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Abstract: Real-time detection and timely treatment of floating objects on rivers, lakes and reservoirs
is very essential to protect water environment and maintain the safety of navigation and water
projects. YOLOv5, as a one-stage object detection solution, is very suitable for real-time floating object
detection. However, it suffers from the problem of the false detection and missed detection of floating
objects especially of small floating objects. In this paper, we conducts a series of improvements on
YOLOv5 to alleviate the problem. Concretely, we propose a hybrid attention mechanism supporting
the interaction among channels over a long distance while preserving the direct correspondence
between channels and their weights. Base on the attention mechanism, we propose an adaptive
feature extraction module to capture the feature information of objects in the case of the feature loss
caused by downsampling operations. Based on the attention mechanism and dilated encoder, we
construct a feature expression enhancement module to cover large objects while not losing small
objects in the same certain scale range. We also add a detection layer for small objects to improve the
performance in detecting small floating objects. The experiments on the data set verify the usefulness
and effectiveness of our work.

Keywords: floating objects; YOLOv5s; attention mechanism; dilated encoder; K-Mediods clustering

1. Introduction

Rivers, lakes and reservoirs play an important role in water supply and ecologi-
cal balance. However, floating objects often occur on the surface of rivers, lakes and
reservoirs [1–4]. The frequent floating objects can be divided into two categories, one is
plant-related floating objects consisting of floating algae and fallen branches and leaves,
and the other is garbage-related floating objects mainly including plastic products like
plastic bottles, bags and so on. Plant-related floating objects come from nature, while
garbage-related floating objects result from human activities. These floating objects can
damage water quality, affecting water supply and aquaculture, as well as posing a threat to
navigation and water projects [5,6]. Therefore, it is very important and necessary to detect
floating objects in time and treat them effectively.

Remote sensing image analysis has been utilized to detect floating objects. Com-
pared with remote sensing images, the images collected by handheld cameras [7] or air-
borne/shipborne cameras [8,9] are more accessible and suitable for detecting the small
objects floating on rivers, lakes and reservoirs. In recent years, deep learning has exhibited
a distinct advantage in floating object detection [10,11]. You Only Look Once (YOLO) [12]
is eminently suitable for real-time object detection considering its high detection speed.
YOLOv5 is an improved version of YOLO. It has attracted more and more attention and
applications because it emphasizes both accuracy and speed. YOLOv5 has been applied
to detect floating objects [13]. However, it suffers from the problem of the false detection
and missed detection of floating objects especially of small floating objects. The problem is
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mainly caused by the interference of background, the lack of obvious visual features and
the loss of features in downsampling operations.

Many efforts have been made to improve the performance of YOLOv5 in detecting
floating objects. Enhancing the feature extraction ability of YOLOv5 is one of those efforts.
A common way to enhance the ability is to apply attention mechanism. Yang et al. [14] and
Lin et al. [3] have adopted coordinate attention mechanism [15] and an attention layer in
the process of feature extracting, respectively. Optimizing the feature fusion of YOLOv5 is
another effort devoted to improving the performance in detecting floating objects. There
are multiple ways to optimize the feature fusion. For example, Yang et al. use bidirectional
feature pyramid network(BiFPN) [16] to replace the feature pyramid network(FPN) [17],
and Huang et al. [18] apply attention mechanism to the feature fusion. Moreover, the
introduction of a dedicated detection layer for small floating objects also helps to improve
the performance of YOLOv5 [18].

Besides floating object detection, a lot of work has been carried out to improve the
performance of YOLOv5 in other areas. Liu et al. [19] employed attention mechanism and
transformer to extract the features of objects in aerial images. Wan et al. [20] proposed
Shuffle-ECANet to extract the features of road damages. Ren et al. [21], Liu et al. [22]
and Wan et al. exploited BiFPN to optimize the feature fusion of foreign objects on air-
port runways, faces and road damages, respectively. Yan et al. [23] introduced wavelet
transform into PANet to deal with the feature loss problem of traffic signs after multiple
downsampling and pooling operations. Jiang et al. [24] and Liu et al. [19] added a small
target detection layer in their works. Although a lot of work has been devoted to improving
the performance of YOLOv5 in object detection, how to improve the accuracy of YOLOv5
in detecting floating objects especially small even extra small floating objects on rivers,
lakes and reservoirs in real time is still an open problem.

In this work, we propose an improved version of YOLOv5 to alleviate the problem.
The improved version is named as YOLOv5-FF. Yolov5-FF is implemented on the basis of
YOLOv5 by enhancing the feature extraction capability, strengthening the feature expres-
sion ability and introducing a special detection layer for small even extra small floating
objects. We also construct a floating object dataset, and generate the appropriate prior
boxes matching the dataset with the K-Mediods algorithm [25]. The main contributions of
this work are described as follows:

(1) a channel attention mechanism is proposed to support the interaction of channels in
different ways. It aims to supporting the interaction of channels over a long distance
while preserving the direct correspondence between channels and their weights.

(2) an adaptive feature extraction convolution module is proposed to focus on the feature
information of objects in the process of feature extraction. It has been applied to the
neck to alleviate the impact of the feature loss caused by downsampling operations.

(3) a feature expression enhancement module is proposed to expand the received fields
of feature maps without losing small objects. It has been applied to the neck to ensure
that a feature map can cover the objects of different scales in a certain range.

(4) a new detection layer is constructed by exploiting all the feature maps generated by
the backbone. It is designed specially for detecting small even extra small objects.

The rest of this paper is organized as follows. Section 2 introduces the theoretical
basis. Section 3 elaborates the improved YOLOv5. Section 4 discusses the experimental
results. After presenting the intelligent detection system we developed for floating objects
in Section 5, this paper is concluded in Section 6.

2. Theoretical Basis
2.1. YOLOv5

YOLOv5 has four variant versions. YOLOv5s [26] is the version with the simplest
network structure and the fastest detection speed. Hence, it is very suitable for real-
time object detection scenarios. YOLOv5s consists of backbone, neck, and prediction as
Figure 1 shows. The backbone uses convolution and pooling operations to continuously
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downsample a 640 × 640 input image to generate feature maps of four different scales. The
neck uses Feature Pyramid Network (FPN) and Pixel Aggregation Network (PAN) [27] to
fuse these three feature maps of the lowest resolutions so that each feature map contains
richer features. Prediction uses the fused feature maps to detect objects of different scales.

Figure 1. Structure of YOLOv5s.

2.2. Attention Mechanism

The Convolutional Block Attention Module (CBAM) [28] is a hybrid attention mech-
anism. It consists of a channel attention module and a spatial attention module. The
channel attention module is shown in Figure 2. According to the figure, it first performs
global maximum pooling and global average pooling separately on an input feature map-F
to generate two 1 × 1 × C feature maps. And then, it exploits multilayer perceptron
(MLP) to process these two feature maps. After fusing the output of MLP, it generates
a channel attention-Mc which is calculated according to Equation (1). In the equation, σ
depicts the sigmoid function, and FC

avg and FC
avg denote the feature maps generated by

average pooling operations and max pooling operations, respectively. W0(W0 ∈ RC/r×C)
and W1(W1 ∈ RC×C/r) are the MLP weights.

Figure 2. Channel attention module in CBAM.

MC(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))

= σ
(

W1

(
W0

(
FC

avg

))
+ W1

(
W0

(
FC

max

))) (1)

The spatial attention module first generates two H × W × 1 feature maps by per-
forming maximum pooling and average pooling separately on the output of the channel
attention module, and then combines these two feature maps into one H ×W × 2 feature
map. After that, it executes convolution operations on the H ×W × 2 feature map and
creates an H ×W × 1 feature map. It finally outputs a spatial attention by performing a
sigmoid operation on the H ×W × 1 feature map.
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2.3. Dilated Encoder

Feature pyramid improves the performance of object detection by assigning objects of
different scales to the corresponding detection layers. However, Chen et al. [29] found that
a feature map cannot cover large objects due to the limitation of receptive field. Although
downsampling can increase the receptive fields of feature maps to cover large objects, it
also leads to the loss of features of small objects, which improves the detection performance
of large objects but degrades the detection performance of small objects. To solve this
problem, Chen et al. proposed dilated encoder.

Dilated encoder consists of a projector and a residual block group. The projector first
performs a 1 × 1 convolution on an input feature map to reduce the number of channels,
and then executes a 3 × 3 convolution to enrich the contextual information of the feature
map. The residual block group iteratively performs the operations defined by residual
blocks four times. The first iteration takes the output of the projector as the input feature
map, while each of the other iterations takes the output of the previous iteration as its
input feature map. Each iteration processes an input feature map sequentially with a
1 × 1 convolution, a 3 × 3 convolution and a 1 × 1 convolution, and outputs a new feature
map with a larger receiver field. After that, it fuses the input feature map with the output
feature map with the BN layer and the ReLU function.

2.4. K-Mediods Clustering Algorithm

Generating appropriate prior boxes not only improves the accuracy of the prediction,
but also accelerates the convergence speed of the prediction. YOLOv5 utilizes the K-means
algorithm and the genetic algorithm to generate prior boxes. The K-means algorithm
takes the average of the points in a cluster as the centroid of the cluster. In the case of the
outliers in a dataset, the K-means algorithm generates the results with significant errors
from the actual results. Different from the K-means algorithm, the K-Mediods algorithm
takes the point with the smallest sum of the distances from each of the other points in the
same cluster as the centroid of the cluster, which indicates that outliers have less influence
on the K-Mediods algorithm. Therefore, the K-Mediods algorithm produces more stable
clustering results.

3. Improved Floating Object Detection Solution

In this section, we elaborate the improvements proposed to YOLOv5 to meet the
speed and accuracy requirements for real-time floating object detection. The improvements
include proposing a hybrid attention mechanism, constructing an adaptive feature extrac-
tion convolution module and a feature expression enhancement module, adding a special
detection layer for small floating objects and generating appropriate prior bounding boxes.
The hybrid attention mechanism and the adaptive feature extraction convolution module
are designed to highlight features of objects and suppress the interference of irrelevant
information. The feature expression enhancement module is proposed to enhance the
ability of each feature map to detect the objects in a certain scale range. The new detection
layer is constructed to detect small even extra small objects. Prior box selection algorithm
aims to select the prior boxes matching our dataset so as to improve the accuracy and
the convergence speed of prediction. All the improvements have been implemented in
YOLOv5-FF as Figure 3 shows.

3.1. A hybrid Attention Mechanism Supporting Two Ways of Channel Interaction

Both MLP and the 1-D convolution of K [30] can implement the interaction of channels.
Although MLP supports the interaction among channels over a long distance, the dimension
reduction operations it uses destroy the direct correspondence between channels and their
weights. The 1-D convolution of K can preserve the direct correspondence. However,
it only implements the interactions among k adjacent channels. In order to realize the
interaction among channels over a long distance while mitigating the damage to the direct
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correspondence between channels and weights, we propose a channel attention mechanism
based on MLP and the 1-D convolution of K.

Figure 3. Structure of YOLOv5-FF.

Figure 4 shows the details of the channel attention mechanism. According to the figure,
the channel attention mechanism exploits max pooling and average pooling separately to
process an input feature map. And then, it utilizes MLP and the 1-D convolution of K to
process the results of max pooling and the results of average pooling, respectively. After
that, it merges the output of MLP and the 1-D convolution of K, and generates channel
attention by applying sigmoid function to the merged results. We combine the proposed
channel attention mechanism and the spatial attention mechanism in CBAM, and propose
a hybrid attention mechanism named as H2C AM.

Figure 4. The channel attention module supporting channel interaction in two ways.

M
′
C(F) = σ(Conv 1D(AvgPool(F)) + MLP(MaxPool(F)))

= σ
(

Conv 1D
(

FC
Avg

)
+ W1

(
W0

(
FC

Max

))) (2)

Given a feature map F, M
′
C(F) is used to represent the corresponding channel attention.

M
′
C(F) is calculated according to Equation (2). In the equation, σ depicts the sigmoid

function, FC
avg and FC

avg separately denote the results of average pooling and max pooling,
and W0(W0 ∈ RC/r×C) and W1(W1 ∈ RC×C/r) represent the MLP weights. Based on the
Equation (2), we use Equation (3) to calculate the output of H2C AM, where MS denotes
the spatial attention of CBAM.

fH2C AM(F) = (M
′
C(F)× F)× (MS(M

′
C(F)× F)) (3)
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3.2. Adaptive Feature Extraction Convolution Module

The backbone generates multiple feature maps of different resolutions by performing
downsampling operations. However, downsampling results in the loss of some critical
features, e.g., position and color. The feature map of the lowest resolution loses the most
features. In the worst case, it could lose all the features of some objects. Unfortunately,
this feature map is the start point of the bottom-up feature fusion path in the neck. All
the feature maps generated in the bottom-up fusion path are based on these feature maps.
Therefore, they all suffer from the problem of feature loss. The top-down fusion path
in the neck also exploits downsampling operations to generate feature maps of different
resolutions, which also results in feature loss.

fFEB(Fi) = σS( fBN( f 1×1(Fi))) (4)

To reduce the impact of feature loss on detection results, we introduce an adaptive
feature extraction convolution module (AFECM) to enhance the expression ability of each
feature map. Figure 5 shows the structure of AFECM. AFECM consists of two blocks:
feature extraction block (FEB ) and enhance block (EnB). FEB is implemented based on CBS
in Figure 1. It includes a convolution layer, a batch normalization layer and an activation
layer. Given an input feature map Fi, the output of FEB is noted as fFEB(Fi) and calculated
according to Equation (4), where σS represents Silu activation function, and fBN denotes the
batch normalization function [31]. EnB is introduced to emphasize features and suppress
the interference of irrelevant information. It is implemented by H2C AM. The output of
AFECM is noted as fAFEC(Fi) and calculated according to Equation (5).

fAFEC(Fi) = fH2C AM( fFEB(Fi)) (5)

Figure 5. Structure of AFECM.

3.3. Feature Expression Enhancement Module

Although YOLOv5 constructs multiple feature maps to detect objects of different scales,
each feature map is still expected to detect the objects of the different scales in a certain
range. Downsampling is always utilized to expand the received field of a feature map to
cover the relatively large objects. However, it results in the loss of features. Comparing
with the relatively large objects, the features of the relatively small objects in the same scale
range are more possible to be lost. Once the critical features of these small objects are lost,
they could be probably missed by the corresponding feature map, which limits the ability
of the feature map to detect objects of the scales in a certain range. In order to enlarge the
received field to cover large objects without missing small objects, we introduce a feature
expression enhancement module (FEEM) in this work.
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fEBEF(Fi) = fFEB( fFEB(Fi)) + fFEB(Fi) (6)
fRE(Fi) = fu( fu( fu( fu(Fi))))

fu(Fi) = f 1×1( f 3×3( f 1×1( fp(Fi))))

fp(Fi) = f 3×3( f 1×1(Fi))

(7)

Figure 6 shows the structure of FEEM. According to the figure, FEEM consists of two
parts: enhanced feature extraction block (EFEB) and received field expansion block (RFEB).
EFEB is implemented based on CSP2_1 in Figure 1. Given an input feature map-Fi, it
generates a new feature map according to Equation (6), where fFEB is calculated according
to Equation (4). RFEB is implemented based on DE. It takes the output feature map of
EFEB as the input feature map, and generates a new feature map with a larger received
field according to Equation (7). Based on Equations (6) and (7), FEEM generates a feature
map with a stronger feature expression ability according to Equation (8).

fFEEM(Fi) = fRE( fEBEF(Fi)) (8)

Figure 6. Structure of FEEM.

3.4. Special Detection Layer for Small Objects

The backbone generates four feature maps of four different resolutions, that is,
160 × 160, 80 × 80, 40 × 40 and 20 × 20. The feature map of a high resolution con-
tains more details than the feature map of a low resolution. Details are very important for
detecting small objects. However, in the neck, only the three feature maps with the least
details are utilized, while the feature map with the most details, i.e., the feature map of the
highest resolution, is not used. To improve the performance in detecting small objects, we
exploit the feature map to create a detection layer special for small objects.

Ff inal = f 1×1( fFEEM( f+(F1, F
′′
2 ))) (9)

Here, we illustrate the detection layer with Figure 1. We upsample F
′
2 and merge the

upsampled result with F1 to create F
′
1. After that, we utilize a FEEM to process F

′
1 and

generate the final feature map for detecting small objects. Equation (9) shows the details to
calculate the final features. In the equation, F

′′
2 denotes the upsampling result of F

′
2, and f+

describes the concat operation. The area surrounded by the red dotted lines in Figure 3
shows the detection layer.
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3.5. Prior Box Generation with K-Mediods

The K-means algorithm is utilized by YOLOv5 to generate prior boxes. It calculates
the centroid of a cluster by averaging all the points in the same cluster, which inevitably
increases the error between the computed centroid and the true centroid, especially in the
presence of outliers. Unlike the K-means algorithm, the K-Mediods algorithm calculates the
sum of the distances between a point and all the other points in the same cluster, and takes
the point with the smallest sum of distances as the centroid of the cluster. It can provide
more stable results than the K-means algorithm. Therefore, it is exploited to replace the
K-means algorithm to generate prior boxes in this work. Table 1 shows the prior boxes
generated to match each feature map.

Table 1. Prior boxes generated by K-Mediods.

Feature Map Receptive Field Anchor

20 × 20 Large (105, 42), (114, 88), (209, 159)
40 × 40 Medium (25, 29), (48, 25), (52, 50)
80 × 80 Small (10, 6), (15, 10), (29, 15)

160 × 160 Tiny (3, 2), (4, 5), (7, 4)

4. Experiments

In this section, we present a detailed evaluation of YOLO-FF. First, we introduce the
experimental environments and evaluation metrics. And then, we describe the dataset
constructed in this work. Finally, we discuss the results of the ablation experiments and the
comparison experiments.

4.1. Experimental Setup

Environments. All experiments are conducted on the same server equipped with an Intel
Core i7-8700 CPU, an NVIDIA TITAN Xp GPU and 12 GB of memory. The server is deployed
with Ubuntu 20.04.4, Torch 1.11.0, CUDA 11.3 and Python 3.7 development environment.

AP =
∫ 1

0
P(R)dR =

N

∑
K=0

P(K)∆R(K) (10)

mAP =
1
C

C

∑
i=1

APi (11)

Recall =
TP

TP + FN
(12)

F1score =
2× P× Recall

P + Recall
(13)

P =
TP

TP + FP
(14)

Evaluation metrics. We use five evaluation metrics, namely Average Precision (AP),
mean Average Precision (mAP), Recall, F1 score, and Frame Per Second (FPS), to evaluate
YOLOv5-FF from the perspective of detection accuracy and detection speed. AP is calcu-
lated according to Equation (10), where R is the horizontal coordinate of the PR curve, P is
the vertical coordinate of the PR curve, K is the Kth point on the PR curve, N is the total
number of points on the PR curve, and P(K) represents the value of the vertical coordinate
of the Kth point on the PR curve. mAP can be obtained by averaging the APs for each
category as Equation (11) shows. In the equation, C is the total number of categories in the
dataset, and APi is the AP of the ith category. Recall is calculated according to Equation (12),
where TP and FN represent the number of the true positive objects and that of the false
negative objects, respectively. F1 score is calculated according to Equation (13), where P is
calculated according to Equation (14). In Equation (14), FP depicts the number of the false
positive objects.
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4.2. Dataset

We constructed a floating object dataset and named it as FODS-00-01. FODS-00-
01 consists of 6240 images totaling 12.9 GB. All these images were captured by handheld
devices with different resolutions or extracted from videos collected by the devices installed
near a local river and lake. Figure 7 shows the number of the images in various resolutions.
All these images contain a total of 21,891 floating objects in total. We calculated the
ratio of the total number of pixels per floating object to the total number of pixels in the
corresponding image, and depicted the cumulative distribution function ( CDF ) of the
ratio in Figure 8. According to the figure, about 20% of the floating objects occupy no more
than 0.0058% of the pixels in an image, which means that about 20% of the objects occupy
no more than 24 pixels if the resolutions of images are 640 × 640.

Figure 7. Number of the images in various resolutions.

Figure 8. CDF of the pixel ratio of a floating object to the corresponding image.

FODS-00-01 includes floating objects such as abandoned garbage, rootless aquatic
plants and deciduous leaves and branches. The abandoned garbage includes plastic bags,
plastic bottles, foam blocks and other plastic products. They were labeled as “white_trash”.
Rootless aquatic plants and deciduous leaves and branches were considered as the same
class of floating objects. They were labeled as “plant_mixture”. Figure 9 shows some of the
floating objects contained in FODS-00-01.
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(a) (b) (c)

(d) (e) (f)

Figure 9. Some floating objects in FODS-00-01. (a–e) include only white_trash floating objects or
plant_mixture floating objects, while (f) includes both classes of the floating objects.

In the following ablation experiments and comparison experiments, FODS-00-01 is
divided into training set, test set and validation set according to the ratio of 8:1:1.

4.3. Ablation Study

To analyze the effectiveness of the improvements in this work, we perform ablation
experiments and describe the results in Table 2. In the table, Model1 denotes the original
version of YOLOv5s, while Model2, Model3, and Model4 denote the variant version with a
new detection layer, the variant with a new detection layer and AFECM and the variant
with a new detection layer, AFECM and FEEM, respectively.

According to the experimental results, Model2 achieved a performance improvement
compared to Model1, indicating that the introduction of the new detection layer helped to
improve the performance of YOLOv5s in detecting floating objects. Model3 and Model4
also achieved performance improvements separately compared to Model2 and Model3,
which means the effectiveness of the collaboration of AFECM, FEEM and the detection
layer in improving the performance of YOLOv5s.

Model5 represents the variant with a new detection layer, AFECM, FEEM and the prior
box generation method with K-mediods algorithm. It achieved a performance improve-
ment comparing with Model4, which indicates the effectiveness of all the improvements
proposed in this work.

Table 2. Ablation results.

Models New Detection
Layer AFECM FEEM Prior Boxes with

K-Mediods Algorithm mAP(%)0.5 Recall F1-Score

Model1 × × × × 78.00 71.80 79.88
Model2 X × × × 78.30 76.90 80.61
Model3 X X × × 78.40 72.50 79.46
Model4 X X X × 78.80 74.90 80.24

Model5 (YOLO-FF) X X X X 80.80 79.60 82.35

4.4. Performance Comparison

We conduct experiments to evaluate the detection accuracy and speed of YOLOv5-FF
by comparing YOLOv5-FF with several important object detection solutions including
the two lightest versions of YOLOv8 [32], i.e., YOLOv8n and YOLOv8s, YOLOv7 [33],
YOLOv5 [26], YOLOX [34], YOLOv4 [35], YOLOv3 [36], SSD [37], Faster-RCNN [38] and
YOLOv5-CB [39]. Faster-RCNN is a two-stage detection solution, while all the other
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solutions are single-stage detection solutions. To ensure the fairness of training processes,
the training parameters of batch_size and the number of iterations are separately set to
16 and 300, while all the other training parameters are configured with their default values.

We evaluate the accuracy of YOLOv5-FF by four metrics, namely, AP, mAP, recall, and
F1 score, and record the values of the four metrics for each solution in Table 3. According
to the table, YOLOv5-FF detects plant_mixture objects with the highest AP. Compared with
YOLOv8n, YOLOv8s, YOLOv7, YOLOX, YOLOv5, YOLOv4, YOLOv3, SSD, Faster-CNN
and YOLOv5-CB, it improves the AP in detecting plant_mixture objects by 6.5%, 5.3%,
22.2%, 12.5%, 2.3%, 30.7%, 3.9%, 25.94%, 12.06% and 7.7%, respectively.

Table 3 also indicates that YOLOv5-FF detects white_trash objects in a higher AP
than detecting plant_mixture objects. In the scenario of detecting white_trash objects,
although YOLOv5-FF shows a slight degradation in AP compared to YOLOv3, it achieves
a significant improvement in AP over all the other solutions. Concretely, it improves the
AP in detecting white_trash objects by 16.9%, 16.6%, 9.2%, 8.2%, 3.2%, 22.7%, 52.42%, 50.3%
and 2.3% comparing with YOLOv8n, YOLOv8s, YOLOv7, YOLOX, YOLOv5, YOLOv4,
SSD, Faster-CNN and YOLOv5-CB, respectively.

Table 3. Detection accuracy comparison.

Models
AP

mAP(%)0.5 Recall F1-Score
Plant_Mixture White_Trash

YOLOv5-FF 72.90 88.70 80.80 79.60 82.35
YOLOv8n 66.40 71.80 69.10 61.60 70.09
YOLOv8s 67.60 72.10 69.80 62.40 72.32
YOLOv7 50.70 79.50 65.10 59.70 67.48
YOLOX 60.40 80.50 70.43 - -
YOLOv5 70.60 85.50 78.00 71.80 79.88
YOLOv4 42.20 66.00 54.10 64.70 45.00
YOLOv3 69.00 88.90 79.00 71.40 79.63

SSD 46.96 36.28 41.62 18.99 31.46
Faster-RCNN 60.84 38.4 49.62 54.52 60.32
YOLOv5-CB 65.2 86.4 75.8 70.10 78.31

AP can only evaluate the accuracy of YOLOV5-FF in detecting a certain type of
floating objects, while mAP has the ability to evaluate the accuracy of YOLOV5-FF in
detecting all types of floating objects. According to the results in Table 3, YOLOV5-FF
detects floating objects with the highest mAP in all the solutions. Compared to YOLOv8n,
YOLOv8s, YOLOv7, YOLOX, YOLOv5, YOLOv4, YOLOv3, SSD, Faster-CNN and YOLOv5-
CB, YOLOV5-FF improves the mAP in detecting floating objects by 11.7%, 11%, 15.7%,
10.37%, 2.8%, 26.7%, 1.8%, 39.18%, 31.18% and 5%, respectively.

Recall and F1 score are also utilized to evaluate the accuracy of YOLOv5-FF. Except
YOLOvX, all the other solutions obtain valid Recall and F1 score, and YOLOV5-FF ob-
tians the highest Recall and F1 score among all these solutions. Compared to YOLOv8n,
YOLOv8s, YOLOv7, YOLOv5, YOLOv4, YOLOv3, SSD, Faster-CNN and YOLOv5-CB,
YOLOV5-FF improves the Recall and F1 score in detecting floating objects by 18% and
12.26%, 17.2% and 10.03%, 19.9% and 14.87%, 7.8% and 2.47%, 14.9% and 37.35%, 8.2% and
2.72%, 60.61% and 50.89%, 25.08% and 22.03%, and 9.5% and 4.04%, respectively.

Figure 10 shows the detection results of different solutions on the same image in
FODS-00-01. Since most of the solutions performed better at detecting white_trash floating
objects than detecting plant_mixture floating objects, we chose the image only including
white_trash floating objects. According to the figure, only YOLOv5-FF can produce the
same results as the ground truth in the presence of large floating objects and small even
extra small floating objects. These results confirm the advantage of YOLOv5-FF over the
comparison solutions in detecting floating objects of different scales.
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(a) origin image (b) YOLOV5-FF (c) YOLOv8n (d) YOLOv8s

(e) YOLOv7 (f) YOLOX (g) YOLOv5 (h) YOLOv4

(i) YOLOv3 (j) SSD (k) Faster-RCNN (l) YOLOv5-CB

Figure 10. Detection result comparison of different solutions. YOLOv5-FF detected all the floating
objects correctly, while all the other solutions have missed detection.

According to the results of the above comparison, we think YOLOv5-FF can detect
floating objects with higher accuracy than the other solutions.

YOLOv5-FF is expected to detect floating objects in real time. Therefore, it is necessary
to evaluate the detection speed, which is performed by comparing the FPS metrics of each
of the solutions. Table 4 shows the FPS results of different solutions. According to the
results, YOLOv5-FF can detect 78 frames per second on average, which indicates that
YOLOv5-FF satisfies the requirement of detecting floating objects in real time.

Table 4. Detection speed comparison.

Models FPS

YOLOv5-FF 78
YOLOv8n 129
YOLOv8s 113
YOLOv7 26
YOLOX 36
YOLOv5 131
YOLOv4 36
YOLOv3 53

SSD 31
Faster-RCNN 24
YOLOv5-CB 120

5. PFWD—An Intelligent Detecting System Based on YOLOv5-FF

We have developed an intelligent detection system for floating objects on water
surfaces based on YOLOv5-FF and named it as PFWD. PFWD is programmed in C++. It
adopts a C/S architecture. The server side is implemented based on Opencv. It has the
ability to read frames from video files and cameras, and call trained models to detect and
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classify floating objects. The client side is implemented with Qt. It supports video preview
and detected result display.

PFWD can process multiple videos simultaneously in real-time depending on the
multi-threading technique. It utilizes tab widget as the container to preview multiple
videos and display the detected and classified results. A tab in the tab widget is used
to display the video data from a camera or a video file and the corresponding detected
results. Each tab is set up with a pop-up menu that provides options such as detection
on and off, warning on and off, etc. To enable the warning function, at least one warning
area should be drawn beforehand. As soon as the floating objects in the warning areas
exceed a predefined threshold, an immediate warning message is issued. Figure 11 shows
interface PFWD.

Figure 11. Interface and functions of PFWD.

6. Conclusions

In this work, we analyzed the performance problem of YOLOv5 in detecting floating
objects in real time. To alleviate the performance problem, we proposed several improve-
ments on YOLOv5. First, we proposed a hybrid attention mechanism which supported the
interaction of channels over a long distance while preserving the direct correspondence be-
tween channels and their weights. Second, we constructed a feature extraction convolution
module and a feature enhancement module based the proposed attention mechanism, and
applied the two modules to the neck to optimize feature fusion. Third, we added a special
detection layer to improve the performance in detecting small floating objects. Forth, we
designed a prior box generation method to obtain the prior boxes matched our dataset.
Finally, based on the above improvements, we implemented an intelligent floating object
detection system.
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