
16.40 FPS achieved by the proposed algorithm. Although the KCF tracker exhibits faster
processing speed, its overall accuracy is comparatively lower. The KCF tracker encounters
challenges in accurately tracking hand gestures “0”, “3”, “8”, and “9” due to its inflexibility

Appl. Sci. 2023, 13, 7433 9 of 16

in adapting to scale variations and its susceptibility to drifting issues, especially during
rapid hand movements.

To provide a deeper understanding of these issues, we direct readers to Figure 2,
which presents an example showcasing the tracking results for gesture “8”. In this case, the
proposed algorithm has demonstrated superior performance compared to the KCF tracker,
achieving a promising tracking rate of 95.2% and a lower tracking error of 9.02. Conversely,
despite the KCF tracker’s higher overall frame rate, it exhibits a higher tracking error of
32.3901, which is three times greater than that of the proposed algorithm.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 17

Figure 2. Tracking results of proposed algorithm (red) and KCF tracker (green) for gesture “8”.

Table 3. Performance comparison between the proposed algorithm and KCF tracker on seven video
sequences with challenging condition.

Tracking Scenes Frame
Num.

KCF + SSD (Proposed) KCF Improvement (%)
TRDR (%) OTE FPS TRDR (%) OTE FPS TRDR OTE

Slow movement 546 98.26 26.609 19.0 96.32 27.607 25.0 2.014 3.613
Fast movement 664 84.01 30.341 16.0 42.97 23.893 33.0 95.509 −26.987

Occlusion behind object 708 82.50 21.213 18.0 89.44 73.907 32.0 −7.759 71.298
Outdoor scene 310 98.37 35.802 26.0 81.71 76.753 21.0 20.389 53.354

Clothes with less contrast
to skin tone 597 94.95 30.729 18.0 65.16 26.383 27.0 45.718 −16.472

Deformable hand while
drawing gesture “Q” 384 98.30 29.123 16.0 95.45 59.681 22.0 2.986 51.201

Deformable hand while
drawing gesture “X”

310 97.45 9.575 16.0 96.72 15.415 30.0 0.757 37.882

Average 93.406 26.199 18.4 81.11 43.375 27.1 22.802 24.841

To gain a deeper understanding of the evaluation results, a qualitative analysis was
conducted on specific tracking scenes. In the case of tracking slow hand movements, both
the proposed algorithm and the KCF tracker exhibit similar performance. However, when
it comes to handling fast and abrupt hand movements, the proposed algorithm outper-
forms the KCF tracker. The proposed algorithm achieves a higher tracking rate of 84.01%,
which is twice that achieved by the KCF tracker. This indicates that the proposed algo-
rithm is more effective at accurately tracking the hand during fast movements. While the
proposed algorithm does have a relatively higher tracking error (OTE) of 30.341, it demon-
strates a lower tendency of tracking failure compared to the KCF tracker. This can be ob-
served in Figure 3, specifically in Frame 209 and Frame 309, where the proposed algorithm
successfully keeps up with the fast-moving hand while the KCF tracker encounters track-
ing failure issues and fails to reinitialize its system. Furthermore, it was noted that the
trajectory plots obtained from the proposed tracker are more complete compared to the

Figure 2. Tracking results of proposed algorithm (red) and KCF tracker (green) for gesture “8”.

Analyzing the tracking results depicted in Figure 2, it becomes evident that the KCF
tracker encountered drifting issues, as its bounding box drifted towards the arm when the
hand continuously moved upwards, as shown in Frame 202 and Frame 237. On the other
hand, the proposed algorithm exhibits excellent tracking results without any drifting issues.
Moreover, both the horizontal and vertical axis trajectories of the proposed algorithm
closely align with the ground truth trajectories. In contrast, the vertical axis trajectory of
the KCF tracker deviates significantly from the ground truth trajectory.

The proposed tracking algorithm was further evaluated using several challenging
video sequences, including scenarios involving slow and fast hand movements, occlusion
behind other objects, outdoor environments, cluttered backgrounds with low contrast to
skin tone, and deformable hand shapes while drawing alphabetical trajectory gestures.
The evaluation results, along with a comparison to the original KCF tracker and the
improvement achieved by the proposed algorithm, are summarized in Table 3. Based on
the obtained results, it is evident that the overall performance of the proposed algorithm
surpasses that of the KCF tracker. The proposed algorithm achieves a higher average
tracking rate of 93.406% and a lower tracking error of 26.199. It is worth noting that the
integration of the SSD algorithm has also improved the overall performance of the KCF
tracker, resulting in a 22.802% improvement in TRDR and a 24.841% improvement in
OTE value.

Appl. Sci. 2023, 13, 7433 10 of 16

Table 3. Performance comparison between the proposed algorithm and KCF tracker on seven video
sequences with challenging condition.

Tracking Scenes
Frame
Num.

KCF + SSD (Proposed) KCF Improvement (%)

TRDR
(%) OTE FPS TRDR

(%) OTE FPS TRDR OTE

Slow movement 546 98.26 26.609 19.0 96.32 27.607 25.0 2.014 3.613

Fast movement 664 84.01 30.341 16.0 42.97 23.893 33.0 95.509 −26.987

Occlusion
behind object 708 82.50 21.213 18.0 89.44 73.907 32.0 −7.759 71.298

Outdoor scene 310 98.37 35.802 26.0 81.71 76.753 21.0 20.389 53.354

Clothes with less
contrast to skin tone 597 94.95 30.729 18.0 65.16 26.383 27.0 45.718 −16.472

Deformable hand
while drawing

gesture “Q”
384 98.30 29.123 16.0 95.45 59.681 22.0 2.986 51.201

Deformable hand
while drawing

gesture “X”
310 97.45 9.575 16.0 96.72 15.415 30.0 0.757 37.882

Average 93.406 26.199 18.4 81.11 43.375 27.1 22.802 24.841

To gain a deeper understanding of the evaluation results, a qualitative analysis was
conducted on specific tracking scenes. In the case of tracking slow hand movements, both
the proposed algorithm and the KCF tracker exhibit similar performance. However, when it
comes to handling fast and abrupt hand movements, the proposed algorithm outperforms
the KCF tracker. The proposed algorithm achieves a higher tracking rate of 84.01%, which is
twice that achieved by the KCF tracker. This indicates that the proposed algorithm is more
effective at accurately tracking the hand during fast movements. While the proposed algo-
rithm does have a relatively higher tracking error (OTE) of 30.341, it demonstrates a lower
tendency of tracking failure compared to the KCF tracker. This can be observed in Figure 3,
specifically in Frame 209 and Frame 309, where the proposed algorithm successfully keeps
up with the fast-moving hand while the KCF tracker encounters tracking failure issues and
fails to reinitialize its system. Furthermore, it was noted that the trajectory plots obtained
from the proposed tracker are more complete compared to the implementation of the KCF
tracker alone. It is important to acknowledge that, although the proposed algorithm tracks
the hand object throughout a larger number of frames, offset errors between the estimated
position and the ground truth tend to propagate. On the other hand, the KCF tracker fails
to track the hand much earlier, resulting in lesser propagation of offset errors.

In the case of an occlusion-handling scenario, although the tracking rate of the pro-
posed algorithm is relatively lower, its accuracy surpasses that of the KCF tracker, resulting
in a lower tracking error. By examining the tracking results in Figure 4, it becomes apparent
that both the horizontal and vertical axis trajectories of the KCF tracker deviate significantly
from the ground truth due to tracking failures and severe drifting issues. Despite the KCF
tracker managing to track the heavily occluded hand, its bounding box drifts towards
the occluded object and fails to recover even when the hand reappears in that region. In
contrast, the proposed algorithm demonstrates the ability to recover from drifting issues by
reinitializing the system, as illustrated in Frame 142 to Frame 160 in Figure 4. Although
tracking a heavily occluded hand remains challenging, the overall performance of the
proposed tracker in handling occlusion has shown significant improvement.

Appl. Sci. 2023, 13, 7433 11 of 16

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 17

implementation of the KCF tracker alone. It is important to acknowledge that, although
the proposed algorithm tracks the hand object throughout a larger number of frames, off-
set errors between the estimated position and the ground truth tend to propagate. On the
other hand, the KCF tracker fails to track the hand much earlier, resulting in lesser prop-
agation of offset errors.

Figure 3. Tracking results of proposed algorithm (red) and KCF tracker (green) for tracking fast
hand movement.

In the case of an occlusion-handling scenario, although the tracking rate of the pro-
posed algorithm is relatively lower, its accuracy surpasses that of the KCF tracker, result-
ing in a lower tracking error. By examining the tracking results in Figure 4, it becomes
apparent that both the horizontal and vertical axis trajectories of the KCF tracker deviate
significantly from the ground truth due to tracking failures and severe drifting issues.
Despite the KCF tracker managing to track the heavily occluded hand, its bounding box
drifts towards the occluded object and fails to recover even when the hand reappears in
that region. In contrast, the proposed algorithm demonstrates the ability to recover from
drifting issues by reinitializing the system, as illustrated in Frame 142 to Frame 160 in
Figure 4. Although tracking a heavily occluded hand remains challenging, the overall per-
formance of the proposed tracker in handling occlusion has shown significant improve-
ment.

In the case of outdoor conditions with exposed lighting, the proposed algorithm
demonstrates significantly better performance compared to the KCF tracker. However, as
shown in Figure 5, it can be observed that the tracking bounding box of the proposed
algorithm gets stuck in a region with visual characteristics similar to the skin features
(Frame 155). When the hand rapidly moves away from this confusing region, the tracker
loses its tracking position. Nevertheless, the proposed algorithm quickly recovers from
this loss by reinitializing the tracking position with the assistance of the SSD algorithm. In
contrast, the KCF tracker recovers from the tracking loss much later in the sequence when
the hand approaches the previously lost location, relying on the correlation filter mecha-
nism.

Figure 3. Tracking results of proposed algorithm (red) and KCF tracker (green) for tracking fast
hand movement.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 17

For the case of tracking deformable hand shapes while drawing gesture “Q”, the pro-
posed algorithm outperforms the KCF tracker, achieving a higher tracking rate of 98.30%
and a relatively lower tracking error of 29.1236. Although both algorithms are able to track
the hand accurately with minimal failures, the KCF tracker experiences significant drifting
issues, as observed in its tracking results depicted in Figure 6 (Frame 308 and Frame 344).
When the hand continuously moves downwards, the bounding box of the KCF tracker
drifts and becomes stuck in the background, which shares a similar visual feature with
the hand. The KCF tracker fails to recover from this issue throughout the video sequence,
resulting in heavy deviations in both the horizontal and vertical axis trajectories and
nearly doubling the obtained OTE value compared to the proposed algorithm. In contrast,
the proposed algorithm greatly reduces the drifting issue through the error recovery
framework facilitated by the integration of the SSD algorithm.

Figure 4. Tracking results of proposed algorithm (red) and KCF tracker (green) on occluded hand
behind other object.

Figure 4. Tracking results of proposed algorithm (red) and KCF tracker (green) on occluded hand
behind other object.

In the case of outdoor conditions with exposed lighting, the proposed algorithm
demonstrates significantly better performance compared to the KCF tracker. However,
as shown in Figure 5, it can be observed that the tracking bounding box of the proposed
algorithm gets stuck in a region with visual characteristics similar to the skin features
(Frame 155). When the hand rapidly moves away from this confusing region, the tracker

Appl. Sci. 2023, 13, 7433 12 of 16

loses its tracking position. Nevertheless, the proposed algorithm quickly recovers from this
loss by reinitializing the tracking position with the assistance of the SSD algorithm. In con-
trast, the KCF tracker recovers from the tracking loss much later in the sequence when the
hand approaches the previously lost location, relying on the correlation filter mechanism.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 17

Figure 5. Tracking results of proposed algorithm (red) and KCF tracker (green) on outdoor scene.

Figure 6. Tracking results of proposed algorithm (red) and KCF tracker (green) on deformable hand
shape.

To evaluate the generalizability of the proposed approach, a comparison was made
with a state-of-the-art tracker, the MediaPipe hand [16]. For this comparison, ten video
sequences from the Intelligent Biometric Group Hand Tracking (IBGHT) dataset [34] were
used. This dataset was chosen for the experiment as it provides dynamic hand trajectories
along with ground truth data. Table 4 provides detailed information about each sequence.

Figure 5. Tracking results of proposed algorithm (red) and KCF tracker (green) on outdoor scene.

For the case of tracking deformable hand shapes while drawing gesture “Q”, the
proposed algorithm outperforms the KCF tracker, achieving a higher tracking rate of 98.30%
and a relatively lower tracking error of 29.1236. Although both algorithms are able to track
the hand accurately with minimal failures, the KCF tracker experiences significant drifting
issues, as observed in its tracking results depicted in Figure 6 (Frame 308 and Frame 344).
When the hand continuously moves downwards, the bounding box of the KCF tracker
drifts and becomes stuck in the background, which shares a similar visual feature with
the hand. The KCF tracker fails to recover from this issue throughout the video sequence,
resulting in heavy deviations in both the horizontal and vertical axis trajectories and nearly
doubling the obtained OTE value compared to the proposed algorithm. In contrast, the
proposed algorithm greatly reduces the drifting issue through the error recovery framework
facilitated by the integration of the SSD algorithm.

To evaluate the generalizability of the proposed approach, a comparison was made
with a state-of-the-art tracker, the MediaPipe hand [16]. For this comparison, ten video
sequences from the Intelligent Biometric Group Hand Tracking (IBGHT) dataset [34] were
used. This dataset was chosen for the experiment as it provides dynamic hand trajectories
along with ground truth data. Table 4 provides detailed information about each sequence.

Table 5 presents a summary of the tracking results obtained by the proposed method
and the MediaPipe hand tracker on ten trajectory-based hand gestures from the IBGHT
dataset. The proposed method achieved an average target detection and tracking rate
(TRDR) of 94.38% across all gestures, surpassing the performance of the MediaPipe hand
tracker, which achieved 93.06%. However, it is worth noting that the MediaPipe hand
tracker exhibited a lower object tracking error (OTE) with an average value of 7.59, com-
pared to 10.59 for the proposed method. This indicates that the MediaPipe hand tracker
excelled in accurately localizing the hand objects, resulting in fewer errors in object bound-
aries and position estimation. Despite the higher OTE, the proposed method demonstrated
superior tracking speed, achieving an average frames per second (FPS) of 17.8, compared
to the MediaPipe hand tracker’s 12.7 FPS. The higher TRDR achieved by the proposed

Appl. Sci. 2023, 13, 7433 13 of 16

method highlights its effectiveness in detecting and tracking hands in the given video
sequences, even in challenging environments with cluttered backgrounds and occlusions.
In conclusion, the proposed KCF + SSD method outperforms the MediaPipe hand tracker
in terms of overall tracking accuracy (TRDR) and tracking speed (FPS). However, it is
important to consider that the MediaPipe hand tracker excels in precise localization of
hand objects, leading to lower object tracking errors (OTE). Therefore, the choice between
the two methods depends on the specific requirements of the application, considering the
trade-off between accuracy and speed. Further optimizations can be explored to improve
the proposed method’s OTE while maintaining its superior tracking performance.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 17

Figure 5. Tracking results of proposed algorithm (red) and KCF tracker (green) on outdoor scene.

Figure 6. Tracking results of proposed algorithm (red) and KCF tracker (green) on deformable hand
shape.

To evaluate the generalizability of the proposed approach, a comparison was made
with a state-of-the-art tracker, the MediaPipe hand [16]. For this comparison, ten video
sequences from the Intelligent Biometric Group Hand Tracking (IBGHT) dataset [34] were
used. This dataset was chosen for the experiment as it provides dynamic hand trajectories
along with ground truth data. Table 4 provides detailed information about each sequence.

Figure 6. Tracking results of proposed algorithm (red) and KCF tracker (green) on deformable
hand shape.

Table 4. Detailed properties of trajectory-based gestures from IBGHT dataset [34].

Trajectory
Gesture Num. of Frames Hand Object Include

Arm Region Cluttered Background Camera Distance to
Object (Meter)

0 244 Yes Cluttered 2
1 238 No Partially 1
2 237 Yes Partially 1.5
3 229 No Partially 1
4 210 No Partially 1
5 222 Yes Partially 1
6 242 No Cluttered 1.5
7 221 Yes Cluttered 2
8 242 Yes Cluttered 2
9 242 No Partially 1

It should also be acknowledged that the proposed algorithm may encounter tracking
failures, particularly when dealing with a fast-moving hand or a heavily occluded hand.
Although the integrated SSD algorithm helps improve the tracking rate by reinitializing
the system, it does not provide full support to the tracker during tracking. The absence of a
motion-handling algorithm in the visual tracker poses challenges in accurately tracking
fast-moving hands, where the target object may appear deformed or blurry to the tracker.
Furthermore, the proposed algorithm has limitations in detecting and tracking small or
distant hands due to the constraints of the SSD algorithm. The FPN Lite feature-extractor

Appl. Sci. 2023, 13, 7433 14 of 16

utilized in the SSD algorithm consists of a bottom-up pathway, top-down pathway, and
lateral connections. However, the semantic values in the lowest layer of the bottom-up
pathway are relatively low, resulting in poor performance when detecting small or distant
hands. Additionally, the proposed system is designed to detect and track only one hand
to reduce system complexity. Consequently, it may not be suitable for implementation in
systems that require the detection and tracking of multiple hands, such as hand gesture
recognition systems where interpreting gestures often requires the presence of a pair of
hands. It is essential to consider these limitations when evaluating the applicability of
the proposed algorithm in various contexts and to explore potential enhancements or
alternative approaches to address these challenges effectively.

Table 5. Performance comparison between the proposed algorithm and MediaPipe hand tracker on
ten trajectory-based hand gestures from IBGHT hand tracking dataset [34].

Gestures Frame Num.
KCF + SSD (Proposed) MediaPipe Hand [16]

TRDR
(%) OTE FPS TRDR

(%) OTE FPS

0 244 94.26 9.463 18.0 93.9 5.465 11.0
1 238 98.3 10.781 19.0 97.9 6.871 12.0
2 237 96.6 12.389 16.0 93.3 5.878 15.0
3 229 90.3 12.516 20.0 89.52 6.875 13.0
4 210 95.2 11.032 17.0 93.8 8.456 12.0
5 222 95.5 10.725 18.0 91.4 7.678 14.0
6 242 97.5 9.950 17.0 93.4 9.447 14.0
7 221 96.8 11.102 16.0 96.4 8.890 11.0
8 242 88.8 7.388 18.0 90.1 6.475 11.0
9 242 90.5 10.599 19.0 90.9 9.864 14.0

Average 94.38 10.59 17.8 93.06 7.59 12.7

5. Conclusions

A tracking-by-detection algorithm, constructed by integrating the SSD algorithm with
the KCF visual tracker, is developed to detect and track hands from color images sequences
with cluttered background and exerting minimal constraints on the subject. The proposed
algorithm was tested on 17 video sequences and the experimental results show that it is
fast and robust for real-time applications, achieving a promising tracking rate of over 90%
and overall frame rate of around 17 FPS.

Based on the hand detection analysis, it can be justified that the chosen SSD object-
detection algorithm is more suitable to be employed in the proposed algorithm due to
its higher frame rate and accuracy achieved, as compared to that of the Faster R-CNN
algorithm. For hand tracking performance analysis, it can be concluded that the proposed
algorithm is able to keep track of the hand seamlessly with a promising tracking rate and
lower tracking error. Integration of the SSD algorithm has improved the KCF visual tracker
in many aspects, including its long-duration tracking performance, tracking performance
during occlusion, and reduced drifting tendency. However, the limitations of KCF tracker
such as being unable to effectively track fast-moving hands and heavily occluded hands still
remain, due to its intrinsic weakness which is that it solely relies on the single Histogram
of Oriented Gradients (HOG) feature extracted during its initialization. In the future, SSD
integration with different classes of visual trackers can be explored, such as implementing a
Channel and Spatial Reliability Tracking (CSRT) tracker which is well-known for its higher
accuracy at the cost of slower computation speed.

Although the proposed tracking-by-detection algorithms can reduce local resource
computation for hand detection and tracking, the task remains challenging for researchers.
Accuracy is often impacted by factors such as occlusion, fast-moving hands, and abrupt
gesture changes. Integrating motion-handling features such as color can improve algo-
rithm accuracy and reduce tracking loss. Retraining the SSD algorithm by adding new

Appl. Sci. 2023, 13, 7433 15 of 16

layers for fine-tuning can improve hand detection accuracy and expand the dataset with
accurate images.

Author Contributions: Conceptualization, M.N.H.M., M.S.M.A. and B.A.R.; Methodology, O.L.P.;
Formal analysis, M.S.M.A. and O.L.P.; Investigation, O.L.P.; Resources, B.A.R.; Writing—original
draft, O.L.P.; Writing—review & editing, M.N.H.M. and M.S.M.A.; Supervision, M.S.M.A.; Funding
acquisition, M.N.H.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research is supported by the Ministry of Higher Education Malaysia (MOHE) Funda-
mental Research Grant Scheme FRGS/1/2019/ICT04/UTHM/02/2, (K187) Universiti Tun Hussein
Onn Malaysia and FRGS grant FRGS/1/2020/TK0/USM/02/13, Universiti Sains Malaysia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bhandari, A.; Prasad, P.; Alsadoon, A.; Maag, A. Object detection and recognition: Using deep learning to assist the visually

impaired. Disabil. Rehabil. Assist. Technol. 2021, 16, 280–288. [CrossRef]
2. Skarga-Bandurova, I.; Siriak, R.; Biloborodova, T.; Cuzzolin, F.; Bawa, V.; Mohamed, M.; Samuel, R. Surgical Hand Gesture

Prediction for the Operating Room. Stud. Health Technol. Inform. 2020, 273, 97–103.
3. Gangrade, J.; Bharti, J. Vision-based Hand Gesture Recognition for Indian Sign Language Using Convolution Neural Network.

IETE J. Res. 2020, 39, 723–732. [CrossRef]
4. Huang, Y.; Liu, K.; Lee, S.; Yeh, I. Evaluation of a Hybrid of Hand Gesture and Controller Inputs in Virtual Reality. Int. J. Hum.

–Comput. Interact. 2021, 37, 169–180. [CrossRef]
5. Pisharady, P.K.; Saerbeck, M. Recent methods and databases in vision-based hand gesture recognition: A review. Comput. Vis.

Image Underst. 2015, 141, 152–165. [CrossRef]
6. Erol, A.; Bebis, G.; Nicolescu, M.; Boyle, R.; Twombly, X. Vision-based hand pose estimation: A review. Comput. Vis. Image Underst.

2007, 108, 52–73. [CrossRef]
7. Xu, C.; Cai, W.; Li, Y.; Zhou, J.; Wei, L. Accurate hand detection from single-color images by reconstructing hand appearances.

Sensors 2020, 20, 192. [CrossRef]
8. Wu, M.; Ting, P.; Tang, Y.; Chou, E.; Fu, L. Hand pose estimation in object-interaction based on deep learning for virtual reality

applications. J. Vis. Commun. Image Represent. 2020, 70, 102802. [CrossRef]
9. Ahmad, A.; Migniot, C.; Dipanda, A. Hand pose estimation and tracking in real and virtual interaction: A review. Image Vis.

Comput. 2019, 89, 35–49. [CrossRef]
10. Shin, J.; Kim, H.; Kim, D.; Paik, J. Fast and robust object tracking using tracking failure detection in kernelized correlation filter.

Appl. Sci. 2020, 10, 713. [CrossRef]
11. Sharp, T.; Keskin, C.; Robertson, D.; Taylor, J.; Shotton, J.; Kim, D.; Rhemann, C.; Leichter, I.; Vinnikov, A.; Wei, Y. Accurate, robust,

and flexible real-time hand tracking. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems, Seoul, Republic of Korea, 18–23 April 2015; pp. 3633–3642.

12. Khan, F.S.; Mohd, M.N.H.; Soomro, D.M.; Bagchi, S.; Khan, M.D. 3D hand gestures segmentation and optimized classification
using deep learning. IEEE Access 2021, 9, 131614–131624. [CrossRef]

13. Sridhar, S.; Mueller, F.; Oulasvirta, A.; Theobalt, C. Fast and Robust Hand Tracking Using Detection-Guided Optimization.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015;
pp. 3213–3221.

14. Mohd Asaari, M.S.; Rosdi, B.A.; Suandi, S.A. Adaptive Kalman Filter Incorporated Eigenhand (AKFIE) for real-time hand tracking
system. Multimed. Tools Appl. 2015, 74, 9231–9257. [CrossRef]

15. Mueller, F.; Bernard, F.; Sotnychenko, O.; Mehta, D.; Sridhar, S.; Casas, D.; Theobalt, C. GANerated hands for real-time 3D hand
tracking from monocular RGB. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake
City, UT, USA, 18–22 June 2018; pp. 49–59.

16. Zhang, F.; Bazarevsky, V.; Vakunov, A.; Tkachenka, A.; Sung, G.; Chang, C.L.; Grundmann, M. Mediapipe hands: On-device
real-time hand tracking. arXiv 2020, arXiv:2006.10214.

17. Liu, D.; Zhang, L.; Luo, T.; Wu, Y. Towards interpretable and robust hand detection via pixel-wise prediction. Pattern Recognit.
2020, 105, 107202. [CrossRef]

18. Gao, Q.; Liu, J.; Ju, Z. Robust real-time hand detection and localization for space human-robot interaction based on deep learning.
Neurocomputing 2020, 390, 198–206. [CrossRef]

19. Arpit, M.; Andrew, Z.; Philip, T. Hand detection using multiple proposals. In Proceedings of the British Machine Vision
Conference, Dundee, UK, 29 August–2 September 2011; Jesse, H., Stephen, M., Emanuele, T., Eds.; pp. 75.1–75.11.

20. Bambach, S.; Lee, S.; Crandall, D.; Yu, C. Lending A Hand: Detecting Hands and Recognizing Activities in Complex Egocentric
Interactions. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015;
pp. 1949–1957.

https://doi.org/10.1080/17483107.2019.1673834
https://doi.org/10.1080/03772063.2020.1838342
https://doi.org/10.1080/10447318.2020.1809248
https://doi.org/10.1016/j.cviu.2015.08.004
https://doi.org/10.1016/j.cviu.2006.10.012
https://doi.org/10.3390/s20010192
https://doi.org/10.1016/j.jvcir.2020.102802
https://doi.org/10.1016/j.imavis.2019.06.003
https://doi.org/10.3390/app10020713
https://doi.org/10.1109/ACCESS.2021.3114871
https://doi.org/10.1007/s11042-014-2078-z
https://doi.org/10.1016/j.patcog.2020.107202
https://doi.org/10.1016/j.neucom.2019.02.066

Appl. Sci. 2023, 13, 7433 16 of 16

21. Mukherjee, S.; Ahmed, S.; Dogra, D.; Kar, S.; Roy, P. Fingertip detection and tracking for recognition of air-writing in videos.
Expert Syst. Appl. 2019, 136, 217–229. [CrossRef]

22. Huang, Y.; Liu, X.; Zhang, X.; Jin, L. A pointing gesture based egocentric interaction system: Dataset, approach and application.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas, NV, USA, 26 June–1
July 2016; pp. 16–23.

23. Henriques, J.; Caseiro, R.; Martins, P.; Batista, J. High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal.
Mach. Intell. 2015, 37, 583–596. [CrossRef]

24. Kalal, Z.; Mikolajczyk, K.; Matas, J. Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 34, 1409–1422.
[CrossRef]

25. Wang, Z.; Yoon, S.; Xie, S.J.; Lu, Y.; Park, D.S. Visual tracking with semi-supervised online weighted multiple instance learning.
Vis. Comput. 2016, 32, 307–320. [CrossRef]

26. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.; Berg, A. SSD: Single shot multibox detector. In Proceedings of the
Computer Vision—European Conference on Computer Vision 2016, Amsterdam, The Netherlands, 11–14 October 2016; Lecture
Notes in Computer Science. Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Berlin/Heidelberg,
Germany, 2016; pp. 21–37.

27. Zhang, N.; Zhang, J. Optimization of face tracking based on KCF and Camshift. Procedia Comput. Sci. 2018, 131, 158–166.
28. Liu, C.; Yao, X.; Zhu, Z.; Peng, S.; Zheng, W. A robust tracking method based on the correlation filter and correcting strategy. In

Proceedings of the 2017 International Conference on Image, Vision and Computing (ICIVC), Chengdu, China, 2–4 June 2017;
pp. 698–702.

29. Lin, T.; Goyal, P.; Girshick, R.; He, K.; Doll’ar, P. Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

30. Lin, T.; Doll´ar, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

31. Padilla, R.; Passos, W.; Dias, T.; Netto, S.; da Silva, E. A comparative analysis of object detection metrics with a companion
open-source toolkit. Electronics 2021, 10, 279. [CrossRef]

32. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [CrossRef] [PubMed]

33. Black, J.; Ellis, T.; Rosin, P. A novel method for video tracking performance evaluation. In Proceedings of the IEEE International
Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, Nice, France, 11–12 October 2003;
pp. 125–132.

34. Asaari, M.S.M.; Rosdi, B.A.; Suandi, S.A. Intelligent biometric group hand tracking (IBGHT) database for visual hand tracking
research and development. Multimed. Tools Appl. 2014, 70, 1869–1898. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.eswa.2019.06.034
https://doi.org/10.1109/TPAMI.2014.2345390
https://doi.org/10.1109/TPAMI.2011.239
https://doi.org/10.1007/s00371-015-1067-1
https://doi.org/10.3390/electronics10030279
https://doi.org/10.1109/TPAMI.2016.2577031
https://www.ncbi.nlm.nih.gov/pubmed/27295650
https://doi.org/10.1007/s11042-012-1212-z

	Introduction
	Related Works and Motivation
	Methodology
	SSD Hand Detection Model
	Evaluation of Hand Detection Model
	Integration of SSD and KCF Tracker

	Result and Discussion
	Conclusions
	References

