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Abstract: In the context of dam deformation monitoring, the prediction task is essentially a time
series prediction problem that involves non-stationarity and complex influencing factors. To enhance
the accuracy of predictions and address the challenges posed by high randomness and parameter
selection in LSTM models, a novel approach called sparrow search algorithm–long short-term
memory (SSA–LSTM) has been proposed for predicting the deformation of concrete dams. SSA–
LSTM combines the SSA optimization algorithm with LSTM to automatically optimize the model’s
parameters, thereby enhancing the prediction performance. Firstly, a concrete dam was used as an
example to preprocess the historical monitoring data by cleaning, normalizing, and denoising, and
due to the specificity of the data structure, multi-level denoising of abnormal data was performed.
Second, some of the data were used to train the model, and the hyperparameters of the long and
short-term memory neural network model (LSTM) were optimized by the SSA algorithm to better
match the input data with the network structure. Finally, high-precision prediction of concrete
dam deformation was carried out. The proposed model in this study significantly improves the
prediction accuracy in dam deformation forecasting and demonstrates effectiveness in long-term time
series deformation prediction. The model provides a reliable and efficient approach for evaluating
the long-term stability of dam structures, offering valuable insights for engineering practices and
decision-making.

Keywords: dam deformation prediction; sparrow search algorithm (SSA); long short-term memory
(LSTM); denoising

1. Introduction

Structural safety is vital for buildings to function properly, and ensuring structural
safety is crucial for the smooth operation of buildings. With the increasing number of
power stations and reservoirs in operation, the safe operation of reservoir dams is receiving
heightened attention. The safe operation of reservoir dams is not only important for
engineering safety but also directly impacts the safety of people’s lives and property [1–3].
Therefore, for reservoir dams, health diagnosis is a systematic and routine task. Along with
global climate change, the frequency of extreme weather, earthquakes, and other disasters
gradually increased, and water conservancy projects also face a series of new situations
beyond the design state. Coupled with many factors, such as the deterioration of materials
due to the growth of the building’s operational life and the decline in the stability of the
monitoring instrumentation, higher demands are placed on engineering safety [4–6]. Thus,
it is extremely important to fully understand the operational status of the dam to ensure
the safety of the dam project.

Dam deformation serves as a reliable and intuitive measure of the overall effect, mak-
ing it a crucial indicator for assessing and predicting the operational state of a dam. It often
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involves establishing a mathematical model that correlates dam deformation with vari-
ous influencing factors, enabling the determination of the dam’s health status [7]. Various
regression methods based on mathematical statistical models are the most widely used
research tools, but such methods cannot effectively solve the problem of multicollinear-
ity among the influencing factors and are easily disturbed by uncertainties, resulting in
poor model prediction accuracy, as the increasingly large and complex forms of prototype
observations require efficient information mining to meet monitoring needs. With the
continuous progress of dam safety monitoring theory and artificial intelligence technology,
support vector machines (SVMs), relevance vector machines (RVMs), extreme learning
machines (ELMs), and machine learning models based on various types of neural net-
works are applied in dam safety analysis and have shown unique advantages in solving
the monitoring model factor uncertainty and nonlinearity problems. At the same time,
they effectively improve the situation whereby the construction of water conservancy
information emphasizes monitoring instruments and information integration systems.
Vapnik’s [8] SVM supervised learning model is considered to have significant advantages
in nonlinear classification problems. Su et al. [9] used the SVM modeling method for the
first time in safety state analysis of hydraulic buildings. Gaussian process as a machine
language learning method has high adaptability in dealing with non-stationary data. Zhu
et al. [10] established a regression model of the Gaussian process of temperature, which
was effectively applied to water temperature prediction. In order to solve the problem
that conventional machine learning cannot consider the effect of historical deformation
behavior. Qu et al. [4] used the long short-term memory (LSTM) algorithm proposed by
Hochreiter [11] to establish a new dam deformation prediction model, which provides a
high-performance, simultaneous, and dynamic prediction of the deformation behavior of
concrete dams, extracting the time dimensional information from the target sequence. Dai
et al. [12] successfully addressed noise interference in monitoring sequences and enhanced
prediction accuracy by integrating chaos theory, wavelet theory, and a radial basis function
neural network. Wen et al. [13] conducted a comparative study between the LSTM-MA
and LSTM-PCA models and concluded that the LSTM-MA model is more convenient
and suitable for engineering applications. Tishya Manna et al. [14] compared multiple
models and found that their proposed RSFAS–bi-directional LSTM model had a shorter
execution time, which proved beneficial in determining parameters for different seasonal
decision processes. Li Xin et al. [15] constructed a new model based on iterative amplitude
adjusted Fourier transform (IAAFT) and bi-directional long short-term memory (BiLSTM)
for classifying mild cognitive impairment (MCI) and a healthy control (HC) group. They
discovered that BiLSTM was better suited for EEG classification tasks, and the proposed
model achieved higher accuracy standards. Tang Yunchao et al. [16] fused a U-net neural
network algorithm and improved image refinement algorithm to propose a method for
dam crack recognition and width calculation, which improves the recognition accuracy of
fine cracks without relying on a large number of training samples. Although the existing
models have greatly improved the prediction accuracy of deformation models, there are
still some limitations, such as the complex structure of long short-term memory (LSTM)
models, slow computation speed, and inability to iterate the global optimal information.

When establishing a predictive model based on neural networks, the model is in-
fluenced by various factors such as data frequency and complexity. It can only obtain a
relatively suitable parameter combination through extensive trials and constant debugging.
However, as the dataset grows, data complexity increases, neural network layers become
more numerous, and such an approach becomes increasingly inefficient. The sparrow
search algorithm (SSA) is a novel swarm intelligence optimization algorithm that simulates
sparrow foraging behavior and anti-predation behavior. It outperforms existing algorithms
in terms of search accuracy, convergence speed, stability, and avoidance of local optima.
In particular, it exhibits excellent global optimization capabilities in complex solving envi-
ronments. Relevant studies indicate that the SSA algorithm surpasses other optimization
algorithms such as the gray wolf optimizer (GWO), particle swarm optimization (PSO), and
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the gravitational search algorithm (GSA) [17–19]. LSTM models are more capable of han-
dling longer time series data and coping with gradient disappearance effectively and are
therefore among the preferred analytical models in dam monitoring data analysis [20,21].
Combining SSA algorithms with LSTM models will give better results in model prediction,
multi-objective optimization and parameter optimization. In the context of time series dam
monitoring data, quickly identifying optimal data through SSA can effectively address
convergence and prediction issues in monitoring models, reducing occurrences of non-
convergence and poor fitting. To fully explore and predict the temporal correlation of dam
monitoring data, this study combines the global optimization advantage of the sparrow
search algorithm (SSA) and the predictive power of the long short-term memory (LSTM)
neural network model. A hybrid model for dam deformation prediction based on SSA and
LSTM is proposed, which not only determines the optimal position of hyperparameters to
optimize the LSTM model but also ensures the accuracy of the model’s predictions.

2. LSTM and SSA Fundamentals
2.1. LSTM Principles

Most of the monitoring data generated during the operation of hydraulic buildings
are structured time series data. The LSTM model is an improved recurrent neural network
(RNN) model with special units (i.e., memory modules) added to the RNN, which is
compatible with processing time series data of dams [20–22]. While learning the current
information, the LSTM model also extracts the correlation of data with large span on the
time series, so as to reduce the rate of information loss and achieve lasting memory. Its
effective use in dam safety monitoring and good performance in longer time series data
prediction has been verified through long-term research. As shown in Figure 1, the LSTM
model structure consists of a forget gate ( f l

t ), input gate (il
t), and output gate (ol

t), and the
decision to update or discard data is made through these three components. First, the
forgetting gate decides with a certain probability whether to retain the state of the cell at the
previous moment and selects the proportion of the information to be retained by utilizing
the output (ht − 1) of the hidden layer from the previous time step and the input (xt) at the
current time step, and the two parameters are fed into the sigmoid activation function (σ)
to obtain the output of the forgetting gate ( ft). ft and σ are calculated as:

ft = σ
(

W f · (ht−1, xi) + b f

)
(1)

σ(x) = 1/
(
1− e−x) (2)

where W f is weight matrixes of the forget gate, b f is deviation vectors, and σ is the logistic
sigmoidal function. The input vector at time t and the output vector at time t− 1 ht−1 are
represented by xi and ht−1, respectively. The forget gate output ft regulates the extent to
which the unit information from the previous time step is forgotten, and its values are bound
within the range of [0, 1]. ft = 1 means complete retention and ft = 0 complete forgetting.

The role of the input gate is to filter the input at the current moment to determine
which information needs to be stored as new information in the cell state. The introduction
of new information is determined by both the sigmoid layer (σ) and the tanh layer (tanh),
where the sigmoid layer (σ) determines the degree of new information entry it and the tanh
layer (tanh) generates the amount of new information candidates ãt at needed for storage.
The relevant calculation formula is:

it = σ(Wi · (ht−1, xi) + bi) (3)

ãt = tanh(Wc · (ht−1, xi) + bc) (4)

tanh x =
(
1− e−x)/(1 + e−x) (5)
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where Wi, Wc are weight matrixes of sigmoid layer and tanh layer, respectively, and bi, bc
are deviation vectors of sigmoid layer and tanh layer, respectively.

The cell state is updated by combining the previous time step’s cell state and the
current time step’s input information through the forgetting and input gates. The new cell
status update formula is:

Ct = ftCt−1 + itat (6)

The output gate selectively extracts relevant information from the current cell state to
generate a new hidden layer. The output part of the current cell state is first determined by
the sigmoid function (σ), then the current cell state is processed by the tanh function (tanh),
and finally a new hidden layer ht is generated. The relevant calculation formula is:

ht = ot tanh Ct (7)

ot = σ(Wo · (ht−1, xi) + bo) (8)

where Wo is weight matrixes of the output gate, and b f is deviation vectors.
To summarize, the current hidden layer output ht and cell state Ct of the LSTM model

are influenced by the previous hidden layer output ht−1 and cell state Ct−1, as well as the
current input xt at the given moment. According to several references, the LSTM model
containing more than two hidden layers is constructed. This model can better train the
complex nonlinear relationship between dam deformation and impact factors [4,13].

Figure 1. Structure diagram of LSTM.

2.2. SSA Principles

The simple implementation and high search efficiency of the SSA algorithm make it
one of the most promising intelligent optimization algorithms currently available [19,23].
This algorithm divides the population of sparrows into finders and joiners, with finders
searching for food and providing food locations for other groups and joiners foraging by
following finders. Suppose a sparrow population consists of n sparrows and the dimension
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of the parameter to be optimized is d. The position matrix X represents the n sparrows in a
d-dimensional space and can be denoted as:

X =


x1

1 x2
1 · · · xd

1

x1
2 x2

2 · · · xd
2

...
...

...
...

x1
n x2

n · · · xd
n

 Gx =


g
([

x1
1 x2

1 · · · xd
1

])
g
([

x1
2 x2

2 · · · xd
2

])
...

g
([

x1
n x2

n · · · xd
n

])

 (9)

where n represents the number of sparrows, while d represents the dimension of the
variable being optimized, x is an individual sparrow, and the value of each row in Gx
represents the fitness value of the individual.

The joiner needs a large predation range to find better food, so in each iteration, the
joiners position is updated as:

Xiter +1
i,j =

{
Xi,j · exp

(
− i

α·itermax

)
R2 < ST

Xi,j + QL R2 ≥ ST
(10)

where iter represents the current iteration, and itermax is a constant representing the maxi-
mum number of iterations. Xi,j denotes the value of the jth dimension of the ith sparrow
at iteration t. α is a random number within the range [0, 1]. R2 and ST denote the alarm
value and safety threshold, respectively. L represents a matrix of size 1 × d, where each
element is set to 1. When R2 < ST, the surroundings are safe and the finder searches;
when R2 ≥ ST, there is danger, and the population abandons food and flies to other
safe areas.

Joiners find food by monitoring and following the most adapted finder, and when the
less adapted joiner does not get food, it makes a location change to get more food. The
location change formula is:

Xiter+1
i,j =


Q · exp

(
Xworst −Xiter

i,j
i2

)
i > n

2

Xiter+1
p +

∣∣∣Xi,j − Xiter+1
p

∣∣∣A+L otherwise
(11)

where Xp represents the best position currently occupied by the producer, while Xworst
represents the worst position. A is a matrix of size 1 × d, where the elements are randomly
assigned either 1 or −1, and A+ = AT(AAT)−1. i > n/2 indicates that the i-th accession
with a lower fitness value is hungry and unable to forage.

Once the proportion of sparrows capable of recognizing danger reaches 10% to 20%
of the total population, their initial positions are randomly generated. Afterwards, the
initialized finders and joiners engage in competition for food and update their positions
until the maximum number of iterations is reached. Finally, the sparrow with the highest
global fitness value is identified as the global optimal solution. The specific algorithm
flow chart is shown in Figure 2. The equation for updating the position of this class of
sparrows is:

Xiter +1
i,j =


Xiter

best + β
∣∣∣Xiter

i,j − Xiter
best

∣∣∣ fi < fg

Xiter
i,j + K

∣∣∣∣Xiter
i,j −Xiter

worst

( fi− fw)+ε

∣∣∣∣ fi = fg
(12)

where Xbest represents the current best position. The parameter β is a step control parameter,
which is a random number with a normal distribution having a mean of 0 and a variance
of 1. K takes values in the range [−1, 1] as a random number. fg and fw denote the current
global best and worst fitness values, respectively. Additionally, ε is a small constant used to
prevent zero-division errors.
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Figure 2. SSA algorithm flowchart.

3. SSA–LSTM Based Dam Deformation Prediction Model
3.1. Selection of Feature Factors and Model Parameters

According to the dam engineering principle, the displacement δ generated at any point
of the dam under the effect of water pressure and temperature can be divided into three
components according to the cause [24,25], which are the water pressure component (δH),
the temperature component (δT), and the aging component (δθ), with the formula:

δ = δH + δT + δθ (13)

Depending on the type of dam, the components of Formula (13) are slightly different,
and this paper focuses on the deformation of any point on the gravity dam. According
to the structural characteristics of the gravity dam and the actual condition of the project,
under the effect of the upstream reservoir, the horizontal displacement on the gravity dam is
linearly related to the water depth H, H2, H3, which can be expressed by Equation (14). The
temperature at any point within the concrete of the dam can be approximated by a periodic
function, assuming that the temperature displacement is linearly related to the concrete
temperature, and the harmonic sine function can be chosen as a factor, i.e., the displacement
caused by the temperature effect for a gravity dam can be expressed by Equation (15).
The aging component of the dam reflects the creep, plastic deformation of the concrete
and bedrock, as well as the compression deformation of the bedrock geological structure.
During normal operation, the time-dependent displacement of the dam typically exhibits
a sharp change at the beginning and gradually stabilizes towards the end. For concrete
gravity dams, the aging component can be expressed by Equation (16). In summary, there
are nine initial input variables to the model, namely H, H2, H3, sin 2πit/365, cos 2πit/365,
sin 4πit/365, cos 4πit/365, θ, and lnθ. The specific calculation formula is:

δH = ∑3
i=1 ai Hi (14)

δT = ∑2
i=1

(
bi sin 2πit

365 + ci cos 2πit
365

)
(15)

δθ = d1(θ − θ0) + d2(ln θ − ln θ0) (16)

where H represents the upstream reservoir level; ai, bi, ci, d1, and d2 represent the corre-
sponding linear coefficients; t is the number of days from the initial date of dam observation
to the current observation date; t0 is the number of days from the initial date of the dam
observation to the initial date of the modeling; θ is t/100; and θ0 is t0/100.

In LSTM networks, parameters such as training rate, number of training epochs
(Epoch), batch size, number of neurons in the first layer1 (units1) and number of neurons
in the first layer2 (units2) are the key indicators affecting the prediction accuracy, and these
parameters directly determine the network structure of the LSTM model. Therefore, the
SSA optimization algorithm is used to automatically optimize the five parameters of the
LSTM model. The training rate refers to the step size of the parameter update in each
iteration of the model. The size of the training rate affects the convergence speed and
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stability of the model, usually by back propagation, which calculates the gradient of each
parameter against the loss function and then updates the model parameters based on the
gradient and the training rate. The number of training epochs is the number of iterations
of the model over the entire training dataset. The size of the training epochs affects the
model’s ability to fit and generalize. In each iteration, the model performs a forward and
backward propagation using all the samples in the training dataset and then updates the
model parameters. Batch size is the number of samples processed simultaneously in a
training session. The size of the batch size also affects the training speed and performance
of the model, and it is usually appropriate to adjust the size of the batch size depending on
the test. The number of neurons is usually determined by the complexity of the model and
the complexity of the task, so it also needs to be sized depending on the different tests.

3.2. Prediction Accuracy Evaluation Index

To assess the accuracy of the predictions, this model employs three evaluation metrics:
mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean
square error (RMSE). These metrics are used comprehensively to provide a comprehensive
assessment of the model’s performance. The specific calculation formula is shown in
Equations (17)–(19).

MAE(yi, ŷ) = 1
m ∑m

1 |yi−ŷ| (17)

MAPE(yi, ŷ) = 1
m ∑m

1
|yi− ŷ|
|yi | (18)

RMSE(yi, ŷ) =
√

1
m ∑m

1 (yi−ŷ)2 (19)

where ŷ represents the predicted value of the i-th sample, yi represents the corresponding
true value, and m represents the total number of data to be predicted.

MAE reflects the actual situation of prediction error, MAPE evaluates the model
accuracy, and RMSE is used to evaluate the prediction accuracy. For example, smaller
values of the three parameters indicate higher accuracy of the prediction model and a better
prediction effect.

3.3. Implementation Framework

The SSA algorithm is used to determine the hyperparameters of the LSTM model,
after which the optimized hyperparameters are used for model training and prediction by
means of parameter transfer to optimize the performance of the model. This combination
can improve the prediction accuracy and stability and effectively handle the complex
temporal relationships in dam monitoring data. The implementation framework of the
SSA–LSTM-based dam deformation prediction model proposed in this paper is shown in
Figure 3. The specific process is as follows:

(1) Data preprocessing. To improve the predictive capability of the dam monitoring
model, it is necessary to clean and transform the prototype observation data in
advance. The first step is to clean up outliers and attempt to eliminate or reduce noise
interference in the data. If the cleaning effect does not meet the requirements, various
data denoising methods can be tested by considering the data structure. It may even
be necessary to combine multiple denoising methods to achieve the desired cleaning
effect. Commonly used data denoising methods include mean filtering, Gaussian
filtering, and wavelet denoising. The Symlet wavelet filtering denoising method
is based on the principle of wavelet analysis and threshold processing. It involves
wavelet decomposition and reconstruction of data to achieve noise removal. Gaussian
filtering, on the other hand, uses the shape of a Gaussian function to smooth the
data and reduce the effect of noise through weighted averaging of the neighborhood
around each data point. After clearing outliers, any missing parts of the data can
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be interpolated. Additionally, normalizing the data is necessary to standardize the
baseline values and dispersion of different features in the sample matrix. By following
these preprocessing steps, a more accurate and reliable database can be provided for
the dam monitoring model.

(2) Parameter optimization. Using the four equations mentioned in Section 2.2, the
discoverer, joiner, and vigilant positions are updated in the iterations, and the fitness
values are calculated. At the end of the final iteration, the global optimal sparrow
position is output, and the optimal parameters of the LSTM model are obtained.

(3) Model training and prediction. The training and prediction datasets are used to train
and predict the LSTM model, with hyperparameters determined by SSA. The accuracy
of the model’s predictions is assessed by comparison with the true values from the
test set. Additionally, the optimal hyperparameters are applied to different models for
visual comparison to further evaluate the model’s performance. Detailed descriptions
of each model’s prediction, along with model evaluation metrics, are considered to
identify the optimal model.

Figure 3. SSA–LSTM model prediction process.

4. Case Study
4.1. Project Overview

The object of this study is a 112 m high crushed concrete gravity dam with a crest
elevation of 153.00 m, a crest width of 6 m, and a total installed capacity of 193.2 MW.
The reservoir has a certified flood level of 151.88 m, a normal storage level of 150.00 m,
and a dead water level of 130.00 m. It has a total storage capacity of 717.3 million m3 and
consists of 10 dam sections. The main project started in September 2007 and was completed
in November 2011. The dam is equipped with tension lines for monitoring downstream
deformation at elevations of 153 m, 120 m, and 88 m in the corridor. Additionally, eight
inverted plumb line measurement points were installed at elevations of 153 m, 120 m,
88 m, 60 m, and 43 m on both the left and right banks of the dam. Tie lines were placed in
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the corridor at 153 m, 120 m, and 88 m for monitoring downstream deformation as well.
The tie line measurement points were numbered EX3-1a to EX3-5a in the corridor at 88 m
and EX2-1a to EX2-8a in the corridor at 120 m, as shown in Figure 4. Based on preliminary
observation of the monitoring data, it was noted that most of the instruments exhibited
larger displacements in the downstream direction. Therefore, the training and prediction
of the monitoring model focused mainly on downstream displacement deformation. For
this study, data from 5 May 2018 to 6 January 2022 were selected. Four measurement
points, namely EX3-4a, EX3-3a, EX2-7a, and EX2-6a, were chosen, each with approximately
180 actual raw data points. Data were measured approximately four times per month. The
training set comprised the first 80% of the data, while the remaining 20% was used as the
test set. The water level change process line during the selected time period and the actual
measured deformation change process line of the EX3-4 measurement point are presented
in Figure 5.

Figure 4. Dam deformation monitoring point layout program.

(a) Water Level Diagram (b) horizontal deformation process line(EX3-4a)

Figure 5. Reservoir water level and horizontal deformation process line.

4.2. Data Preprocessing Results

The deformation data of the four measurement points fluctuate greatly during the
selected time period, and there are some particularly obvious outliers, which are not
obvious with the use of a single denoising algorithm. Since each denoising algorithm
has its unique advantages and applicability range, two algorithms, Gaussian filtering
and Symlet wavelet filtering, were selected for overlapping denoising of the original data
through the comparison of multiple denoising algorithms in order to better reflect the
nature and characteristics of the monitoring data, which complement each other in terms of
data characteristics and noise types and obtain obvious denoising effects. Afterwards, the
missing data were interpolated using the “interpolate” linear function to further improve
the quality and accuracy of the data. The results of preprocessing the data of EX3-4
measurement points training part were compared with the original data curve as shown
in Figure 6. While denoising, the data were finally normalized in order to improve the
convergence rate of the algorithm.

4.3. SSA Algorithm Optimization Search Results

In this study, five parameters, namely training rate, number of training epochs (Epoch),
number of neurons in the first layer (units1), number of neurons in the second layer (units2),
and batch size, were used as hyperparameters for the optimization search. Combined with the
model framework established in the previous paper, the SSA algorithm was initialized, while
several experiments and optimization searches were conducted in the range of parameter
values. After several observations and experiments, the five parameters were defined as
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[0.001, 0.01], [50, 200], [1, 80], [20, 200], and [20, 200], and the sparrow population size was
set to 20, of which 10% were alerters and 20% were finders, with an alert threshold of
0.8 and 10 iterations. Due to the inconsistent data characteristics and data structure of each
measurement point, and even the different intrinsic components of the data, the LSTM
parameters are different in the optimization search. The results of the LSTM model parameter
ranges obtained after multiple search for the four measurement points are shown in Table 1.
Furthermore, considering the overall prediction effect of the model, the result of the search
was averaged by running the search process several times. The analysis and comparison of
the prediction effects of the averaged model found that it met the prediction requirements
of most measurement points and could obtain better prediction results, which ensured the
stability and reliability of the model. Therefore, the averaging of the search parameters with a
comprehensive optimization strategy is able to obtain reliable search parameters. In this study,
the model parameters obtained after averaging were applied in the later prediction analysis.
The results of the averaging of the taken parameters are shown in Table 1.

Figure 6. Denoising comparison chart.

Table 1. Hyperparameter optimization results.

Parameters Range Averaging

Training rate (lr) 0.001 0.001
Number of training epochs (Epoch) 100–112 106

Number of neurons in the first layer (units1) 104–130 169
Number of neurons in the first layer (units2) 244–256 250

batch_size 12–18 15

4.4. Contrast Analysis

The LSTM model was retrained, and predictions were made after its optimization using the
SSA algorithm to obtain the averaged optimal parameters. For comparison, the default LSTM
model was initially set with 100 neurons in the first layer1, 200 neurons in the second layer2,
20 training epochs, a batch size of 10, and a learning rate of 0.005. The non-optimized LSTM
model may suffer from issues such as gradient vanishing or exploding, but through multiple tests,
basic hyperparameters were determined, allowing for a visual comparison of the optimized and
non-optimized model’s predictions. Additionally, to provide further comparability, an arbitrary
neural network model was selected with 10 neurons in the first layer1, 20 neurons in the second
layer2, a maximum iteration of 300, a batch size of 20, and a learning rate of 0.005, and it was
compared with the optimized LSTM model and the non-optimized LSTM model. Although the
BP model’s sensitivity to time series data may not be ideal, it is one of the most common classical
neural network models, and comparing it with the optimized model can further demonstrate
the performance improvements. The three models were trained and tested on four selected data
points, and all three models use the same “Adam” optimizer. Table 2 presents a comparative
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performance analysis of the models based on various performance metrics. It is evident that the
SSA–LSTM model outperforms the LSTM and BP models, as indicated by the decreased EMAE,
RMSE, and MAPE values. The MAPE of the SSA–LSTM model ranges from 0.097% to 0.402%,
while the MAPE of the BP model ranges from 0.278% to 1.791%. By comparing these values,
the error reduction in prediction accuracy ranges from 0.181% to 1.389% when comparing with
the BP model and from 0.405% to 1.728% when comparing with the LSTM model. Specifically,
for the best overall fitting data point, EX3-4a, the SSA–LSTM model shows an improvement
of 0.787% in MAPE compared to the BP model and an improvement of 1.978% compared to
the LSTM model, demonstrating a better predictive performance. Furthermore, the MAE of
the EX3-4a data point is reduced by 6× 10−3 mm and 6.8× 10−3 mm when compared to the
other two models, effectively reducing prediction errors. The RMSE of the EX3-4a data point
is reduced by 0.206 mm and 0.905 mm when compared to the other two models, indicating
significant improvements in prediction accuracy by the proposed SSA–LSTM model, with all
performance indicators surpassing the other two models. The comparative analysis of the three
metrics shows that the overall model performance is stable without significant deviations. It can
be concluded that the SSA-optimized LSTM model enhances the model’s global optimization
capability, resulting in more reliable prediction results.

Table 2. Comparison of performance indicators of different measurement points.

Monitoring Point Model MAE (mm) RMSE (mm) MAPE (%)

EX3-4a
LSTM-SSA 5 × 10−5 0.027 0.152

BP 6.5 × 10−4 0.233 0.939
LSTM 7.3 × 10−4 0.932 2.130

EX3-3a
LSTM-SSA 4.1 × 10−5 0.05 0.402

BP 2.4 × 10−4 0.11 1.791
LSTM 4.0 × 10−4 0.496 1.173

EX2-7a
LSTM-SSA 1.3 × 10−4 0.207 0.097

BP 1.3 × 10−4 0.196 0.278
LSTM 1.4 × 10−4 0.011 0.670

EX2-6a
LSTM-SSA 1.2 × 10−4 0.191 0.376

BP 1.7 × 10−4 0.247 0.481
LSTM 1.9 × 10−4 0.250 0.502

To further verify the model accuracy, the training and prediction results were demon-
strated for four measurement points using three models. Figure 7 shows the fitting results
of the training and prediction models, and Figure 8 shows the residuals. The SSA–LSTM
model fits better than the other models, the horizontal displacement residuals are sig-
nificantly smaller than the other models, and the SSA–LSTM model almost completely
overlaps with the real curve in the prediction curve of EX3-4a measurement points, effec-
tively predicting the complex nonlinear variation trend between the dam deformation and
impact factors in the short term. The SSA–LSTM model is almost completely consistent with
the real curve, which effectively predicts the complex nonlinear variation trend between
dam deformation and impact factors in the short term and accurately grasps the variation
pattern, further illustrating the high efficiency of the model prediction performance of
the SSA algorithm for optimization. This validation shows that the dam monitoring data
analysis based on the artificial intelligence algorithm has a good prediction effect and can
be used in the later work of dam monitoring data analysis.



Appl. Sci. 2023, 13, 7375 12 of 15

(a)

(b)

(c)

(d)
Figure 7. Training and prediction results chart of different model. (a) EX3-4a. (b) EX3-3a. (c) EX2-7a.
(d) EX2-6a.
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(a)

(b)

(c)

(d)
Figure 8. Residual plots of different model. (a) EX3-4a. (b) EX3-3a. (c) EX2-7a. (d) EX2-6a.

5. Conclusions

In this study, three models, namely SSA–LSTM, BP, and LSTM, were used to construct
a deformation prediction model for four measurement points of a concrete gravity dam,
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and the following conclusions were drawn by comparing and analyzing the prediction and
residual effects:

(1) For the random outliers in the dam deformation monitoring data, multiple denoising
algorithm weights are used to complement each other in terms of data characteristics
and noise types, which can obtain a better denoising effect on the measured data and
obtain real data that can reflect the working state of the dam, effectively eliminating
the influence of coarse differences on the prediction accuracy of the model.

(2) Due to the different characteristics and intrinsic components of each measurement
point, the SSA optimization algorithm proposed the optimal range of parameters
and averaged parameter values, which can better obtain the characteristics of the
dam deformation sequence in time sequence and take into account the backward and
forward correlation of the input information, thus improving the prediction accuracy
of the LSTM model.

(3) The SSA–LSTM model established in this paper has higher prediction accuracy and
stability than the BP and LSTM models, and the modeling results are consistent
with the actual engineering situation, providing a new technique for predicting dam
deformation with high accuracy. The method is simple and efficient and can be applied
to the prediction analysis of other monitoring effects of dams with modification.

In the later stage, further improvements can be made to the optimization strategies
and solving methods of the SSA optimization algorithm itself to enhance the extraction
of features and temporal correlations in dam deformation sequences. Additionally, the
LSTM model can be combined with other neural network models to improve overall
predictive performance. Depending on the data structure and specific problem, leveraging
the strengths of different models can effectively address challenges in practical applications.
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