
Citation: Almeghlef, S.M.;

AL-Ghamdi, A.A.-M.; Ramzan, M.S.;

Ragab, M. Machine Learning-Based

DoS Amplification Attack Detection

against Constrained Application

Protocol. Appl. Sci. 2023, 13, 7391.

https://doi.org/10.3390/

app13137391

Academic Editors: Muhammad

Babar, Saleem Iqbal and Aftab Khan

Received: 16 May 2023

Revised: 16 June 2023

Accepted: 18 June 2023

Published: 21 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Machine Learning-Based DoS Amplification Attack Detection
against Constrained Application Protocol
Sultan M. Almeghlef 1,2,*, Abdullah AL-Malaise AL-Ghamdi 1,3 , Muhammad Sher Ramzan 1

and Mahmoud Ragab 4,5

1 Information Systems Department, Faculty of Computing and Information Technology, King Abdulaziz
University, Jeddah 21589, Saudi Arabia; aalmalaise@kau.edu.sa (A.A.-M.A.-G.);
msramadan@kau.edu.sa (M.S.R.)

2 Technical and Vocational Training Corporation, Alwashm, Riyadh 11472, Saudi Arabia
3 Information Systems Department, HECI School, Dar Al-Hekma University, Jeddah 34801, Saudi Arabia
4 Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz

University, Jeddah 21589, Saudi Arabia; mragab@kau.edu.sa
5 Mathematics Department, Faculty of Science, Al-Azhar University, Naser City 11884, Cairo, Egypt
* Correspondence: salmeghlef@stu.kau.edu.sa

Abstract: This paper discusses the Internet of Things (IoT) and the security challenges associated with
it. IoT is a network of interconnected devices that share information. However, the low power and
resources of IoT devices make them vulnerable to attacks. Using heavy protocols like HTTP for IoT
devices can prove costly and using popular lightweight protocols like CoAP can invite attacks such
as DoS (Denial-of-Service). While security models such as DTLS and LSPWSN can secure IoT against
such attacks, they also have limitations. To overcome this problem, this paper proposes a machine
learning model that detects DoS amplification attacks against CoAP with 99% accuracy. To the best of
our knowledge, this research is the first to use the multi-classification process to detect and classify
the different types of the DoS amplification techniques that attack CoAP client use against victim
CoAP clients.

Keywords: denial-of-service; CoAP protocol; IoT attacks; datagram transport layer security (DTLS);
amplification attacks

1. Introduction

The Internet of Things is a new technology in networking that consists of tiny devices
connected either to a local network or to the internet [1]. These devices can interact with
each other with or without human interference. This connectivity is enabled using sensors
that are installed upon devices like temperature sensors, smoke detector sensors, and
security cameras. Researchers expect the growing number of IoT devices to reach a total
of 75 billion IoT devices by 2025 [2]. Therefore, IoT networks will have a significant role
in different domains such as smart cities and healthcare [3]. The IoT network consists of
three basic layers, namely, the perception layer, the network layer, and the application layer.
The perception layer takes the role of sensing the environment, whereas the network layer
is responsible for exchanging the data between the IoT devices. As for the application
layer, it helps in creating smart environments and a hybrid metaheuristic algorithm that
facilitates the problem of feature selection for classification problems based on a lucid and
efficient algorithm geared towards optimizing and striking a balance between the number
of features selected and accuracy [4]. There are a lot of protocols that are used in IoT network
communications. This paper focuses on one particular application layer protocol, the CoAP
(Constrained Application Protocol). The CoAP has a significant role in the IoT network
due to its lightness, simplicity, mobility, and portability for low-power and low-resource
devices as compared to other protocols such as Message Queuing Telemetry Transport

Appl. Sci. 2023, 13, 7391. https://doi.org/10.3390/app13137391 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13137391
https://doi.org/10.3390/app13137391
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9259-4536
https://orcid.org/0000-0001-6752-0033
https://orcid.org/0000-0002-4427-0016
https://doi.org/10.3390/app13137391
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13137391?type=check_update&version=2

Appl. Sci. 2023, 13, 7391 2 of 24

(MQTT) and Advanced Message Queuing Protocol (AMQP) [5]. However, this also makes
the CoAP a preferred target for Denial-of-Service attacks. The Denial-of-Service attack aims
to overwhelm the target victim with a massive number of messages or requests and thereby
make it unavailable for legitimate users. One major type of the Denial-of-Service attack is
the amplification attack. In this attack, the attacker spoofs the IP address of the victim client
and requests large messages from the server. Several existing techniques can be used to
secure the CoAP against DoS attacks such as employing the DTLS protocol. However, DTLS
is a heavy protocol since it relies on the TCP three-way handshake that can consume the
IoT energy; moreover, DTLS is not designed for lower resource and constrained devices [5].
So, this study aims to clarify the different categories of amplification attacks that target
the CoAP protocol. For this purpose, a dataset is generated using simulated attacks on
CoAP. The lower levels of communication protocols such as the UDP are out of the scope
of this study, and the focus remains on the application layer where the CoAP operates.
The motivation for building the detection system on the application layer is rooted in the
assumption that it is beneficial to build the detection system near the victim, whereas the
defending system should be near the attacker [6]. Finally, we build a machine learning
model that can classify each category of the amplification attacks (simple amplification,
observe amplification, and multicast amplification). The generated dataset contains around
120,000 CoAP packets, and, of which, half are benign, and half are malware (one-third for
each category). The proposed model is capable of detecting and classifying the attacks
with an accuracy of 99% using the Gradient Boosting algorithm. To sum it up, the main
contribution and the research objectives are as follows:
RO 1: Identify and simulate the DoS amplification attacks that target CoAP;
RO 2: Generate a categorized dataset of the DoS amplification attacks that target CoAP;
RO 3: Test three machine learning classifiers (Naïve Byes, Random Forest, and Gradient
Boosting) to perform multi-classification for the amplification attacks.

To the best of our knowledge, this paper is the first to conduct multi-classification
of DoS amplification attacks on CoAP. This paper is structured as follows. Section 1
presents the CoAP protocol overview and the CoAP security overview, Section 2 reviews
existing literature, Section 3 demonstrates the methods that have been employed, Section 4
illustrates the results, and finally, Section 5 presents the conclusion and recommendations
for future research.

1.1. IoT-CoAP Overview

The Constrained Application Protocol (CoAP) is a web transfer protocol that follows
Representational State Transfer (REST) to receive and deliver messages as most of the
web services (web APIs) on the internet depend on the REST architecture [7]. The CoAP
protocol operates over the application layer in the IoT network as depicted in Figure 1,
and it is becoming increasingly important for the CoAP to meet the requirements for
designing a generic web protocol that fits the low-resource and low-energy devices and
machine-to-machine (M2M) applications such as smart city [7].

Appl. Sci. 2023, 13, x FOR PEER REVIEW 2 of 26

resource devices as compared to other protocols such as Message Queuing Telemetry
Transport (MQTT) and Advanced Message Queuing Protocol (AMQP) [5]. However, this
also makes the CoAP a preferred target for Denial-of-Service attacks. The Denial-of-Ser-
vice attack aims to overwhelm the target victim with a massive number of messages or
requests and thereby make it unavailable for legitimate users. One major type of the De-
nial-of-Service attack is the amplification attack. In this attack, the attacker spoofs the IP
address of the victim client and requests large messages from the server. Several existing
techniques can be used to secure the CoAP against DoS attacks such as employing the
DTLS protocol. However, DTLS is a heavy protocol since it relies on the TCP three-way
handshake that can consume the IoT energy; moreover, DTLS is not designed for lower
resource and constrained devices [5]. So, this study aims to clarify the different categories
of amplification attacks that target the CoAP protocol. For this purpose, a dataset is gen-
erated using simulated attacks on CoAP. The lower levels of communication protocols
such as the UDP are out of the scope of this study, and the focus remains on the application
layer where the CoAP operates. The motivation for building the detection system on the
application layer is rooted in the assumption that it is beneficial to build the detection
system near the victim, whereas the defending system should be near the attacker [6].
Finally, we build a machine learning model that can classify each category of the amplifi-
cation attacks (simple amplification, observe amplification, and multicast amplification).
The generated dataset contains around 120,000 CoAP packets, and, of which, half are be-
nign, and half are malware (one-third for each category). The proposed model is capable
of detecting and classifying the attacks with an accuracy of 99% using the Gradient Boost-
ing algorithm. To sum it up, the main contribution and the research objectives are as fol-
lows:
RO 1: Identify and simulate the DoS amplification attacks that target CoAP;
RO 2: Generate a categorized dataset of the DoS amplification attacks that target CoAP;
RO 3: Test three machine learning classifiers (Naïve Byes, Random Forest, and Gradient
Boosting) to perform multi-classification for the amplification attacks.

To the best of our knowledge, this paper is the first to conduct multi-classification of
DoS amplification attacks on CoAP. This paper is structured as follows. Section 1 presents
the CoAP protocol overview and the CoAP security overview, Section 2 reviews existing
literature, Section 3 demonstrates the methods that have been employed, Section 4 illus-
trates the results, and finally, Section 5 presents the conclusion and recommendations for
future research.

1.1. IoT-CoAP Overview
The Constrained Application Protocol (CoAP) is a web transfer protocol that follows

Representational State Transfer (REST) to receive and deliver messages as most of the web
services (web APIs) on the internet depend on the REST architecture [7]. The CoAP pro-
tocol operates over the application layer in the IoT network as depicted in Figure 1, and it
is becoming increasingly important for the CoAP to meet the requirements for designing
a generic web protocol that fits the low-resource and low-energy devices and machine-to-
machine (M2M) applications such as smart city [7].

Figure 1. Layers and protocols of IoT network. Figure 1. Layers and protocols of IoT network.

1.2. CoAP Architecture

CoAP consists of four layers with the first from bottom being the user datagram
protocol (UDP). The second layer is the request/response layer, and the third layer is
messaging layer that offers optional reliability of messages (confirmable, non-confirmable).

Appl. Sci. 2023, 13, 7391 3 of 24

Those layers are depicted in Figure 2, and each layer has a role in exchanging messages
between the two endpoints. The topmost layer is the application layer where the CoAP
protocol operates.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 26

1.2. CoAP Architecture
CoAP consists of four layers with the first from bottom being the user datagram pro-

tocol (UDP). The second layer is the request/response layer, and the third layer is messag-
ing layer that offers optional reliability of messages (confirmable, non-confirmable). Those
layers are depicted in Figure 2, and each layer has a role in exchanging messages between
the two endpoints. The topmost layer is the application layer where the CoAP protocol
operates.

Figure 2. CoAP architecture [7].

1.3. CoAP Security Overview
The DTLS is a security protocol that is used to secure the CoAP protocol. DTLS is a

heavy protocol since it uses the three-way handshake process like the TCP protocol to
authenticate the messages and as such is not a good fit for IoT devices [2]. CoAP defines
four-security mode which are as follows:
A. NoSec Mode: The DTLS is not deployed in this mode assuming that the lower layers

will take the role of securing the messages. This paper assumes that the CoAP is in
the NoSec mode while trying to find an alternative way to secure the CoAP clients
against the CoAP amplification attacks instead of using the DTLS protocol. This pa-
per’s target is to secure the CoAP in its vicinity, and the NoSec mode is the default
mode for this work.

B. PresharedKey Mode: In this mode, the DTLS is deployed, and for each key, there is
a list of nodes that appear to engage in communication. So, every endpoint has its
own key, and if it is within a group of nodes, it is authenticated within that group
using pre-shared keys.

C. RawPublicKey Mode: The DTLS is also deployed in this mode. If an endpoint re-
quires authentication, a symmetric key is generated for all endpoints to avoid the
need for a certificate.

D. Certificate Mode: In this mode, the DTLS is deployed, and a symmetric key pair is
generated for each endpoint. The certificate authority is responsible for ensuring the
validity of each endpoint.

Denial-of-Service Attacks against CoAP
The CoAP like many other protocols is a potential target of Denial-of-Service attacks.

This attack aims to cause a downtime in the service and make the service unavailable for
legitimate use. One of the Denial-of-Service attacks that target the CoAP is the so-called
CoAP amplification. The amplification attack sends unwanted messages to a target victim
by spoofing its IP. These messages are large and, therefore, are called amplification. Most
of the state-of-the-art techniques used to secure the CoAP protocol aim to secure the server
side. This research, however, focusses on the amplification that comes from the CoAP cli-
ent against another CoAP victim client. The amplification attack can be DoS (Denial-of-
Service) or DDoS (Distributed Denial-of-Service) based on the source of the attack. In the
case of DoS, only a single endpoint is used to initiate massive requests or responses to the

Figure 2. CoAP architecture [7].

1.3. CoAP Security Overview

The DTLS is a security protocol that is used to secure the CoAP protocol. DTLS is
a heavy protocol since it uses the three-way handshake process like the TCP protocol to
authenticate the messages and as such is not a good fit for IoT devices [2]. CoAP defines
four-security mode which are as follows:

A. NoSec Mode: The DTLS is not deployed in this mode assuming that the lower layers
will take the role of securing the messages. This paper assumes that the CoAP is in the
NoSec mode while trying to find an alternative way to secure the CoAP clients against
the CoAP amplification attacks instead of using the DTLS protocol. This paper’s
target is to secure the CoAP in its vicinity, and the NoSec mode is the default mode
for this work.

B. PresharedKey Mode: In this mode, the DTLS is deployed, and for each key, there is a
list of nodes that appear to engage in communication. So, every endpoint has its own
key, and if it is within a group of nodes, it is authenticated within that group using
pre-shared keys.

C. RawPublicKey Mode: The DTLS is also deployed in this mode. If an endpoint requires
authentication, a symmetric key is generated for all endpoints to avoid the need for a
certificate.

D. Certificate Mode: In this mode, the DTLS is deployed, and a symmetric key pair is
generated for each endpoint. The certificate authority is responsible for ensuring the
validity of each endpoint.

Denial-of-Service Attacks against CoAP

The CoAP like many other protocols is a potential target of Denial-of-Service attacks.
This attack aims to cause a downtime in the service and make the service unavailable for
legitimate use. One of the Denial-of-Service attacks that target the CoAP is the so-called
CoAP amplification. The amplification attack sends unwanted messages to a target victim
by spoofing its IP. These messages are large and, therefore, are called amplification. Most of
the state-of-the-art techniques used to secure the CoAP protocol aim to secure the server
side. This research, however, focusses on the amplification that comes from the CoAP client
against another CoAP victim client. The amplification attack can be DoS (Denial-of-Service)
or DDoS (Distributed Denial-of-Service) based on the source of the attack. In the case of
DoS, only a single endpoint is used to initiate massive requests or responses to the target
victim that causes heavy processing to overwhelm the resources of the victim and make
it unavailable for legitimate users. On the other hand, DDoS is launched from multiple
sources instead of a single endpoint. The amplification factor for the amplification attacks
can be calculated based on the ratio between the data generated by the attacker and the
actual data sent to the victim [8]. So, the attacks described below are based on two scenarios:
single or massive requests sent by the attacker and single or massive responses received by

Appl. Sci. 2023, 13, 7391 4 of 24

the victim. In a DoS attack scenario, the CoAP server is forced to send a massive amount
of data. However, the amplification attacks are initiated side by side with the IP address
spoofing of the victim. Consequently, the attacker becomes capable of generating more
requests from multiple sources to the victim and multiplying the traffic that results in a
DDoS amplification attack. The CoAP NoSec mode is vulnerable to IP address spoofing.
The amplification attacks can be classified as follows:

1. Simple Amplification Attack

In this scenario, the attacker is forcing the CoAP server to respond x times to a single
request. If the responses are x times larger than the request, so:

Amplication f actor = x (1)

By default, CoAP can handle up to 1024 bytes for every request [7]. So, the attacker
sends a message that exceeds 1024 bytes. Figure 3 illustrates the amplification attack
using a single response. This attack can only succeed if the victim CoAP client’s IP is
successfully spoofed.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 26

target victim that causes heavy processing to overwhelm the resources of the victim and
make it unavailable for legitimate users. On the other hand, DDoS is launched from mul-
tiple sources instead of a single endpoint. The amplification factor for the amplification
attacks can be calculated based on the ratio between the data generated by the attacker
and the actual data sent to the victim [8]. So, the attacks described below are based on two
scenarios: single or massive requests sent by the attacker and single or massive responses
received by the victim. In a DoS attack scenario, the CoAP server is forced to send a mas-
sive amount of data. However, the amplification attacks are initiated side by side with the
IP address spoofing of the victim. Consequently, the attacker becomes capable of generat-
ing more requests from multiple sources to the victim and multiplying the traffic that re-
sults in a DDoS amplification attack. The CoAP NoSec mode is vulnerable to IP address
spoofing. The amplification attacks can be classified as follows:

1. Simple Amplification Attack
In this scenario, the attacker is forcing the CoAP server to respond x times to a single

request. If the responses are x times larger than the request, so:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓 = 𝑥𝑥 (1)

By default, CoAP can handle up to 1024 bytes for every request [7]. So, the attacker
sends a message that exceeds 1024 bytes. Figure 3 illustrates the amplification attack using
a single response. This attack can only succeed if the victim CoAP client’s IP is successfully
spoofed.

Figure 3. Simple amplification against the CoAP.

The attacker can customize the amplification factor to a fixed number by increasing
the GET requests to the target victim. This can be done by updating the resources used in
the attack. Figure 4 illustrates this scenario.

Figure 4. Amplification Attack using multiple requests and customized amplification factor.

Figure 3. Simple amplification against the CoAP.

The attacker can customize the amplification factor to a fixed number by increasing
the GET requests to the target victim. This can be done by updating the resources used in
the attack. Figure 4 illustrates this scenario.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 26

target victim that causes heavy processing to overwhelm the resources of the victim and
make it unavailable for legitimate users. On the other hand, DDoS is launched from mul-
tiple sources instead of a single endpoint. The amplification factor for the amplification
attacks can be calculated based on the ratio between the data generated by the attacker
and the actual data sent to the victim [8]. So, the attacks described below are based on two
scenarios: single or massive requests sent by the attacker and single or massive responses
received by the victim. In a DoS attack scenario, the CoAP server is forced to send a mas-
sive amount of data. However, the amplification attacks are initiated side by side with the
IP address spoofing of the victim. Consequently, the attacker becomes capable of generat-
ing more requests from multiple sources to the victim and multiplying the traffic that re-
sults in a DDoS amplification attack. The CoAP NoSec mode is vulnerable to IP address
spoofing. The amplification attacks can be classified as follows:

1. Simple Amplification Attack
In this scenario, the attacker is forcing the CoAP server to respond x times to a single

request. If the responses are x times larger than the request, so:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓 = 𝑥𝑥 (1)

By default, CoAP can handle up to 1024 bytes for every request [7]. So, the attacker
sends a message that exceeds 1024 bytes. Figure 3 illustrates the amplification attack using
a single response. This attack can only succeed if the victim CoAP client’s IP is successfully
spoofed.

Figure 3. Simple amplification against the CoAP.

The attacker can customize the amplification factor to a fixed number by increasing
the GET requests to the target victim. This can be done by updating the resources used in
the attack. Figure 4 illustrates this scenario.

Figure 4. Amplification Attack using multiple requests and customized amplification factor. Figure 4. Amplification Attack using multiple requests and customized amplification factor.

2. Amplification Attack Using Observe

This attack implementation is based on a single request that seeks multiple responses
from different servers. For instance, a single request can have 10 times the number of
responses from multiple servers as depicted in Figure 5. The amplification factor of this
scenario is much worse than the amplification using a single response. The limitation of

Appl. Sci. 2023, 13, 7391 5 of 24

this attack is that if different CoAP servers have the same filtering method of the packets,
it will not be able to get the same responses from multiple CoAP servers. Assuming that
a dedicated request x is responded to by the server with response y, so the amplification
factor can be calculated as:

Amplication f actor = x ∗ y (2)

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 26

2. Amplification Attack Using Observe
This attack implementation is based on a single request that seeks multiple responses

from different servers. For instance, a single request can have 10 times the number of re-
sponses from multiple servers as depicted in Figure 5. The amplification factor of this sce-
nario is much worse than the amplification using a single response. The limitation of this
attack is that if different CoAP servers have the same filtering method of the packets, it
will not be able to get the same responses from multiple CoAP servers. Assuming that a
dedicated request x is responded to by the server with response y, so the amplification
factor can be calculated as:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓 = 𝑥𝑥 ∗ 𝑦𝑦 (2)

Figure 5. Amplification Attack using observe.

3. Amplification Attack Using Multicast
Multicast amplification is defined as a group of requests that are sent to multiple

servers using multicast or broadcast where each request x results in y responses coming
from multiple z servers. This attack is meant to incapacitate the CoAP victim clients. The
number of CoAP victim clients in this attack is unknown and so is the number of servers
that respond to fake requests. The amplification factor of this attack can be calculated as:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓 = 𝑥𝑥 ∗ 𝑦𝑦 ∗ 𝑧𝑧 (3)

The attack is worsened since the number of z servers is not determined. Figure 6
demonstrates this attack scenario.

Figure 5. Amplification Attack using observe.

3. Amplification Attack Using Multicast

Multicast amplification is defined as a group of requests that are sent to multiple
servers using multicast or broadcast where each request x results in y responses coming
from multiple z servers. This attack is meant to incapacitate the CoAP victim clients. The
number of CoAP victim clients in this attack is unknown and so is the number of servers
that respond to fake requests. The amplification factor of this attack can be calculated as:

Amplication f actor = x ∗ y ∗ z (3)

The attack is worsened since the number of z servers is not determined. Figure 6 demon-
strates this attack scenario.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 26

Figure 6. Amplification attack using multicast.

2. Related Work
Securing the CoAP against DoS and DDoS has been extensively researched. Some

research is based on the DTLS and enhanced DTLS for the CoAP security [9–12]. However,
DTLS was originally designed to protect web applications and is considered a heavy pro-
tocol that does not work well with IoT devices [10]. Software Defined Networking (SDN)
has also been used to detect DDoS attacks against CoAP [9]. The authors provided two
modules for the detection phase: the first module is to monitor the system and realize the
anomalies between packets, and the second is to apply a machine learning algorithm to
determine the DDoS packets. In [13], the authors compare different classifiers to detect the
CoAP DDoS attacks and state that the support vector machine (SVM) algorithm outper-
formed Naïve Byes, decision tree, and Random Forest with an accuracy of 99.88%. This
paper only discussed the binary classification but not the multi-classification of the DDoS
CoAP attacks. The anomaly detection of DDoS CoAP attacks was presented in [14]. This
work claims an accuracy of 93% for classifying the malware. This research was confined
to the attacks that target the CoAP server and did not cover attacks launched by CoAP
clients against each other. The following section reviews the research that discussed DDoS
attacks against IoT network.

2.1. Proposed Defense Mechanisms for IoT Network
Several defense mechanisms have been proposed to protect IoT networks from DDoS

attacks. These mechanisms can be categorized into Software-Defined Networking (SDN)
methods and machine learning-based detection. In this section, some of these proposed
mechanisms will be discussed in detail.

2.1.1. SDN Platform for IoT Network Security
Some researchers have deployed SDN as a platform to secure IoT networks. SDN is

a new networking paradigm that brings different benefits such as ubiquitous accessibility,
managing resources dynamically, flexible programmed interfaces, and extreme authority
for the controller, which introduces the second generation of networking [15]. SDN con-
sists of a separate control plane and a data plane. The basic operations and control of the
network are centralized in the controller or distributed controllers. So, the SDN design has
enhanced network security because all major network operations are visible to the con-
trollers; thus, controllers have the authority to resolve any conflict. Mert Ozcelik et al.
(2017) proposed to exploit the extreme functionalities and authorities of the SDN control-
ler in the edge IoT networks such as traffic monitoring and dynamic rule updates to detect
and mitigate IoT-based DDoS attacks [16]. The proposed method builds rules in the
switches based on the discovered attack packets to blacklist and delete the attacks. The

Figure 6. Amplification attack using multicast.

Appl. Sci. 2023, 13, 7391 6 of 24

2. Related Work

Securing the CoAP against DoS and DDoS has been extensively researched. Some research
is based on the DTLS and enhanced DTLS for the CoAP security [9–12]. However, DTLS was
originally designed to protect web applications and is considered a heavy protocol that does not
work well with IoT devices [10]. Software Defined Networking (SDN) has also been used to
detect DDoS attacks against CoAP [9]. The authors provided two modules for the detection
phase: the first module is to monitor the system and realize the anomalies between packets, and
the second is to apply a machine learning algorithm to determine the DDoS packets. In [13],
the authors compare different classifiers to detect the CoAP DDoS attacks and state that the
support vector machine (SVM) algorithm outperformed Naïve Byes, decision tree, and Random
Forest with an accuracy of 99.88%. This paper only discussed the binary classification but not
the multi-classification of the DDoS CoAP attacks. The anomaly detection of DDoS CoAP
attacks was presented in [14]. This work claims an accuracy of 93% for classifying the malware.
This research was confined to the attacks that target the CoAP server and did not cover attacks
launched by CoAP clients against each other. The following section reviews the research that
discussed DDoS attacks against IoT network.

2.1. Proposed Defense Mechanisms for IoT Network

Several defense mechanisms have been proposed to protect IoT networks from DDoS
attacks. These mechanisms can be categorized into Software-Defined Networking (SDN)
methods and machine learning-based detection. In this section, some of these proposed
mechanisms will be discussed in detail.

2.1.1. SDN Platform for IoT Network Security

Some researchers have deployed SDN as a platform to secure IoT networks. SDN is a
new networking paradigm that brings different benefits such as ubiquitous accessibility,
managing resources dynamically, flexible programmed interfaces, and extreme authority
for the controller, which introduces the second generation of networking [15]. SDN consists
of a separate control plane and a data plane. The basic operations and control of the network
are centralized in the controller or distributed controllers. So, the SDN design has enhanced
network security because all major network operations are visible to the controllers; thus,
controllers have the authority to resolve any conflict. Mert Ozcelik et al. (2017) proposed
to exploit the extreme functionalities and authorities of the SDN controller in the edge
IoT networks such as traffic monitoring and dynamic rule updates to detect and mitigate
IoT-based DDoS attacks [16]. The proposed method builds rules in the switches based
on the discovered attack packets to blacklist and delete the attacks. The authors tested
their system in a real-time environment, and the results indicate extreme effort in detecting
Mirai attacks. Similarly, Yin et al. (2018) proposed a framework for IoT-based SDN that
has distributed controller pool [17]. The system named SD-IoT uses cosine similarity of the
vectors of the incoming packet and based on that it decides if a DDoS attack is triggered
or not. This work employs a threshold-based cosine similarity, and if the threshold is
exceeded, the system blocks the source of the attack. However, this work is susceptible to
large amounts of traffic. Edge computing is also employed to defend IoT against DDoS
attacks. Bhardwaj et al. (2018) developed a proactive defense while rendering the edge as
the first line to counter DDoS attacks [6]. It is a cloud-based platform that uses ShadowNet
employed at the edge nodes of the cloud architecture. Edge nodes will send the incoming
packets for check purposes to the ShadowNet web service to assess whether the packet
is benign or a DDoS attack packet. However, this approach is focused on speed and
ignores accuracy because there is no way to differentiate between the attack and the Flash
crowd. Stateful SDN architecture is used to develop an entropy-based solution to detect
and mitigate IoT-DDoS attacks (Galeano-Brajones et al., 2020) [18]. The authors claim their
results demonstrate the significant role of calculating the correlation of the entropy values
for different extracted features in identifying the attacks. Furthermore, SDN is employed
for mitigation by easily updating the switches’ flow tables with new entries. However, this

Appl. Sci. 2023, 13, 7391 7 of 24

system considers only limited types of DDoS attacks. Yang et al. (2019) claim that using the
controller to defend the network against DDoS attacks is time-consuming and a waste of
resources [19]. Alternatively, they consider the IoT traffic features and exploit the benefits
of the concept of edge computing by putting the detection and mitigation system into the
Open Flow (OF) switches of IoT. This results in a distribution of anomaly detection and
avoids overloading the controller. They employ machine learning in the OF switches and
gain around 99% precision. The demerit of this work is the lack of handling sophisticated
DDoS attacks such as the Crossfire attack.

2.1.2. Machine Learning and Deep Learning for IoT Network Security

Several research have employed machine learning or deep learning methods to detect
and mitigate IoT-DDoS attacks. Median Y. et al. (2018) developed an anomaly-based detec-
tion method for the IoT network [20]. The authors extracted the behavior for every benign
traffic independently and used the deep autoencoders to capture the benign behavior of the
IoT traffic. Then, the autoencoder attempted to compress snapshots, and if it failed to recon-
struct the snapshot, it was considered an indication of anomalous behavior. They evaluated
their method by injecting some IoT devices in the lab with popular malicious botnets (Mirai
and BASHTILE) and demonstrated that their method can accurately and instantly detect the
attacks launched from infected IoT devices. Ivan et al. (2019) proposed an anomaly-based
DDoS attacks detection framework [21]. They classified the IoT devices and traffic into
different classes. These classes helped analyze if traffic generated from a class is deviating
from normal or expected behavior. These classes categorize the IoT devices, and the traffic
generated from one class does not deviate from other traffic streams generated from the
same class. To classify new IoT devices, Logistic Regression is employed to affiliate it to a
dedicated class. Then, the Adaboost machine learning algorithm is used to measure the
deviation of any traffic from normal behavior. Ultimately, all traffic behavior that deviated
from the corresponding class were considered a DDoS attack. Hussain et al. (2019) claimed
that recent IoT detection models are degraded due to model aging and the outdated dataset
used for training [3]. In their work, they converted the network traffic into an image form,
and then, they trained the state-of-the-art Convolutional Neural Network (CNN) model
named ResNet with the new form. The authors evaluated their work using the CICD2019
dataset that contains 11 types of DDoS attacks and gains an accuracy of 99.99% for the bi-
nary classification technique. A honeypot-based detection was also used to detect Zero-day
attacks. According to Vishwakarma et al. (2019), a honeypot can help to detect new variants
of IoT-DDoS attacks [22]. In their work, they lured the attacker by allowing him to invade
the protection wall. Thereafter, the honeypot came into the picture and recorded the ma-
nipulations that the invader tends to do as log files. These log files were then transformed
into a tabular format that made them work as a dataset. Then, they trained the machine
learning on these log files after being formatted to get useful information about the attack.
However, this work was not tested in a real-world environment. Soe Y. et al. (2019) em-
ployed Artificial Neural Network (ANN) to detect IoT-DDoS attacks [23]. The authors used
the newly released dataset named Bot-IoT dataset. Due to the imbalance in the dataset that
contains 1.9 million attack packets and 477 benign packets, they applied a technique called
SMOTE (Synthetic Minority Over-sampling Technique) to generate several benign packets
equal to the number of DDoS packets. The detection system showed 100% accuracy. Dao N.
et al. (2019) proposed MECshield, a framework, that employed mobile edge computing to
protect the Heterogeneous IoT environment [24]. The framework used multiple intelligent
filters and put them at the edge of the attack resource/destination. A centralized controller
supervised the interactions of the smart filters and propagated the corresponding features
of the attack to the smart filters. The authors tested their mechanism using three different
datasets (CAIDA, NSL-KDD, and DARPA). The experiment showed impressive results
in the detection accuracy, and the dilemma of the bottleneck, which was a crucial issue
in DDoS attacks, was resolved by distributing the filters at multiple mobile edge points.
Yizhen et al. (2020) proposed a detection system named FlowGuard that operated at the

Appl. Sci. 2023, 13, 7391 8 of 24

edge servers close to the IoT network [25]. FlowGuard vetted all packets passing through
the edge server using a flow filter. They evaluated their work with CICDDoS2019 and other
self-generated datasets and attained an accuracy of 98.8%.

2.1.3. Cloud Platform for IoT Network Security

Different works have also deployed cloud computing platforms to secure IoT net-
works. Due to the lack of protection of the IoT network from an insider attack on the SDN
platform, cloud-based approaches have emerged. In SDN, edge and gateway routers are
exploited for the deployment of the detection system and, thus, cannot handle attacks
coming from a single device during the M2M communication (Conti et al., 2018) [15].
Weiqi et al. (2018) discuss the infrastructure-as-a-service (IaaS) that offers the network as a
service, storage, and CPU for tenants, and then, the tenants outsource their infrastructure
to, for example, Amazon and Microsoft Azure [26]. These outsourced infrastructures con-
sist of virtual machines and are allocated to a certain tenant called Tenant Network (TN).
The cloud administrator has full privileges on the TN but has no control over the physical
infrastructure. For this reason, the authors proposed a TNGuard platform that restricts
the administrator authorities. This results in degraded privileges for the administrator
and should result in a secured tenant IoT network. The authors evaluate their work using:
(1) the time the system requires to boot, (2) the average time for response, and (3) the
rate of the cross-zone communication. All metrics show TNGuard is sufficient for most
of the applications. However, this work lacks dynamic integrity verification. Djouani
et al. (2018) proposed a framework to integrate SDN and cloud computing to secure IoT
networks [27]. They separated the control plane and the data plane by putting the SDN
controllers in the cloud and putting the data plane over the nodes and the gateways. The
lack of resources in IoT was compensated by delegating the security mechanism to the
cloud. This method was not tested in a real environment. Moreover, Fog computing
integrated with SDN and blockchain were proposed by Muthanna et al. (2019) to secure IoT
networks [28]. The authors leveraged the benefits of Fog computing such as minimizing
latency in communication and helping with data offloading. Moreover, Fog computing
renders new services more efficient. So, the authors came up with a layer of distributed
edge computing-based Fog nodes, and it was located in the middle between IoT central
cloud and different IoT nodes. They evaluated their work and claimed that their method is
efficient in terms of computing resource utilization and latency. Table 1 summarizes the IoT
defense mechanisms for DDoS attacks.

Table 1. Proposed Defense Mechanisms for IoT Network.

Research Objective Methodology Used Results Limitations

Employ Mobile Edge Computing
(MEC) to safeguard IoT
environment (2017)

MECshield is proposed that uses smart filter
distributed over MEC to mitigate DDoS attack

Better detection accuracy and DDoS
bottleneck is resolved N/A

Design framework for
Software-Defined Internet of Things
(SD-IoT) (2018)

SD-IoT uses cosine similarity of the vectors of
the incoming packet and based on that it
decides if a DDoS attack is triggered or not.

Detect and block the attack at the
source

Susceptible to large amounts of
traffic

Edge computing-based cloud
platform (2018)

Cloud ShadowNet web service will receive the
packets from edge nodes to vet them

It performs 10× faster in detecting
UDP flood attack than existing
models

Focus on speed but ignore
accuracy since no method to
differentiate between attack and
Flash crowd

Anomaly-based detection to detect
IoT traffic attacks (2018)

Deep Autoencoders is used to learn the
behavior of normal IoT traffic and then detect
the anomalies if re-construction has failed

N-BaIoT succeeded in detecting
every single attack with 100% TPR

Deployment in a real-world
scenario is costly

Securing tenant IoT network (2018) TNGuard degrades the tenant network
administrator to ensure the security

Several metrics used show sufficient
work with most of the applications

Lack of dynamic integrity
verification

Deploy SDN and cloud to secure
IoT network (2018)

Delegate security mechanism to the cloud and
management to the controllers and data plane
to gateways

Security architecture containing
trusted SDN controller& Not tested in real environment

Detect DDoS based on the traffic
behavior (2019)

Anomaly-based detection that measures the
deviation of any traffic compared to legitimate
traffic from the same class

Adaboost can effectively detect
anomalies in the traffic behavior

No significant criterion to classify
IoT devices

Appl. Sci. 2023, 13, 7391 9 of 24

Table 1. Cont.

Research Objective Methodology Used Results Limitations

Honeypot-based detection
framework (2019)

Luring the attacker to invade the IoT protection
wall and then log all the activities and gain
useful information about the new attacks

New variants of attacks are detected Not tested in real environment

Fog Computing and SDN is
deployed to secure IoT network
(2019)

IoT-Fog system integrated with SDN and
blockchain for securing IoT network

Resource utilization is efficient and
the latency of end-to-end is reduced N/A

Apply ANN to classify benign
packets and DDoS packets (2019)

Constructing a simple ANN network with a
single layer to classify DDoS attacks and benign
packets

The detection results reached up to
100% N/A

Use state-of-the-art deep learning
techniques to classify DDoS attacks
(2020)

Transform IoT traffic to image form and train
ResNet over the new image format

ResNet gains 99.99% accuracy for
binary classification N/A

Detect IoT-DDoS at the edge servers
(2020)

FlowGuard is employed at the edge server to
vet the traffics passing through the server

Identification of long-short-term
memory gains accuracy of 98.8% N/A

Stateful SDN architecture is used to
develop an entropy-based detection
for IoT-attack (2020)

calculating the correlation of the entropy values
for different extracted features to identify the
attacks

Entropy-based on SDN can mitigate
the attack by adding entries to the
flow table of switches

Considers only limited types of
DDoS attacks

Edge computing-based SDN (2020) Intelligence is employed in the edge devices
(OF switches) instead of the controller

99% precision rate for detecting the
attack at the OF switches

Susceptible to sophisticated
DDoS attack like Crossfire attack

In terms of dataset uniquity, there are different datasets available for DDoS CoAP
attacks. The Bot-IoT [29] has a variety of attacks including DoS attacks; however, it does
not include DoS CoAP amplification attacks. A NetFlow dataset was generated from
UNSW-NB15, BoT-IoT, ToN-IoT, and CSE-CIC-IDS2018 due to the lack of related features
for malware detection [30]. The authors claimed that most Network Intrusion Detection
Systems (NIDS) datasets do not contain sufficient security events. For this purpose, they
generated a new dataset from the NIDS datasets and included the security events for
research purposes. This dataset does not have specific amplification malware for the
DoS CoAP attacks. The IoT-Flock dataset [31] was generated for the IoT network attacks.
However, this dataset was dedicated to healthcare applications. It can be safely assumed
that no dataset has been generated by any researcher so far for simulating the DoS CoAP
amplification attacks that contain simple, observe, and multicast amplification.

3. Materials and Methods
3.1. Dataset Creation

To create a balanced DoS CoAP amplification dataset, the Libcoap project [32] was
used to differentiate between the benign and the attack packets. This project provides a
C implementation for the CoAP client and the CoAP server, which run over the Contiki
operating system (the lightweight OS for IoT devices). The benign packet only requests the
available resources from the CoAP server (mostly requested as/well-known/core), while
the attack packet requests the same resources, but spoofs the IP address of the target victim,
consequently, an amplification is acting. To spoof the IP address of the target victim, we
use the well-known Nmap tool that performs the spoofing on a CoAP client [33]. This tool
needs only the IP of the target victim and any response from the CoAP server that is
directed towards the target victim. Figure 7 illustrates the spoofing technique that causes
the CoAP amplification. There are available CoAP servers online that we can be used for
experimentation. For example, Shodan.io [34] provides a list of CoAP servers available
online, and many of them allow to perform the attack scenarios. This research uses the
Californium CoAP server available online and gains authorization from the owners to
simulate the attacks [35].

Appl. Sci. 2023, 13, 7391 10 of 24

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 26

for malware detection [30]. The authors claimed that most Network Intrusion Detection
Systems (NIDS) datasets do not contain sufficient security events. For this purpose, they
generated a new dataset from the NIDS datasets and included the security events for re-
search purposes. This dataset does not have specific amplification malware for the DoS
CoAP attacks. The IoT-Flock dataset [31] was generated for the IoT network attacks. How-
ever, this dataset was dedicated to healthcare applications. It can be safely assumed that
no dataset has been generated by any researcher so far for simulating the DoS CoAP am-
plification attacks that contain simple, observe, and multicast amplification.

3. Materials and Methods
3.1. Dataset Creation

To create a balanced DoS CoAP amplification dataset, the Libcoap project [32] was
used to differentiate between the benign and the attack packets. This project provides a C
implementation for the CoAP client and the CoAP server, which run over the Contiki op-
erating system (the lightweight OS for IoT devices). The benign packet only requests the
available resources from the CoAP server (mostly requested as/well-known/core), while
the attack packet requests the same resources, but spoofs the IP address of the target vic-
tim, consequently, an amplification is acting. To spoof the IP address of the target victim,
we use the well-known Nmap tool that performs the spoofing on a CoAP client [33]. This
tool needs only the IP of the target victim and any response from the CoAP server that is
directed towards the target victim. Figure 7 illustrates the spoofing technique that causes
the CoAP amplification. There are available CoAP servers online that we can be used for
experimentation. For example, Shodan.io [34] provides a list of CoAP servers available
online, and many of them allow to perform the attack scenarios. This research uses the
Californium CoAP server available online and gains authorization from the owners to
simulate the attacks [35].

For the rest of the attacks, experiments are conducted to simulate the CoAP amplifi-
cation using observe and the amplification using multicast. The experiment was con-
ducted on a Linux machine with Ubuntu 22.04 as the OS. The RAM was 8 Gigabytes with
a Core i7 CPU. While running the simulated attack, Wireshark captured each coming and
outgoing packet. The collected packets are only CoAP-level packets as mentioned in Sec-
tion 1.1. To create a balanced dataset, a total of 120,000 samples were collected, and out of
which 60,000 are benign packets, and the rest are malware. Around 20,000 were used for
the simple amplification attack, around 20,000 for the observe amplification attack, and
roughly the same for the multicast amplification attack. Figure 8. illustrates the distribu-
tion of samples into benign and malware packets. The generated dataset is available at
(https://www.kaggle.com/datasets/salmeghlef/dos-amplification-attacks-against-coap
(accessed on 5 May 2023)).

Figure 7. Lab experiment for simulating the simple amplification attack. Figure 7. Lab experiment for simulating the simple amplification attack.

For the rest of the attacks, experiments are conducted to simulate the CoAP amplification
using observe and the amplification using multicast. The experiment was conducted on
a Linux machine with Ubuntu 22.04 as the OS. The RAM was 8 Gigabytes with a Core i7
CPU. While running the simulated attack, Wireshark captured each coming and outgoing
packet. The collected packets are only CoAP-level packets as mentioned in Section 1.1.
To create a balanced dataset, a total of 120,000 samples were collected, and out of which
60,000 are benign packets, and the rest are malware. Around 20,000 were used for the
simple amplification attack, around 20,000 for the observe amplification attack, and roughly
the same for the multicast amplification attack. Figure 8. illustrates the distribution of
samples into benign and malware packets. The generated dataset is available at (https:
//www.kaggle.com/datasets/salmeghlef/dos-amplification-attacks-against-coap (accessed
on 5 May 2023)).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 26

Figure 8. Dataset distribution (b: benign, s: simple attack, o: observe attack, and m: multicast attack).

3.2. Data Preprocessing
For the CoAP packet, 86 features can be extracted from the pcap file [36] as described

in Table 2, and most of which are optional features that may or may not be used in com-
munication. In this work, we only consider the non-optional features to make sure we
have the value for each feature.

Some of the collected features have numerical values, and others have non-numerical
values, and for the machine learning classifiers, we need to convert these data to numerical
values. So, we convert the non-numerical values to numerical values such as (0, 1) for
Boolean features and the one-hot-encoding technique for some of the features that have
different categories. For the labels, we have four labels, and we convert them to numerical
values: 0 for benign, 1 for simple amplification, 2 for observe, and 3 for multicast. As a
result, the entire dataset contains only numerical values. Some features have higher val-
ues, and to simplify these values for the computation of the algorithm, we normalize these
values using the normalization Formula (4) to get the values between 0 and 1.

𝑧𝑧𝑖𝑖 =
𝑥𝑥𝑖𝑖 − min (𝑥𝑥)

max(𝑥𝑥) − min (𝑥𝑥)
 (4)

where zi is the rounded value, xi represents the actual value for a data point, and min(x)
and max(x) are the minimum and maximum values in the same column.

3.3. Feature Selection
To train the classifiers for the multi-classification process, we need to get the most

relevant features that lead to the correct label. This paper performs filtering using the
Pearson Correlation method to find the most relevant features and grid of irrelevant fea-
tures. It is assumed that any feature that has a ± 0.30 correlation with the label is relevant.
To remove the redundancy in the features, we use Variance Inflation Factor (VIF).

Table 2. CoAP Non-Optional Features [36].

Feature Description Type
Coap.block_length Block length Unsigned Integer (4 bytes)
Coap.blocks Block Label
Coap.code Code Unsigned Integer
Coap.token_len Token length Unsigned Integer (1 byte)

Figure 8. Dataset distribution (b: benign, s: simple attack, o: observe attack, and m: multicast attack).

3.2. Data Preprocessing

For the CoAP packet, 86 features can be extracted from the pcap file [36] as described
in Table 2, and most of which are optional features that may or may not be used in

https://www.kaggle.com/datasets/salmeghlef/dos-amplification-attacks-against-coap
https://www.kaggle.com/datasets/salmeghlef/dos-amplification-attacks-against-coap

Appl. Sci. 2023, 13, 7391 11 of 24

communication. In this work, we only consider the non-optional features to make sure we
have the value for each feature.

Table 2. CoAP Non-Optional Features [36].

Feature Description Type
Coap.block_length Block length Unsigned Integer (4 bytes)
Coap.blocks Block Label
Coap.code Code Unsigned Integer
Coap.token_len Token length Unsigned Integer (1 byte)
Coap.type Type Unsigned Integer (1 byte)
Coap.block Block Frame number
Coap.block.count Block count Unsigned Integer (4 bytes)
Coap.block.error Block defragmentation error Frame number
Coap.block.multiple_tails Block has multiple tails Boolean
Coap.block.overlap Block overlap Boolean
Coap.block.overlap.conflicts Block overlapping with conflicting data Boolean
Coap.block.reassembled.in Reassembled in Frame number
coap.block.reassembled.length Reassembled block length Unsigned integer (4 byte)
coap.block.too_long Block too long Boolean
coap.length Length Unsigned integer (4 byte)
coap.oscore_kid OSCORE Key ID Byte sequence
coap.oscore_kid_context OSCORE Key ID context Byte sequence
coap.oscore_piv OSCORE Partial IV Byte sequence
coap.payload Payload Character string
coap.payload_desc Payload Desc Character string
coap.payload_length Payload Length Unsigned integer (4 byte)
coap.request_first_in Retransmission of request in Frame number
coap.response_in Response in Frame number
coap.retransmitted Retransmitted Label

Some of the collected features have numerical values, and others have non-numerical
values, and for the machine learning classifiers, we need to convert these data to numerical
values. So, we convert the non-numerical values to numerical values such as (0, 1) for
Boolean features and the one-hot-encoding technique for some of the features that have
different categories. For the labels, we have four labels, and we convert them to numerical
values: 0 for benign, 1 for simple amplification, 2 for observe, and 3 for multicast. As a
result, the entire dataset contains only numerical values. Some features have higher values,
and to simplify these values for the computation of the algorithm, we normalize these
values using the normalization Formula (4) to get the values between 0 and 1.

zi =
xi − min(x)

max(x)− min(x)
(4)

where zi is the rounded value, xi represents the actual value for a data point, and min(x)
and max(x) are the minimum and maximum values in the same column.

3.3. Feature Selection

To train the classifiers for the multi-classification process, we need to get the most
relevant features that lead to the correct label. This paper performs filtering using the
Pearson Correlation method to find the most relevant features and grid of irrelevant
features. It is assumed that any feature that has a ± 0.30 correlation with the label is
relevant. To remove the redundancy in the features, we use Variance Inflation Factor (VIF).

VIF technique is to remove the collinearity features calculated from Formula (5).
Using the Pearson Correlation in Formula (6), it is found that coap.block, coap.block.count,
coap.block.error, coap.block.multiple_tails, coap.block.overlap, coap.block.overlap.conflicts,
coap.block.reassembled.in, and coap.block.reassembled features are highly correlated with
r = 1, so only one feature is retained coap.block, and the rest are dropped. Figure 9 shows

Appl. Sci. 2023, 13, 7391 12 of 24

the Pearson correlation between the features and in-between each feature and the label
after removing the redundancy in the features.

VIFj =
1

1 − R2
j

(5)Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 26

Figure 9. Pearson correlation for the features and the labels.

Figure 9. Pearson correlation for the features and the labels.

Here VIFj refers to the Variance Inflation Factor for the jth predictor, and R2 is calculated
by regressing the jth.

rxy =
n

∑
i=1

(xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(6)

where rxy is the Pearson correlation between two features x and y, n represents the total
number of samples, xi and yi are the individual sample points indexed with i, x is the
sample mean, and the same for y.

As shown in Figure 9, only seven features are considered highly correlated to the label
namely: coap.token_len, coap.block, coap.payload, coap.payload_length, coap.request_first_in,
coap.response_in, and coap.retransmitted after removing the irrelevant features and grid
of the redundant features. The feature coap.token_len is highly correlated to the label
with a negative correlation of r = −0.82. The feature coap.block is the less relevant feature
with r = 0.31 with the label. As mentioned above, the threshold for the relevant feature is
±0.30 or above. The density of the selected features is depicted in Figure 10.

3.4. Model Training

For purposes of this study, three machine learning classifiers are selected (Naïve Byes,
Random Forest, and Gradient Boosting algorithms) and compared in terms of accuracy, pre-
cision, recall, and F1-score after defining each measurement with their formulae. The model
is depicted in Figure 11. Based on the literature, Naïve Byes and Random Forest perform
well for classifying benign and malware packets [37]. However, this study concludes that
the advanced algorithm (Gradient Boosting Classifier) outperforms the Naïve Byes and
the Random Forest algorithm. In the first phase, the data is split into 70% for training
and 30% for testing. Then, the accuracy for each algorithm is calculated. The accuracy of

Appl. Sci. 2023, 13, 7391 13 of 24

the training is tested against the accuracy of the testing data to check for overfitting and
underfitting. If there is no significant deviation between them, it means the model will
perform well on the training data as well as generalize in the production. In the second
phase, the research is validated using a cross-validation technique to check for biases in
the data. We consider the fold = 5 to train the model for the four portions of the data and
test on the hidden portion. After 5 iterations, the average accuracy is calculated. In the
third phase, the confusion matrix of each algorithm is shown. Then, the confusion matrices
for the algorithms are calculated and compared. The next section illustrates the findings
in detail.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 26

Figure 9. Pearson correlation for the features and the labels.

Figure 10. Cont.

Appl. Sci. 2023, 13, 7391 14 of 24Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 26

Figure 10. Cont.

Appl. Sci. 2023, 13, 7391 15 of 24Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 26

Figure 10. Density and outliers for the selected features.

3.4. Model Training
For purposes of this study, three machine learning classifiers are selected (Naïve

Byes, Random Forest, and Gradient Boosting algorithms) and compared in terms of accu-
racy, precision, recall, and F1-score after defining each measurement with their formulae.
The model is depicted in Figure 11. Based on the literature, Naïve Byes and Random Forest
perform well for classifying benign and malware packets [37]. However, this study con-
cludes that the advanced algorithm (Gradient Boosting Classifier) outperforms the Naïve
Byes and the Random Forest algorithm. In the first phase, the data is split into 70% for
training and 30% for testing. Then, the accuracy for each algorithm is calculated. The ac-
curacy of the training is tested against the accuracy of the testing data to check for over-
fitting and underfitting. If there is no significant deviation between them, it means the
model will perform well on the training data as well as generalize in the production. In
the second phase, the research is validated using a cross-validation technique to check for
biases in the data. We consider the fold = 5 to train the model for the four portions of the
data and test on the hidden portion. After 5 iterations, the average accuracy is calculated.
In the third phase, the confusion matrix of each algorithm is shown. Then, the confusion
matrices for the algorithms are calculated and compared. The next section illustrates the
findings in detail.

Figure 10. Density and outliers for the selected features.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 26

Figure 11. The proposed model.

4. Results and Discussions
After performing the model training and testing, the following measurements are

applied to compare the three-machine learning techniques using accuracy, precision, re-
call, and F1-score.

Accuracy: In the attack detection, it can be said that accuracy is the most correctly
classified sample among all the classified samples.

𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑓𝑓𝐴𝐴𝐴𝐴𝑦𝑦 =
(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)

(𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝑉𝑉𝑇𝑇 + 𝑉𝑉𝑇𝑇)
 (7)

where TP refers to the True Positive, TN refers to the True Negative, False Positive for FP,
and False Negative for FN.

Precision: The proportion of the correctly classified positive samples to the overall
positive samples. It can be defined mathematically as:

𝑇𝑇𝑓𝑓𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 =
(𝑇𝑇𝑇𝑇)

(𝑇𝑇𝑇𝑇 + 𝑉𝑉𝑇𝑇)
 (8)

Recall: Is to measure all the positive elements in the dataset. It can be calculated as:

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
(𝑇𝑇𝑇𝑇)

(𝑇𝑇𝑇𝑇 + 𝑉𝑉𝑇𝑇)
 (9)

F1-score: is the mean for precision and recall of the model.

𝑉𝑉1 =
2 ∗ 𝐴𝐴𝑓𝑓𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 ∗ 𝑓𝑓𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴
𝐴𝐴𝑓𝑓𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑓𝑓𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

 (10)

Following are the results for each model:

4.1. Naïve Byes
Naïve Byes (NB) comes from the statistical methods based on Byes Theorem. It is a

machine learning classifier that is fit for classification problems. It is fast, accurate, and
performs well with large datasets. As the name implies, NB does not obtain the relations
between the features, assuming that each feature has an independent impact on the deci-
sion. The learning process is based on calculating the prior probability of a class label, and
then, the likelihood for each feature for each class is calculated. The result is fed to the
Byes formula to find the posterior probability. Naïve Byes shows a decent overall accuracy
of 87% on this study’s data. Since this study is based on a multi-classification process, the
macro average and weighted average have also been calculated. The macro average rep-
resents the mean for all the metrics of the classes while giving the same weight for all the
classes, whereas the weighted average is calculated using the average of the binary metrics
weighted by the number of samples for each class. As shown in Table 3, the macro average

Figure 11. The proposed model.

4. Results and Discussions

After performing the model training and testing, the following measurements are
applied to compare the three-machine learning techniques using accuracy, precision, recall,
and F1-score.

Appl. Sci. 2023, 13, 7391 16 of 24

Accuracy: In the attack detection, it can be said that accuracy is the most correctly
classified sample among all the classified samples.

accuracy =
(TP + TN)

(TP + TN + FP + FN)
(7)

where TP refers to the True Positive, TN refers to the True Negative, False Positive for FP,
and False Negative for FN.

Precision: The proportion of the correctly classified positive samples to the overall
positive samples. It can be defined mathematically as:

Precision =
(TP)

(TP + FP)
(8)

Recall: Is to measure all the positive elements in the dataset. It can be calculated as:

Recall =
(TP)

(TP + FN)
(9)

F1-score: is the mean for precision and recall of the model.

F1 =
2 ∗ precision ∗ recall

precision + recall
(10)

Following are the results for each model:

4.1. Naïve Byes

Naïve Byes (NB) comes from the statistical methods based on Byes Theorem. It is a
machine learning classifier that is fit for classification problems. It is fast, accurate, and
performs well with large datasets. As the name implies, NB does not obtain the relations
between the features, assuming that each feature has an independent impact on the decision.
The learning process is based on calculating the prior probability of a class label, and then,
the likelihood for each feature for each class is calculated. The result is fed to the Byes
formula to find the posterior probability. Naïve Byes shows a decent overall accuracy
of 87% on this study’s data. Since this study is based on a multi-classification process,
the macro average and weighted average have also been calculated. The macro average
represents the mean for all the metrics of the classes while giving the same weight for all
the classes, whereas the weighted average is calculated using the average of the binary
metrics weighted by the number of samples for each class. As shown in Table 3, the macro
average is 0.83 for precision, 0.81 for recall, and 0.79 for the F1 score. The weighted average
gives better results with 0.89 for precision, 0.87 for recall, and 0.86 for F1-score.

Table 3. Metric for Naïve Byes Algorithm.

Class Precision Recall F1-Score Support

Benign 1.00 1.00 1.00 18,145
Simple 0.66 1.00 0.79 6303
Observe 0.82 0.38 0.51 5880
Multicast 0.86 0.85 0.85 6085
Accuracy 0.87 36,413
Macro Average 0.83 0.81 0.79 36,413
Weighted Average 0.89 0.87 0.86 36,413

From the confusion matrix in Figure 12, it can be inferred that the observe technique
is wrongly misclassified as simple or multicast amplification. Since Naïve Byes does not
consider the relations between the features, it shows worse overlapping in the multiclassi-

Appl. Sci. 2023, 13, 7391 17 of 24

fication process. As mentioned in Section 3.1, the benign, simple, observe, and multicast
packets are converted to 0, 1, 2, and 3, respectively.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 26

is 0.83 for precision, 0.81 for recall, and 0.79 for the F1 score. The weighted average gives
better results with 0.89 for precision, 0.87 for recall, and 0.86 for F1-score.

Table 3. Metric for Naïve Byes Algorithm.

Class Precision Recall F1-Score Support
Benign 1.00 1.00 1.00 18,145
Simple 0.66 1.00 0.79 6303
Observe 0.82 0.38 0.51 5880
Multicast 0.86 0.85 0.85 6085
Accuracy 0.87 36,413
Macro Average 0.83 0.81 0.79 36,413
Weighted Average 0.89 0.87 0.86 36,413

From the confusion matrix in Figure 12, it can be inferred that the observe technique
is wrongly misclassified as simple or multicast amplification. Since Naïve Byes does not
consider the relations between the features, it shows worse overlapping in the multiclas-
sification process. As mentioned in Section 3.1, the benign, simple, observe, and multicast
packets are converted to 0, 1, 2, and 3, respectively.

Figure 12. Confusion Matrix for Naïve Byes Algorithm.

4.2. Random Forest
Random Forest Classifier (FR) belongs to the decision tree algorithms family that rely

on ensemble methods to avoid overfitting and underfitting that is common in traditional
decision tree algorithms. The bagging methods are used to train RF by splitting the train-
ing data into sets, applying the decision tree for these sets, and then accumulating the

Figure 12. Confusion Matrix for Naïve Byes Algorithm.

4.2. Random Forest

Random Forest Classifier (FR) belongs to the decision tree algorithms family that rely
on ensemble methods to avoid overfitting and underfitting that is common in traditional
decision tree algorithms. The bagging methods are used to train RF by splitting the training
data into sets, applying the decision tree for these sets, and then accumulating the results.
Randomness and repetition of samples in RF is common, meaning a single instance may
be used more than once due to recurrent sampling. In this research, the Random Forest
algorithm performs worse than the Naïve Byes. The overall accuracy is 83%. The weighted
precision, recall, and F1-score is 0.85, 0.83, and 0.81, respectively. Table 4 shows the
metrics for Random Forest Algorithm. The confusion matrix (Figure 13) shows a significant
misclassification for the simple amplification class as the model labeled around half of the
simple amplification samples as benign. The receiver operating characteristic (ROC) curve
has been used to figure out the Random Forest performance at all classification thresholds.
The ROC curve plots the true positive rate versus the false positive rate. As depicted in
Figures 14–17, it appears that the rate of false positive is much worse in the “simple” and
“multicast” classes than in the “benign” and “observe” classes.

Table 4. Metrics for the Random Forest Algorithm.

Class Precision Recall F1-Score Support

Benign 0.79 1.00 0.88 18,068
Simple 0.99 0.48 0.65 6453
Observe 0.89 0.82 0.85 5914
Multicast 0.83 0.68 0.74 5978
Accuracy 0.83 36,413
Macro Average 0.87 0.74 0.78 36,413
Weighted Average 0.85 0.83 0.81 36,413

Appl. Sci. 2023, 13, 7391 18 of 24

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 26

results. Randomness and repetition of samples in RF is common, meaning a single in-
stance may be used more than once due to recurrent sampling. In this research, the Ran-
dom Forest algorithm performs worse than the Naïve Byes. The overall accuracy is 83%.
The weighted precision, recall, and F1-score is 0.85, 0.83, and 0.81, respectively. Table 4.
shows the metrics for Random Forest Algorithm. The confusion matrix (Figure 13) shows
a significant misclassification for the simple amplification class as the model labeled
around half of the simple amplification samples as benign. The receiver operating charac-
teristic (ROC) curve has been used to figure out the Random Forest performance at all
classification thresholds. The ROC curve plots the true positive rate versus the false posi-
tive rate. As depicted in Figures 14–17, it appears that the rate of false positive is much
worse in the “simple” and “multicast” classes than in the “benign” and “observe” classes.

Table 4. Metrics for the Random Forest Algorithm.

Class Precision Recall F1-Score Support
Benign 0.79 1.00 0.88 18,068
Simple 0.99 0.48 0.65 6453
Observe 0.89 0.82 0.85 5914
Multicast 0.83 0.68 0.74 5978
Accuracy 0.83 36,413
Macro Average 0.87 0.74 0.78 36,413
Weighted Average 0.85 0.83 0.81 36,413

Figure 13. Confusion matrix for the Random Forest algorithm. Figure 13. Confusion matrix for the Random Forest algorithm.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 26

Figure 14. ROC curve for the “benign” class using RF algorithm.

Figure 15. ROC curve for the “simple” class using RF algorithm.

Figure 16. ROC curve for the “observe” class using RF algorithm.

Figure 14. ROC curve for the “benign” class using RF algorithm.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 26

Figure 14. ROC curve for the “benign” class using RF algorithm.

Figure 15. ROC curve for the “simple” class using RF algorithm.

Figure 16. ROC curve for the “observe” class using RF algorithm.

Figure 15. ROC curve for the “simple” class using RF algorithm.

Appl. Sci. 2023, 13, 7391 19 of 24

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 26

Figure 14. ROC curve for the “benign” class using RF algorithm.

Figure 15. ROC curve for the “simple” class using RF algorithm.

Figure 16. ROC curve for the “observe” class using RF algorithm. Figure 16. ROC curve for the “observe” class using RF algorithm.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 20 of 26

Figure 17. ROC curve for the “multicast” class using RF algorithm.

4.3. Gradient Boosting Classifier
The Gradient Boosting (GB) algorithm is a machine learning technique that is similar

to the decision trees in terms of the prediction model that relies on an ensemble of weak
prediction. Basically, it is like the Random Forest except that it fits the error in the tree
concurrently. The GB algorithm performs well with an accuracy of 99%. The weighted
average for precision, recall, and F1-score is 99% for all of them. Table 5 summarizes the
performance of the Gradient Boosting Classifier. The confusion matrix (Figure 18) shows
two samples of the simple amplification that are wrongly misclassified as observe and 126
samples wrongly misclassified as multicast. In terms of the ROC curve, the ROC shows a
less false positive rate for almost all the classes except 235 samples are wrongly misclassi-
fied as observe class instead of multicast class as depicted in Figures 19–22. Overall, this
model performs well in classifying the amplification attacks against the CoAP protocol as
depicted in Figure 23.

Table 5. Metrics for the Gradient Boosting Classifier.

Class Precision Recall F1-Score Support
Benign 1.00 1.00 1.00 18,036
Simple 1.00 1.00 1.00 6363
Observe 0.96 0.98 0.97 6053
Multicast 0.98 0.96 0.97 5961
Accuracy 0.99 36,413
Macro Average 0.98 0.98 0.98 36,413
Weighted Average 0.99 0.99 0.99 36,413

Figure 17. ROC curve for the “multicast” class using RF algorithm.

4.3. Gradient Boosting Classifier

The Gradient Boosting (GB) algorithm is a machine learning technique that is similar
to the decision trees in terms of the prediction model that relies on an ensemble of weak
prediction. Basically, it is like the Random Forest except that it fits the error in the tree
concurrently. The GB algorithm performs well with an accuracy of 99%. The weighted
average for precision, recall, and F1-score is 99% for all of them. Table 5 summarizes the
performance of the Gradient Boosting Classifier. The confusion matrix (Figure 18) shows
two samples of the simple amplification that are wrongly misclassified as observe and
126 samples wrongly misclassified as multicast. In terms of the ROC curve, the ROC shows a
less false positive rate for almost all the classes except 235 samples are wrongly misclassified
as observe class instead of multicast class as depicted in Figures 19–22. Overall, this model
performs well in classifying the amplification attacks against the CoAP protocol as depicted
in Figure 23.

Table 5. Metrics for the Gradient Boosting Classifier.

Class Precision Recall F1-Score Support

Benign 1.00 1.00 1.00 18,036
Simple 1.00 1.00 1.00 6363
Observe 0.96 0.98 0.97 6053
Multicast 0.98 0.96 0.97 5961
Accuracy 0.99 36,413
Macro Average 0.98 0.98 0.98 36,413
Weighted Average 0.99 0.99 0.99 36,413

Appl. Sci. 2023, 13, 7391 20 of 24Appl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 26

Figure 18. Confusion matrix for the Gradient Boosting Classifier.

Figure 19. ROC curve for the “benign” class using GB algorithm.

Figure 18. Confusion matrix for the Gradient Boosting Classifier.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 21 of 26

Figure 18. Confusion matrix for the Gradient Boosting Classifier.

Figure 19. ROC curve for the “benign” class using GB algorithm. Figure 19. ROC curve for the “benign” class using GB algorithm.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 22 of 26

Figure 20. ROC curve for the “simple” class using GB algorithm.

Figure 21. ROC curve for the “observe” class using GB algorithm.

Figure 22. ROC curve for the “multicast” class using GB algorithm.

Figure 20. ROC curve for the “simple” class using GB algorithm.

Appl. Sci. 2023, 13, 7391 21 of 24

Appl. Sci. 2023, 13, x FOR PEER REVIEW 22 of 26

Figure 20. ROC curve for the “simple” class using GB algorithm.

Figure 21. ROC curve for the “observe” class using GB algorithm.

Figure 22. ROC curve for the “multicast” class using GB algorithm.

Figure 21. ROC curve for the “observe” class using GB algorithm.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 22 of 26

Figure 20. ROC curve for the “simple” class using GB algorithm.

Figure 21. ROC curve for the “observe” class using GB algorithm.

Figure 22. ROC curve for the “multicast” class using GB algorithm. Figure 22. ROC curve for the “multicast” class using GB algorithm.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 23 of 26

Figure 23. Comparison of the accuracy performance between the classifiers.

5. Discussion
Compared to the related methods in the literature, this work focuses only on the

CoAP-level features, while recent methods rely on the lower layers to vet the CoAP mes-
sages. For example, Median et al. [20] proposed an anomaly-based method to vet the
CoAP messages while collecting features from different layers of the IoT network archi-
tecture such as transport layer (UDP packet features). The motivation behind this research
was to secure the CoAP in its vicinity based on the assumption that it is better to build the
detection system near to the source [6]. Moreover, this research discusses the DoS ampli-
fication attacks that are launched from and against CoAP victim clients, which is contrary
to the proposed methods for securing CoAP server from DoS and DDoS attacks. For in-
stance, Yizhen et al. [25] built a detection system that operates over the edge servers that
are closest to the IoT network. The datasets used in the related works [9–11] and [12] do
not contain the DoS amplification attacks derived from CoAP client attacking another vic-
tim CoAP client. In addition, new methods for securing CoAP in its perimeter are prom-
ising and facilitates accommodating the detection system near the source as in [38]. More-
over, new technologies such as Blockchain can help to detect the IoT threats [39].

6. Conclusions
This research defines the amplification attacks that target the CoAP protocol. The

main contribution of this work is to extend the state-of-the-art techniques for securing the
CoAP against DDoS attacks that are based on a binary classification and focus only on the
attacks launched from the CoAP client side to the CoAP server side. Moreover, this re-
search also carries out a multi-classification process for the DoS CoAP amplification at-
tacks. We consider the attacks that happened between a CoAP client against another vic-
tim client(s). After categorizing and implementing each of the DoS CoAP amplification
attacks, a dataset is created by simulating the attacks to overcome the lack of datasets that
contain the DoS CoAP amplification attacks. Then, three machine learning models were
tested for detecting and classifying each attack. The proposed model shows an impressive
result in detecting and classifying the malware with an accuracy of 99% using the Gradient
Boosting Classifier. In the future, implement the man-in-the-middle attack (MITM) spoof-
ing technique is introduced to focus only on the CoAP level packets, while MITM uses the
lower layers to initiate the DoS amplification against the CoAP in the application layer
level. Moreover, implementing the model in a real environment is recommended to test

Figure 23. Comparison of the accuracy performance between the classifiers.

Appl. Sci. 2023, 13, 7391 22 of 24

5. Discussion

Compared to the related methods in the literature, this work focuses only on the
CoAP-level features, while recent methods rely on the lower layers to vet the CoAP
messages. For example, Median et al. [20] proposed an anomaly-based method to vet
the CoAP messages while collecting features from different layers of the IoT network
architecture such as transport layer (UDP packet features). The motivation behind this
research was to secure the CoAP in its vicinity based on the assumption that it is better
to build the detection system near to the source [6]. Moreover, this research discusses the
DoS amplification attacks that are launched from and against CoAP victim clients, which is
contrary to the proposed methods for securing CoAP server from DoS and DDoS attacks.
For instance, Yizhen et al. [25] built a detection system that operates over the edge servers
that are closest to the IoT network. The datasets used in the related works [9–11] and [12]
do not contain the DoS amplification attacks derived from CoAP client attacking another
victim CoAP client. In addition, new methods for securing CoAP in its perimeter are
promising and facilitates accommodating the detection system near the source as in [38].
Moreover, new technologies such as Blockchain can help to detect the IoT threats [39].

6. Conclusions

This research defines the amplification attacks that target the CoAP protocol. The main
contribution of this work is to extend the state-of-the-art techniques for securing the
CoAP against DDoS attacks that are based on a binary classification and focus only on
the attacks launched from the CoAP client side to the CoAP server side. Moreover, this
research also carries out a multi-classification process for the DoS CoAP amplification
attacks. We consider the attacks that happened between a CoAP client against another
victim client(s). After categorizing and implementing each of the DoS CoAP amplification
attacks, a dataset is created by simulating the attacks to overcome the lack of datasets that
contain the DoS CoAP amplification attacks. Then, three machine learning models were
tested for detecting and classifying each attack. The proposed model shows an impressive
result in detecting and classifying the malware with an accuracy of 99% using the Gradient
Boosting Classifier. In the future, implement the man-in-the-middle attack (MITM) spoofing
technique is introduced to focus only on the CoAP level packets, while MITM uses the
lower layers to initiate the DoS amplification against the CoAP in the application layer
level. Moreover, implementing the model in a real environment is recommended to test its
efficiency. Extending the dataset and combining it with other DoS attacks that target the
CoAP will result in a comprehensive dataset for the research community for practicing and
experimenting with different models.

Author Contributions: Conceptualization, S.M.A. and A.A.-M.A.-G.; methodology, M.S.R. and M.R.;
software, S.M.A.; validation, S.M.A., A.A.-M.A.-G., and M.S.R.; formal analysis, S.M.A.; investigation,
A.A.-M.A.-G., M.S.R., and M.R.; resources, S.M.A.; data curation, S.M.A., A.A.-M.A.-G., and M.R.;
writing—original draft preparation, S.M.A.; writing—review and editing, S.M.A. and M.R.; visualization;
S.M.A.; funding acquisition, S.M.A.; supervision, A.A.-M.A.-G.; project administration, S.M.A. and M.R.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset is available upon request.

Acknowledgments: The authors gratefully acknowledge the Technical and Vocational Training Cor-
poration (TVTC) for their support in performing this research. Furthermore, we thank the supervisors
for all the support and direction provided by them to produce this research. The authors gratefully
acknowledge the support provided by the Faculty of Computing and Information Technology (FCIT),
King Abdulaziz University (KAU), Jeddah, Saudi Arabia.

Appl. Sci. 2023, 13, 7391 23 of 24

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

Abbreviations

IoT Internet of Things
CoAP Constrained Application Protocol
UDP User Datagram Protocol
TCP Transmission Control Protocol
DTLS Datagram Transport Layer Security
NoSec No Security mode
RPL Routing Protocol
6LoWPAN IPv6 over Low-power Wireless Personal Area Networks
LLN Low-Power and Lossy Networks
LSPWSN Lightweight and Secure Protocol for Wireless Sensor Networks
MQTT Message Queuing Telemetry Transport
DoS Denial-of-Service
DDoS Distributed Denial-of-Service
SDN Software Defined Networking
Nmap Network Mapping
VIF Variance Inflation Factor

References
1. Vishwakarma, R.; Jain, A.K. A survey of DDoS attacking techniques and defense mechanisms in the IoT network. Telecommun.

Syst. 2020, 73, 3–25. [CrossRef]
2. Syed, N.F. IoT-MQTT Based Denial of Service Attack Modelling and Detection. 2020. Available online: https://ro.ecu.edu.au/

theses/2303 (accessed on 5 May 2023).
3. Hussain, F.; Abbas, S.G.; Husnain, M.; Fayyaz, U.U.; Shahzad, F.; Shah, G.A. IoT DoS and DDoS attack detection using ResNet.

In Proceedings of the 2020 IEEE 23rd International Multitopic Conference (IN-MIC), Bahawalpur, Pakistan, 5–7 November 2020; pp. 1–6.
4. Ragab, M. Hybrid firefly particle swarm optimization algorithm for feature selection problems. Expert Syst. 2023. [CrossRef]
5. Alhaidari, F.A.; Alqahtani, E.J. Securing communication between fog computing and IoT using constrained application protocol

(coap): A survey. J. Commun. 2020, 15, 14–30. [CrossRef]
6. Bhardwaj, K.; Miranda, J.C.; Gavrilovska, A. Towards IoT-DDoS prevention using edge computing. In Proceedings of the

{USENIX} Workshop on Hot Topics in Edge Computing (HotEdge 18), Boston, MA, USA, 9 July 2018.
7. Shelby, Z.; Hartke, K.; Bormann, C. RFC 7252: The Constrained Application Protocol (CoAP); ACM, Inc.: New York, NY, USA, 2014.

[CrossRef]
8. Amplification Attacks Using the Constrained Application Protocol (CoAP). (n.d.). IETF Datatracker. Available online: https://

datatracker.ietf.org/doc/draft-irtf-t2trg-amplification-attacks/ (accessed on 5 May 2023).
9. Capossele, A.; Cervo, V.; De Cicco, G.; Petrioli, C. Security as a CoAP resource: An op-timized DTLS implementation for the IoT.

In Proceedings of the 2015 IEEE international conference on communications (ICC), London, UK, 8–12 June 2015; pp. 549–554.
10. Maleh, Y.; Ezzati, A.; Belaissaoui, M. An enhanced DTLS protocol for Internet of Things applications. In Proceedings

of the 2016 International Conference on Wireless Networks and Mobile Communications (WINCOM), Fez, Morocco,
26–29 October 2016; pp. 168–173.

11. Kumar, P.M.; Gandhi, U.D. Enhanced DTLS with CoAP-based authentication scheme for the internet of things in healthcare
application. J. Supercomput. 2020, 76, 3963–3983. [CrossRef]

12. Bhattacharjya, A.; Zhong, X.; Wang, J.; Li, X. CoAP—Application layer connection-less lightweight protocol for the Internet
of Things (IoT) and CoAP-IPSEC Security with DTLS Supporting CoAP. In Digital Twin Technologies and Smart Cities; Springer:
Berlin/Heidelberg, Germany, 2020; pp. 151–175.

13. Mathews, J.; Chatterjee, P.; Banik, S. CoAP-DoS: An IoT Network Intrusion Data Set. In Proceedings of the 2022 6th International
Conference on Cryptography Security and Privacy (CSP), Tianjin, China, 14–16 January 2022; pp. 91–95.

14. Granjal, J.; Silva, J.M.; Lourenço, N. Intrusion detection and prevention in CoAP wireless sensor networks using anomaly
detection. Sensors 2018, 18, 2445. [CrossRef] [PubMed]

15. Conti, M.; Kaliyar, P.; Lal, C. Censor: Cloud-enabled secure IoT architecture over SDN paradigm. Concurr. Comput. Pract. Exp.
2019, 31, e4978. [CrossRef]

16. Özçelik, M.; Chalabianloo, N.; Gür, G. Software-defined edge defense against IoT-based DDoS. In Proceedings of the 2017 IEEE
International Conference on Computer and Information Technology (CIT), Helsinki, Finland, 21–23 August 2017; pp. 308–313.

17. Yin, D.; Zhang, L.; Yang, K. A DDoS attack detection and mitigation with software-defined internet of things framework. IEEE
Access 2018, 6, 24694–24705. [CrossRef]

https://doi.org/10.1007/s11235-019-00599-z
https://ro.ecu.edu.au/theses/2303
https://ro.ecu.edu.au/theses/2303
https://doi.org/10.1111/exsy.13363
https://doi.org/10.12720/jcm.15.1.14-30
https://doi.org/10.17487/rfc7252
https://datatracker.ietf.org/doc/draft-irtf-t2trg-amplification-attacks/
https://datatracker.ietf.org/doc/draft-irtf-t2trg-amplification-attacks/
https://doi.org/10.1007/s11227-017-2169-5
https://doi.org/10.3390/s18082445
https://www.ncbi.nlm.nih.gov/pubmed/30060498
https://doi.org/10.1002/cpe.4978
https://doi.org/10.1109/ACCESS.2018.2831284

Appl. Sci. 2023, 13, 7391 24 of 24

18. Galeano-Brajones, J.; Carmona-Murillo, J.; Valenzuela-Valdés, J.F.; Luna-Valero, F. Detection and mitigation of dos and DDoS
attacks in IoT-based stateful Sdn: An experimental approach. Sensors 2020, 20, 816. [CrossRef] [PubMed]

19. Yang, Y.; Wang, J.; Zhai, B.; Liu, J. IoT-based DDoS attack detection and mitigation using the edge of sdn. In Proceedings of the In-
ternational Symposium on Cyberspace Safety and Security, Guangzhou, China, 1–3 December 2019; Springer: Berlin/Heidelberg,
Germany, 2019; pp. 3–17.

20. Meidan, Y.; Bohadana, M.; Mathov, Y.; Mirsky, Y.; Shabtai, A.; Breitenbacher, D.; Elovici, Y. N-baIoT—Network-based detection of
IoT botnet attacks using deep autoencoders. IEEE Pervasive Comput. 2018, 17, 12–22. [CrossRef]

21. Cvitić, I.; Peraković, D.; Periša, M.; Botica, M. Novel approach for detection of IoT generated DDoS traffic. Wirel. Netw. 2021,
27, 1573–1586. [CrossRef]

22. Vishwakarma, R.; Jain, A.K. A honeypot with machine learning-based detection framework for defending IoT based botnet DDoS
attacks. In Proceedings of the 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), Tirunelveli,
India, 23–25 April 2019; pp. 1019–1024.

23. Soe, Y.N.; Santosa, P.I.; Hartanto, R. DDoS attack detection based on simple ann with smote for IoT environment. In Proceedings of the
2019 Fourth International Conference on Informatics and Computing (ICIC), Semarang, Indonesia, 16–17 October 2019; pp. 1–5.

24. Dao, N.-N.; Phan, T.V.; Kim, J.; Bauschert, T.; Cho, S. Securing heterogeneous IoT with intelligent DDoS attack behavior learning.
arXiv 2017, arXiv:1711.06041. [CrossRef]

25. Jia, Y.; Zhong, F.; Alrawais, A.; Gong, B.; Cheng, X. Flowguard: An intelligent edge defense mechanism against IoT DDoS attacks.
IEEE Internet Things J. 2020, 7, 9552–9562. [CrossRef]

26. Dai, W.; Wan, P.; Qiang, W.; Yang, L.T.; Zou, D.; Jin, H.; Xu, S.; Huang, Z. Tnguard: Securing IoT oriented tenant networks based
on sdn. IEEE Internet Things J. 2018, 5, 1411–1423. [CrossRef]

27. Djouani, R.; Djouani, K.; Boutekkouk, F.; Sahbi, R. A security proposal for IoT integrated with sdn and cloud. In Proceedings of
the 2018 6th International Conference on Wireless Networks and Mobile Communications (WINCOM), Marrakesh, Morocco,
16–19 October 2018; pp. 1–5.

28. Muthanna, A.; A Ateya, A.; Khakimov, A.; Gudkova, I.; Abuarqoub, A.; Samouylov, K.; Koucheryavy, A. Secure and reliable IoT
networks using fog computing with software-defined networking and blockchain. J. Sens. Actuator Netw. 2019, 8, 15. [CrossRef]

29. Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the internet of
things for network forensic analytics: Bot-iot dataset. Future Gener. Comput. Syst. 2019, 100, 779–796. [CrossRef]

30. Sarhan, M.; Layeghy, S.; Moustafa, N.; Portmann, M. Netflow datasets for machine learn-ing-based network intrusion detection
systems. In Big Data Technologies and Applications: 10th EAI International Conference, BDTA 2020, and 13th EAI International Conference
on Wireless Internet, WiCON 2020, Virtual Event, December 11, 2020, Proceedings 10; Springer International Publishing: Cham,
Switzerland, 2020; pp. 117–135.

31. Ghazanfar, S.; Hussain, F.; Rehman, A.U.; Fayyaz, U.U.; Shahzad, F.; Shah, G.A. March. Iot-flock: An open-source framework for
iot traffic generation. In Proceedings of the 2020 International Conference on Emerging Trends in Smart Technologies (ICETST),
Karachi, Pakistan, 26–27 March 2020; pp. 1–6.

32. O. (n.d.). GitHub-Obgm/Libcoap: A CoAP (RFC 7252) Implementation in C. GitHub. Available online: https://github.com/
obgm/libcoap (accessed on 5 May 2023).

33. Coap-Resources NSE Script—Nmap Scripting Engine Documentation. (n.d.). Available online: https://nmap.org/nsedoc/
scripts/coap-resources.html (accessed on 5 May 2023).

34. Explore. (n.d.). Available online: https://www.shodan.io/explore (accessed on 5 May 2023).
35. (n.d.-a). GitHub-Eclipse-Californium/Californium: CoAP/DTLS Java Implementation. GitHub. Available online: https://github.

com/eclipse-californium/californium (accessed on 5 May 2023).
36. Wireshark Display Filter Reference: Constrained Application Protocol. (n.d.). Available online: https://www.wireshark.org/

docs/dfref/c/coap.html (accessed on 5 May 2023).
37. Shafiq, M.; Tian, Z.; Sun, Y.; Du, X.; Guizani, M. Selection of effective machine learning algorithm and Bot-IoT attacks traffic

identification for internet of things in smart city. Future Gener. Comput. Syst. 2020, 107, 433–442. [CrossRef]
38. Almeghlef, S.M.; AL-Ghamdi, A.A.-M.; Ramzan, M.S.; Ragab, M. Application Layer-Based Denial-of-Service Attacks Detection

against IoT-CoAP. Electronics 2023, 12, 2563. [CrossRef]
39. Katib, I.; Ragab, M. Blockchain-Assisted Hybrid Harris Hawks Optimization Based Deep DDoS Attack Detection in the IoT

Environment. Mathematics 2023, 11, 1887. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/s20030816
https://www.ncbi.nlm.nih.gov/pubmed/32028711
https://doi.org/10.1109/MPRV.2018.03367731
https://doi.org/10.1007/s11276-019-02043-1
https://doi.org/10.1109/JSYST.2021.3084199
https://doi.org/10.1109/JIOT.2020.2993782
https://doi.org/10.1109/JIOT.2018.2801317
https://doi.org/10.3390/jsan8010015
https://doi.org/10.1016/j.future.2019.05.041
https://github.com/obgm/libcoap
https://github.com/obgm/libcoap
https://nmap.org/nsedoc/scripts/coap-resources.html
https://nmap.org/nsedoc/scripts/coap-resources.html
https://www.shodan.io/explore
https://github.com/eclipse-californium/californium
https://github.com/eclipse-californium/californium
https://www.wireshark.org/docs/dfref/c/coap.html
https://www.wireshark.org/docs/dfref/c/coap.html
https://doi.org/10.1016/j.future.2020.02.017
https://doi.org/10.3390/electronics12122563
https://doi.org/10.3390/math11081887

	Introduction
	IoT-CoAP Overview
	CoAP Architecture
	CoAP Security Overview

	Related Work
	Proposed Defense Mechanisms for IoT Network
	SDN Platform for IoT Network Security
	Machine Learning and Deep Learning for IoT Network Security
	Cloud Platform for IoT Network Security

	Materials and Methods
	Dataset Creation
	Data Preprocessing
	Feature Selection
	Model Training

	Results and Discussions
	Naïve Byes
	Random Forest
	Gradient Boosting Classifier

	Discussion
	Conclusions
	References

