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Abstract: Chronic diseases are severe and life-threatening, and their accurate early diagnosis is
difficult. Machine-learning-based processes of data collected from the human body using wearable
sensors are a valid method currently usable for diagnosis. However, it is difficult for wearable sensor
systems to obtain high-quality and large amounts of data to meet the demands of diagnostic accuracy.
Furthermore, existing feature-learning methods do not deal with this problem well. To address the
above issues, a sample-pair envelope diamond autoencoder ensemble algorithm (SP_DFsaeLA) is
proposed. The proposed algorithm has four main components. Firstly, sample-pair envelope manifold
neighborhood concatenation mechanism (SP_EMNCM) is designed to find pairs of samples that are
close to each other in a manifold neighborhood. Secondly, the feature-embedding stacked sparse
autoencoder (FESSAE) is designed to extend features. Thirdly, a staged feature reduction mechanism
is designed to reduce redundancy in the extended features. Fourthly, the sample-pair-based model
and single-sample-based model are combined by weighted fusion. The proposed algorithm was
experimentally validated on nine datasets and compared with the latest algorithm. The experimental
results show that the algorithm is significantly better than existing representative algorithms and it
achieves the highest improvement of 22.77%, 21.03%, 24.5%, 27.89%, and 10.65% on five criteria over
the state-of-the-art methods.

Keywords: recognition of chronic disease; wearable sensor monitoring; sample-pair envelope
concatenation; envelope learning; diamond-like feature learning; feature-embedded stacked sparse
autoencoder; ensemble learning

1. Introduction

Chronic diseases have been the greatest threat to human life in recent decades and it
is vital to diagnose and predict them before reducing the rate of fatality [1]. As chronic
diseases are long-lasting and have slow progression, the lack of wearable sensor monitoring
system is currently limiting disease diagnosis, thus affecting timely treatment of early
patients. At present, wearable sensors can be used to continuously collect physiological
signals from patients fast and then the obtained data can be processed by machine learning
algorithms [2]. The structure of a machine-learning-based chronic disease recognition
system is shown in Figure 1. Firstly, physiological data from the human body are collected
by the wearable sensors. Then, they are stored in a chronic disease database by transmission.
After that, machine learning algorithms are used to process and analyze data to provide
diagnosis results back to the patient or hospital. For example, a continuous dataset of
vital signs is obtained using optical and pressure sensors, followed by feature extraction
and classification to obtain predictions for chronic diseases [3]. Data collected by a set of
sensors are fused and then fed into a classifier model for early prediction of heart disease [4].
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Currently, many wearable medical sensor systems enable data collection but do not provide
high-quality data and timely medical diagnosis. It is well known that feature learning in
machine learning has a large impact on recognition results. Therefore, the improvement of
feature learning in machine learning algorithms for chronic diseases is important. It is a
major motivation of this paper.
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Machine learning technology has enabled new tools for recognition of chronic diseases
because of its efficiency in data processing. Research on machine learning methods for
chronic disease recognition is focused on the following two areas: feature learning and
classifier design.

Feature learning is particularly important. Feature learning algorithms mainly in-
clude feature selection methods and feature extraction methods. Feature selection is the
procedure of selecting the best features from all the features available to distinguish be-
tween classes. Feature extraction converts features from a higher dimensional to a lower
dimensional space. Some techniques used for the diagnosis of chronic diseases include
linear discriminant analysis (LDA), generalized discriminant analysis (GDA), principal
component analysis (PCA), and so on.

Classifiers can discover hidden patterns in existing human physiological data. Com-
mon classifiers [5–10] include the radial basis function network (RBF Network), decision
tree (DT), naive Bayesian (NB), logistic regression (LR), functional tree (FT), logistic model
tree (LMT), support vector machine (SVM), k-nearest neighbor (KNN), multi-layer percep-
tron (MLP), random forest (RF), and recurrent neural network (RNN). Ekanayake et al. [11]
selected high-quality features and used 11 machine learning methods for model training:
KNN, support vector classifier (SVC) with a linear kernel, LR, decision tree classifier, SVC
with radial basis function (RBF) kernel, Gaussian NB, RF, a classical neural network, extra
trees classifier, Adaboost classifier, and extreme gradient boosting (XGB) classifier.

Motivation: These techniques developed by these studies improve the performance for
chronic disease detection. In particular, feature learning can provide high-quality features,
thus reducing classifier complexity and improving recognition performance. However, the
existing feature learning algorithms did not take into account the characteristics of datasets
on chronic diseases well, which typically are (1) small or medium-sized features and
samples, usually with no more than 35 features and no more than 1500 samples according
to the relevant literature; (2) complex correlation between features and class label (disease
status); and (3) a requirement for high recognition accuracy. Deep learning has powerful
feature extraction capabilities but cannot obtain sufficiently high quality of features in the
condition of small samples. Existing non-parameter or low-parameter feature reduction
algorithms, such as PCA and LDA, can considerably reduce the number of features in
small samples. However, they use the original features and do not work well when the
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original features have low quality. Therefore, it is important and challenging to obtain a
high-quality feature set in the case of small or medium-sized features and samples.

To address the above issues, this paper proposes a solution–sample-pair envelope dia-
mond autoencoder ensemble algorithm (SP_DFsaeLA). Initially, the sample-pair envelope
manifold neighborhood concatenation mechanism (SP_EMNCM) is designed to capture the
intrinsic structure of manifold neighboring samples. Then, the feature embedding stacked
sparse autoencoder (FESSAE) is designed to extend features. To eliminate redundancy
between the expanded features, a nonparametric staged feature reduction mechanism
is designed. The first stage uses the L1 regularized feature reduction algorithm and the
second stage uses an improved manifold dimensionality reduction algorithm to further
reduce the number of features. This mechanism combining SP_EMNCM, feature expansion,
and feature reduction is called the sample-pair diamond-like feature learning mechanism.
Figure 2a illustrates the flow of non-parameter or low-parameter feature reduction meth-
ods, such as PCA, LDA, LPP, and Relief. Figure 2b illustrates the flow of the deep feature
learning method. The proposed sample-pair diamond-like feature learning mechanism is
illustrated in Figure 2c.
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The main contributions of this article are as follows:

1. A diamond-like feature learning mechanism is proposed for the first time in this paper,
realizing feature expansion and reduction with a diamond topology. The traditional
feature learning algorithm has low adaptivity, and the deep learning algorithm is
dependent on a large number of samples. Both cannot meet the requirement for
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high accuracy from chronic disease recognition with low samples. The proposed
diamond-like feature learning mechanism includes feature expansion mechanism and
feature reduction mechanism. It first expands features to enhance the representation
capability, then reduces features to enhance the generalization capability, thereby
reducing the requirement for a large number of samples. In short, this mechanism
combines deep learning and traditional feature reduction methods’ advantages to-
gether and can better adapt to the data characteristics of chronic diseases and the
requirement for high recognition accuracy than the deep learning and traditional
feature reduction methods.

2. Existing feature learning methods only focus on the original sample itself and ignore
the neighborhood relationship of the sample. This leads to the samples’ features being
easily affected by noise because the features are reduced and the relative relationship
(e.g., manifold structure) is possibly being broken easily. The SP_EMNCM proposed
in this paper is used to mine the sample nearest manifold neighbor structure informa-
tion to form an envelope-like structure, thus enriching the feature information and
improving its representational capacity.

3. Existing deep stack autoencoders learn poor-quality features at small sample sizes
and have limited feature complementary fusion performance due to insufficient
complementarity. The FESSAE is designed as a lightweight deep network for feature
extraction of chronic sensing data. The FESSAE network introduces original features
into the training process and structure of the network to improve the complementary
nature between the higher quality feature and original feature, thus achieving high-
quality deep features in small and medium sample sizes.

4. Existing feature expansion methods do not consider both between-sample structural
information and between-feature complementary information in the expansion pro-
cess, which leads to the introduction of a large number of ineffective features. The
proposed feature expansion mechanism includes SP_EMNCM and FESSAE. It con-
siders both the manifold neighbor structure information between samples and the
feature complementarity, thereby improving original features richer and better.

5. Existing feature reduction methods do not adequately select and extract features for
chronic disease recognition. The proposed staged feature reduction mechanism in
this paper first selects the expanded features based on L1 regularization, then reduces
the dimensionality of the most important features based on manifold learning, thus
making the features more compact without losing useful information.

The following is the organization of the paper: Section 2 discuss some existing machine
learning methods for chronic disease recognition. The proposed method is mainly described
in Section 3. The experimental results are analyzed and reported in Section 4. Finally, in
Section 5, the main contributions and possible limitations are discussed.

2. Related Work

In this section, we first briefly discuss some existing machine learning methods for
chronic disease recognition and then discuss their advantages and disadvantages.

Feature learning refers to the process of automatically discovering and extracting
meaningful representations or features from original data. Ahmed H et al. [12] used Relief
and univariate feature selection to select great features from the dataset. Shrivas et al. [13]
introduced a union-based feature selection technique for predicting chronic kidney disease.
Chormunge et al. [14] realized a new relevance and cluster-based feature selection method
in order to reduce the dimensionality issue in data mining tasks. Sawhney et al. [15] used
penalization functions combined with the existing fitness function of the binary firefly
method to reduce the feature set and improve cancer classification accuracy. Jayaraman
et al. [16] have combined particle swarm optimization and gravitational cuckoo search
algorithms for managing the features that exist in heart disease classification systems. Paul
A K et al. [17] used weighted least squares to select effective attributes, and Rasitha [18]
used LDA to classify hypothyroid disease. Mohamed et al. [19] used PCA to reduce the
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dimensions of medical data of type 2 diabetes. Shahbazi et al. [20] used GDA to minimize
the number of features in the feature space and the overlap of samples. Lu H et al. [21]
developed a patient network and machine learning method that combines the attributes
of the patient network with sample features. Taghizadeh E et al. [22] chose Analysis of
Variance, mutual information, additional tree classifiers, logistic regression for feature
selection, and then used PCA again for feature reduction. Khan A et al. [23] understood the
pattern of complications of type 2 diabetes and then analyzed codes and their relationships
were then analyzed to construct a comorbidity network.

For classifier design, Ge et al. [24] researched a new multi-label neural network to
predict chronic diseases. El-baz et al. [25] proposed a combinative classifier based on
the KNN classifier in the prediction module of a hybrid intelligent system for breast
cancer tumor recognition. Polat [26] used the SVM, KNN, RF, and LDA methods to
classify medical databases after attribute weighting. Cheruku et al. [27] introduced a new
hybrid decision support to a bat optimization method and a system based on rough set
theory. In this hybrid system, the redundant feature is effectively reduced by generating
fuzzy rules. Maniruzzaman et al. [28] proposed a Gaussian-based classification model
for diabetes and investigated the performance of a Gaussian process using three kernels.
Alhassan and Zainon [29] presented a deep-belief network for heart disease diagnosis.
Abdollahi J et al. [30] used 10 machine learning algorithms as the basic algorithms in a
stack generalization algorithm to predict chronic diseases and implemented a hybrid meta-
algorithm for prediction. Fatan M [31] used advanced fusion techniques, deep learning
segmentation methods, and survival analysis to automatically segment tumor and predict
survival outcome in head-and-neck squamous cell carcinoma cancer. Rezaeijo S M [32]
used hierarchical clustering to improve the validity of mpMR image-based for prostate
tumor classifications.

In Table 1, the advantages and disadvantages of the method proposed in this paper
and previous methods are listed.

Table 1. Strengths and weaknesses of the proposed method and previous methods.

Method Strengths Weaknesses

Ahmed H et al. [12] Predicting heart disease with
real-time streaming data. Low adaptivity.

Shrivas et al. [13] High robustness and
computational efficiency.

Only focus on the original
sample itself and ignore the
neighborhood relationship of
the sample.

Chormunge et al. [14] Reduce the dimensionality
issue in data mining tasks.

Sensitive to large changes in
data distribution.

Sawhney et al. [15]
Effectively reducing the
number of features and saving
computational overhead.

Limited improvement in
classification accuracy.

Rasitha [18] Effective in reducing feature
dimensionality.

Not sensitive to non-Gaussian
distributed samples.

Mohamed et al. [19] Relatively simple and
computationally efficient.

Only original features are
operated on. When the quality
of the original feature is not
high, it does not work well.

El-baz et al. [25] High classification accuracy
and interpretability.

Increasing computational
complexity.

Maniruzzaman et al. [28] Robust to noise and outliers.

In the case of small sample
sizes, it is not possible to
obtain sufficiently high
feature quality.
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Table 1. Cont.

Method Strengths Weaknesses

Alhassan and Zainon [29]
Utilizes advanced deep
learning architecture for
feature learning.

High computational and
training resource
requirements.

SP_DFsaeLA
(proposed)

Both the manifold neighbor
structure information between
samples and the feature
complementarity are
considered, leading to a richer
features and better
improvement on accuracy.
More adapted to the data
characteristics of wearable
chronic diseases recognition.

Requires careful tuning of
hyperparameters.

In general, these researches have improved the performance of chronic disease detec-
tion. In particular, feature learning can provide high-quality features to improve recognition
performance. However, existing feature learning algorithms do not take into account the
characteristics of chronic disease datasets well. So, this paper proposed a diamond-like
feature learning mechanism, realizing feature expansion and reduction with a diamond
topology. It first expands features to enhance the representation capability, then reduces
features to enhance the generalization capability, thereby reducing the requirement for a
large number of samples.

3. Materials and Methods
3.1. Problem Formulation

Suppose a chronic disease dataset X = {(xi, yi)}N
i=1, where xi is ith sample and yi is

its corresponding label. The sample vector can be expressed as xi =
{

x(1)i , x(2)i , . . . , x(M)
i

}
,

where M is the number of features. Through feature learning operator (method) φ(·), xi
is transformed to x̂i = φ(xi) by feature learning. Traditional feature learning algorithms
reduce the dimensionality to obtain x̃i = φtr(xi) and then train the classifier C to obtain
prediction results. The traditional non-parameter or low-parameter feature learning algo-
rithms are poorly adaptive and their feature extraction capability is unsatisfactory when
the original features are complex. Deep learning method φd(·) is conducted to obtain
reduced dimensional features

^
x i = φd(xi). Deep learning has powerful feature extraction

capabilities but suffers from a small-sample-size problem. To solve this problem above, the
SP_DFsaeLA algorithm is proposed to find the optimal φ(·), thereby improving subsequent
classification accuracy.

3.2. Proposed Algorithm’s Framework

In this section, we introduce the proposed algorithm. Sample-pair diamond stacked
sparse autoencoder ensemble learning algorithm (SP_DFsaeLA) is developed to better
recognize chronic diseases according to the characteristics of chronic disease data. This
algorithm consists of four parts, as illustrated in Figure 3. First, the sample-pair envelope
manifold neighborhood concatenation mechanism (SP_EMNCM) is designed by searching
the manifold nearest samples in manifold neighborhood and generating sample pairs.
Second, the feature embedding stacked sparse autoencoder (FESSAE) is designed to extend
features. Third, a staged feature reduction mechanism is designed to remove the feature
redundancy. It includes L1 regularization and weighted locality preserving discriminant
projection (L1_wLPPD). This mechanism for achieving feature expansion followed by
reduction is called the diamond-like feature learning mechanism (DFLM), as show in
Figure 4. Fourth, a sample-pair-based model is constructed for SP_EMNCM and DFLM
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and a single-sample-based model is constructed for single sample and DELM. The sample-
pair-based model and single-sample-based model are combined by weighted fusion.
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The main symbols used in this paper are listed with their meanings in Table 2.

Table 2. Symbol description.

Symbol Meaning

X ∈ RN∗M Input data. N and M are sample size and feature size.
Y Sample label.

Xpair ∈ RN∗2M Generated sample pairs. N and 2M are the sample size and
feature size, respectively.

W1 Encoder’s weight.
W2 Decoder’s weight.

b1,b2 Bias vector of the autoencoder.
d Number of hidden units.

H ∈ RN∗d Hidden feature.
d(k) kth autoencoder number of hidden layer units.

β Coefficient for the sparsity regularization term.
λ Coefficient for the L2 weight regularization term.
ρ Sparse parameter.

ρ̂j
All training samples’ average activation value on the j-th
hidden neuron

X̂ ∈ RN∗M̂ Data after feature expansion.
Sφ

B Inter-class variance matrix.
Sφ

W Intra-class variance matrix.
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3.3. Sample-Pair Envelope Manifold Neighborhood Concatenation Mechanism (SP_EMNCM)

SP_EMNCM is designed to catch the inherent structure of similar manifold neighbor-
ing samples in the sample envelope space. It is known that geodesic distances can reveal
similar relationships between samples located on nonlinear manifolds. Therefore, we intro-
duce geodesic distance as the shortest distance into sample envelope space. The geodesic
distance between the target sample and all samples is calculated, where the sample with
the smallest geodesic distance is called the manifold nearest sample. Then, the original
samples are concatenated with the manifold nearest samples to generate sample pairs.

Given a multi-dimensional sample envelope space RN∗M, containing N sample vectors

{x1, x2, ..., xi, ..., xn}, each sample vector can be expressed as xi =
{

x(1)i , x(2)i , ..., , ..., x(m)
i

}
.

y(xi) is the class label of xi. de(xi, xj) denotes the Euclidean distance between xi and xj.
The process of searching for the manifold nearest sample is as follows:

1. Divide the sample by class label. If y(xi) = y(xj), xi and xj are divided into the same
sample set.

2. Determine the neighborhood relationships. Compute distance matrix Dl from neigh-
borhoods about each sample using Euclidean distance in the same class sample set.

3. Compute shortest distances. If the nearest neighbor graph has edge (xi, xj), the
shortest distance is de(xi, xj). Otherwise, dg

(
xi, xj

)
= +∞. The shortest distance is

defined as:

dg
(

xi, xj
)
=

{
de(xi, xj)

min{dg
(

xi, xj
)
, dg(xi, xk) + dg(xk, xj)

} I f xi and xj are neighors
others

Then, obtaining the shortest distance matrix Dg =
[
dg(xi, xj)]N×N . The sample with

the smallest distance value in each row of Dg is retained as the manifold nearest sample.
After the manifold nearest samples are searched, original samples Xi and the manifold

nearest samples Xj are concatenated into sample pairs Xpair =
[
Xi, Xj

]
. The sample pair

generation process is shown in the following pseudo code of Algorithm 1 and Figure 5.

Algorithm 1: Sample-pair envelope manifold neighborhood concatenation mechanism

Input: Dataset D = (X, Y)
1: Data set D classified by category according to sample labels
2: For i = 1 : N
3: Divide the sample by class label
4: Calculate shortest distances between this sample and all other samples of its class
5: Sort all shortest distances thus obtained
6: Select the manifold nearest sample xj to xi
7: Concatenate samples xi and xj to generate sample pair xpair
8: End For
Output: Dpair = (Xpair, Ypair)

SP_EMNCM is different from existing methods in that the latter are based on original
samples and do not consider structural information between samples. SP_EMNCM com-
bines the closest samples and extracts information between two samples by expanding the
features. Figure 6 illustrates the differences between the single-sample-based model and
the proposed sample-pair-based model. Seen from Figure 6, the sample-pair-based model
not only considers the original samples, but also the manifold neighborhood relationship
between the samples.
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3.4. Diamond-like Feature Learning Mechanism (DFLM)
3.4.1. FESSAE-Based Feature-Expansion Mechanism

In order to extend the features, an improved FESSAE was designed. FESSAE is a
lightweight deep network.

FESSAE is improved compared to a stacked sparse autoencoder (SSAE). The FESSAE
model is shown in Figure 7.

The key element of the FESSAE is the embedding combination between two adjacent
autoencoders. Let H(k) =

[
h(k)1 , h(k)2 , . . . , h(k)N

]
denote the k-th hidden layer’s output matrix

and X(O) ∈ RN∗M the sample input to the first layer (original input) of the FESSAE. Firstly,
the output of the previous hidden layer H(k−1) is added to the original input X(o) to obtain
combined feature as follows:

E(k) =
[
(X(o))T ; H(k−1)

]
(1)
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Then, the combined feature E(k) is transformed as follows:

L
(

E(k)
)
= GTE(k) (2)

where G is the appropriate sparse transformation matrix. The objective function of the
feature-embedded unit is defined as follows to filter partially redundant features:

max
G

tr(GTE(k)(E(k))TG)

s.t. ∑ Gi j = d
(3)

where d is the number of high-quality features retained in feature extraction. After process-
ing by the feature-embedded unit, the k-th autoencoder’s input data are L(E(k)).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 31 
 

Model

Single samples

cross-validation

Testing samples

Training samples

Results

Trained model

Sample pairs

SP_ENCM

Sample pair-  
based model

Single sample- 
based model

 
Figure 6. Sample-pair-based model and single-sample-based model. 

3.4. Diamond-Like Feature Learning Mechanism (DFLM) 
3.4.1. FESSAE-Based Feature-Expansion Mechanism 

In order to extend the features, an improved FESSAE was designed. FESSAE is a 
lightweight deep network.  

FESSAE is improved compared to a stacked sparse autoencoder (SSAE). The FESSAE 
model is shown in Figure 7. 

 

Samples

Class labels

Softmax 

··· …

…

L[·] L[·]

Feature-
embedded

unit

Feature-
embedded

unit

Output:
deep features

Input 

Fine tuning 
network

 
Figure 7. FESSAE model. 

The key element of the FESSAE is the embedding combination between two adjacent 
autoencoders. Let 𝐻( )  =  [ℎ( ), ℎ( ), … , ℎ( )] denote the k-th hidden layer’s output matrix 
and 𝑋( ) ∈ 𝑅 ∗  the sample input to the first layer (original input) of the FESSAE. Firstly, 
the output of the previous hidden layer 𝐻( ) is added to the original input 𝑋( ) to obtain 
combined feature as follows: 𝐸( )  =  [(𝑋( )) ; 𝐻( )] (1)

Then, the combined feature 𝐸( ) is transformed as follows: 𝐿 𝐸( )  = 𝐺 𝐸( ) (2)

where 𝑮 is the appropriate sparse transformation matrix. The objective function of the fea-
ture-embedded unit is defined as follows to filter partially redundant features: 

Figure 7. FESSAE model.

The output data of the hidden layer are divided into two groups, and the ratio of
the two groups of features is kept consistent with the ratio of the two types of data of the
encoder for that layer. The hidden-layer output features are expressed as H = [HΓ1, HΓ2].
The addition group sparsity constraint is represented as follows:

ψ(H) = ∑2
g=1 ||H

(k)
Γg
||1 (4)

After introducing embedding elements and sparse constraints in the structure during
training, the objective function of the k-th autoencoder (k > 1) of the FESSAE is expressed
as follows:

arg
θ

min 1
N ∑N

i=1 ||L(E(k))− L′(E(k))||2

+λ(||Wk1||2 + ||Wk2||2) + β(∑d(k)
j=1 KL(ρ|| ∧ρj) + ∑2

g=1 ||H
(k)
Γg
||1)

(5)

where L′(E(k)) is the k-th autoencoder’s output. λ and β denote the regularization coeffi-
cient and sparsity coefficient, respectively. ρ denotes the sparse parameter. The numerical

value increases monotonously as the difference between ρ and
∧
ρj increases.

The proposed FESSAE is outlined in Algorithm 2.



Appl. Sci. 2023, 13, 7322 11 of 29

Algorithm 2: FESSAE-based feature expansion algorithm

Input: Samples X(o)

1: Set parameters: λ, β, ρ, d(k), number of iterations.
2: Pretraining:
3: Train the first layer of FESSAE and extract the hidden layer’s output H(1)

4: For k = 2:K
5: Calculate transformation matrix
6: Calculate the output of the feature-embedded unit L(E(k)) by Equations (1)–(2)
7: Train k-th layer with objective function in Equation (5)
8: Extract output H(k) of k-th hidden layer
9: End For
10: End Pretraining
11: Stack hidden layers and softmax layer
12: Fine-tune entire network
13: Get the output of the last hidden layer as a deep features
Output: Deep features

3.4.2. L1_wLPPD-Based Feature Reduction Mechanism

The feature-reduction mechanism consists of two stages: L1 regularization and
weighted locality preserving discriminant projection.

The first stage used is L1 regularization, a common feature selection method, which
obtains a sparse feature vector. The optimization objective function is as follows:

argmin
θ

∑N
i=1 (yi −∑M̂

m=1 θm
∧

xim)
2 + α∑M̂

m=1 |θm| (6)

where the first term is original error term and the second is L1 regularization term. α denotes
regularization factor. θm is m-th feature’s regression coefficient. Equation (6) is optimized
using the proximal gradient-descent method, and each gradient-descent iteration is:

θ(k+1) = argmin
θ

C
2
||θ − z||22 + α||θ||1 (7)

where z = θ(k) − C−1∇ f (θ(k)) and f
(

θ(k)
)
= ∑N

i=1 (yi − (θ(k))T ∧xi)
2. C is a constant greater

than zero, and the components of θ =
[
θ1, θ2, .., θm, .., θ(M̂)

]
are independent of each other.

The solution of the L1 regular expression obtained using the iterative soft-threshold function
can be expressed as follows:

θ(k+1) = so f tαC−1(θ(k) − C−1∇ f (θ(k))) = sign(θ(k))(|θ(k)| − α

C
) (8)

where sign(·) is a symbolic function. The corresponding non-zero component features in
θ(k+1) are selected as the feature subset, that is, features selected by L1 regularization.

The second-stage feature reduction is based on a weighted locality-preserving discrim-

inant projection (wLPPD).
∼
X denotes the samples after the first stage of reduction, p is the

total number of classes. After sampling, the total number of samples is Ns and the number
of samples for the p-th class is Nsp. The inter-class variance of the Ns nearest-neighbor

samples of the local sample center of the sample set
∼
X is S∅

B , defined as:

Sφ
B = ∑P

p=1 ∆p
B

(
∆p

B

)T
(9)

where ∆p
B is the difference between the local sample center of the p-th class and the local

sample center, that is, ∆p
B = (1/Nsp)∑

Nsp
i=1
∼
x i

(p)
− (1/Ns)∑Ns

i=1
∼
x i. The intra-class variance
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matrix of the Nsp nearest-neighbor samples of the class center of the p-th class sample is
S∅

W , defined as:

Sφ
W = ∑P

p=1 ∑Nsp
i=1 ∆p

i (∆
p

i )
T

(10)

where ∆p
i is the difference between the i-th sample of class p and the local sample class

center of class p, that is, ∆p
i =

∼
x i

(p)
− (1/Nsp)∑

Nsp
i=1
∼
x i

(p)
.

The regularization term is as follows:

J(A) = ∑N
i=1 ∑N

j=1

∥∥∥AT∼x i − AT∼x j

∥∥∥2
Wi j

= Tr(∑N
i=1 ∑N

j=1 (2AT∼x i
∼
x i

T
A− 2AT∼x i

∼
x j

T
A)Wi j)

= Tr(∑N
i=1 AT∼x iDii

∼
x i

T
A−∑N

i=1 ∑N
j=1 Wi j AT∼x i

∼
x j

T
A)

(11)

where Dii = ∑N
j=1 Wij is the diagonal matrix. W is the affinity matrix. Equation (11) also

can be written as Tr(AT
∼
X(D −W)

∼
X

T
A). Setting L = D −W, the locality preservation

regularization term can be expressed as:

J(A) = Tr(AT
∼
XL
∼
X

T
A) (12)

Using Equations (9)–(12), the proposed wLPPD can be expressed as:

min
A

Tr
(

ATSφ
W A

)
s.t.Tr

(
ATSφ

B A
)
− γJ(A) = κ I

(13)

where κ is a constant and γ represents the Lagrange penalty factor. Through adding the
Lagrange multiplier η, Equation (13) is rewritten as:

L(A, η) = Tr
(

ATSφ
W A

)
− η(Tr

(
ATSφ

B A
)
− γJ(A)− κ I) (14)

Taking the partial derivative of Equation (14) and setting ∂L(A,η)
∂A = 0, the result is:

Sφ
W A

(Sφ
B − γ

∼
XL
∼
X

T
)

= ηA (15)

After obtaining the projection matrix A, we take the top l eigenvectors corresponding
to the biggest eigenvalues of A to obtain projection matrix Al . Using the LPPD in each
subspace separately, we can obtain T projection matrices:A1

l ,A2
l . . . ,AT

l . The final projection
matrix AE

l is obtained through the weighted integration of At
l in each subspace projection

transformation.
In addition, an ensemble learning method is adopted for the fusion mechanism. In

particular, the sample sampling rate is set to δS and the sampling rate of the features to
δF, and the mixed-feature dataset is sampled according to the bagging strategy q times,
forming q subsets. The proposed L1_wLPPD staged feature-reduction mechanism is then
summarized in Algorithm 3.
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Algorithm 3: L1_wLPPD-based feature-reduction algorithm

Input: Data X̂ after feature expansion
1: First-stage feature reduction
2: Hybrid feature selection for X̂ based on Equations (6)–(8)
3: End first-stage feature reduction
4: Second-stage feature reduction
5: δS = 0.7, δF = 0.5.
6: Sample q times to form q subsets.
7: Train q-th SVM:
8: For i = 1:T
9: Choose ns train samples randomly
10: Calculate scatter matrixes S∅B and S∅W using Equations (9)–(10)
11: Calculate diagonal matrix D and the Laplacian matrix L
12: Solve mapping matrix A using Equation (15)
13: End For
14: Obtain final mapping matrix AE

l
15: Map q-th subset to train SVM.
16: End second-stage feature reduction
17: Obtain the ultimate class label
Output: Predicted result

4. Experimental Results and Analysis

Three sets of experiments are carried out to verify the effectiveness of the algorithm in
this paper. The first experiment is based on the ablation method to verify the effectiveness
of the SP_EMNCM and DFLM in the algorithm and to verify the innovation points of
the algorithm. The second experiment compares the proposed algorithm with existing
representative feature learning algorithms, representative autoencoders, and the state-of-
the-art algorithms to verify the proposed methods. The third experiment analyzes the
effects of some important parameters including coefficient for the L2 weight regularization,
sparsity regularization coefficient and sparse parameter, the type of classifier, and the
number of classifiers.

4.1. Experimental Conditions

The proposed algorithm’s performance is tested on several relevant datasets. Two
publicly available chronic disease datasets (Pima Indians Diabetes and Statlog Heart Data
Set) are selected for the experiments; they include data on cardiovascular diseases and
diabetes, which are the two major chronic diseases [33,34]. The basic information on the
datasets is presented in Table 3. The Statlog Heart Data Set and Pima Indians Diabetes are
representative datasets for diabetes and heart disease, respectively. In addition, Table 3
includes some other chronic diseases, including Parkinson’s and Alzheimer’s.

We set three AEs in the proposed FESSAE. The number of hidden units (neurons
in hidden layer) is selected by considering dimensional range of the feature vectors
for different datasets, and a grid search is used to find the best values. The adjustable
parameters in the proposed FESSAE include coefficient for regularization and sparsity
parameters. The relevant parameters are listed in Table 4, including three parameters of
tuned FESSAE objective function and the number of FESSAE hidden layer’s neural units
for each dataset.

In the experiments, the K-fold cross-validation technique was employed to evaluate
the performance of the SP_DFsaeLA. The programing tool is R2018b MATLAB.
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Table 3. Basic information of datasets used in study.

Dataset Instances Attributes Class Relevant Paper

Statlog Heart Data Set (Heart) 270 13 2 Reference [35]
Pima Indians Diabetes Data Set

(PID) 768 8 2 Reference [36]

Parkinson Speech Dataset (PD) 1040 26 2 Reference [37]
Alzheimer’s disease (AD) 90 32 3 Reference [38]

Breast Cancer Wisconsin Original
(Wisconsin) 683 9 2 Reference [39]

Maxlettle Parkinson Dataset
(Maxlettle) 195 22 2 Reference [40]

Statlog Vehicle Silhouettes (Vehicle) 846 18 4 Reference [41]
Breast Cancer Wisconsin

Diagnostic(WDBC) 569 30 2 Reference [42]

lung cancer 32 56 3 Reference [43]

Table 4. Parameter information.

Parameter Parameter Meaning Parameter Value

λ
Coefficient for the L2 weight

regularization term.
1 × 10−4, 1 × 10−3,

1 × 10−2

β
Coefficient for the sparsity

regularization term. 1, 2, 3, 4, 5, 6

ρ Sparse parameter. [0.02, 0.1]

PID hidden units Number of FESSAE hidden-layer units in
PID dataset 120–40–16

Maxlettle hidden units Number of FESSAE hidden-layer units in
Maxlettle dataset 160–80–42

Heart hidden units Number of FESSAE hidden-layer units in
Heart dataset 100–60–24

PD hidden units Number of FESSAE hidden-layer units in
PD dataset 200–100–48

AD hidden units Number of FESSAE hidden-layer units in
AD dataset 240–120–60

Wisconsin hidden units Number of FESSAE hidden-layer units in
Wisconsin dataset 120–40–16

Vehicle hidden units Number of FESSAE hidden-layer units in
Vehicle dataset 120–60–32

WDBC hidden units Number of FESSAE hidden-layer units in
WDBC dataset 200–110–60

lung cancer hidden units Number of FESSAE hidden-layer units in
lung cancer dataset 424–210–106

4.2. Evaluation Criteria

Accuracy (Acc), sensitivity (Sens), precision (Prec), F1_score, and specificity (Spec),
which are calculated from the confusion matrix, are chosen as metrics to assess the effec-
tiveness of the model. The confusion matrix or error matrix is a useful tool for visualizing
the classifier’s whole performance. These datasets used in this study are multi-classified
and binary, with a 2 × 2 confusion matrix for binary and n × n confusion matrix for multi-
classification. The Acc, Sen, Pre, Spec, and F1_score of each category can be expressed
as follows:

Acc =
TP + TN

TP + FP + FN + TN
(16)

Prec =
TP

TP + FP
(17)
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Sens =
TP

TP + FN
(18)

Spec =
TN

TN + FP
(19)

F1score =
2(Prec× Sens)

Prec + Sens
(20)

4.3. Ablation Experiments
4.3.1. Effectiveness Analysis of SP_EMNCM

In order to validate the efficacy of SP_EMNCM, we conducted a comparative analysis
between single-sample-based model and the sample-pair-based model. The two models
are illustrated in Figure 6. To eliminate the influence of other factors, such as different
feature learning methods, the two methods are compared directly on the SVM and RF
classifiers. Within Tables 5–10, the designation “SS” refers to a single-sample-based model,
while “PS” refers to sample-pair-based model. The results are compared in Tables 5 and 6.
Tables 7 and 8 compare the results obtained with the LDA. Results with the FESSAE are
compared in Tables 9 and 10.

Table 5. Comparison of sample-pair-based and single-sample-based methods on SVM.

Dataset Method Acc (%) Prec (%) Sens (%) Spec (%) F1_Score
(%)

PID
SS 74.61 77.09 70.5 78.72 73.44
PS 74.29 79.30 79.48 79.11 79.32

Maxlettle
SS 80.25 83.56 76.89 83.56 79.56
PS 81.24 84.37 79.33 83.33 81.02

Heart
SS 82.92 87.24 77.50 88.33 81.94
PS 91.67 94.19 89.17 94.17 91.54

PD
SS 65.58 64.99 67.31 63.84 66.02
PS 68.94 69.84 67.31 70.58 68.29

AD
SS 46.67 48.52 46.67 73.33 47.55
PS 58.89 65.78 58.89 79.44 62.07

Wisconsin
SS 96.86 95.54 98.32 95.40 96.91
PS 97.70 98.31 97.07 98.32 97.67

Vehicle
SS 82.16 82.23 82.15 94.04 82.19
PS 84.65 84.76 84.65 94.90 84.71

WDBC
SS 96.94 98.61 95.32 98.59 96.87
PS 99.06 100 98.11 100 99.04

lung
cancer

SS 52.38 41.67 33.33 63.33 37.04
PS 91.75 87.78 91.11 93.67 89.33

Table 6. Comparison of sample-pair-based and single-sample-based methods on RF.

Dataset Method Acc (%) Prec (%) Sens (%) Spec (%) F1_Score
(%)

PID
SS 79.47 80.52 77.98 80.98 79.09
PS 84.88 83.90 86.56 83.22 85.14

Maxlettle
SS 87.68 88.01 89.33 86.00 88.08
PS 92.68 96.36 89.11 96.00 91.87

Heart
SS 87.50 90.57 84.17 90.83 87.17
PS 95.42 97.53 93.33 97.50 95.31
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Table 6. Cont.

Dataset Method Acc (%) Prec (%) Sens (%) Spec (%) F1_Score
(%)

PD
SS 81.35 81.22 91.73 80.96 81.41
PS 87.69 87.02 89.04 86.35 87.83

AD
SS 50.00 52.04 50.00 75.00 50.87
PS 74.44 75.50 74.44 74.96 74.96

Wisconsin
SS 98.53 97.95 99.15 97.91 98.54
PS 99.16 98.77 99.58 98.74 99.17

Vehicle
SS 86.68 86.49 86.68 95.57 86.59
PS 90.83 90.79 90.82 96.95 90.80

WDBC
SS 96.70 96.84 96.71 96.67 96.76
PS 98.35 98.67 98.12 98.57 98.38

lung
cancer

SS 66.67 50.00 38.89 75.00 43.75
PS 91.74 87.77 91.11 93.67 89.33

Table 7. Comparison of sample pair and single samples after LDA on SVM.

Dataset Method Acc (%) Prec (%) Sens (%) Spec (%) F1_Score
(%)

PID
SS 74.98 77.87 70.16 79.83 73.67
PS 80.21 80.08 80.58 79.85 80.30

Maxlettle
SS 86.46 92.78 79.11 93.78 85.32
PS 97.00 98.18 96.00 98.00 96.83

Heart
SS 86.67 90.78 81.67 91.67 85.94
PS 94.17 95.12 93.33 95.00 94.13

PD
SS 67.21 66.63 68.84 65.58 67.65
PS 69.81 70.78 68.88 71.73 69.09

AD
SS 62.22 64.68 62.22 81.11 63.23
PS 74.44 75.49 74.44 87.22 74.95

Wisconsin
SS 97.28 96.34 98.32 96.22 97.31
PS 98.54 97.96 99.16 97.91 98.54

Vehicle
SS 83.54 83.50 83.53 94.51 83.51
PS 88.18 88.54 88.17 96.06 88.36

WDBC
SS 98.56 99.52 97.65 99.52 98.58
PS 99.29 100 98.58 100 99.28

lung
cancer

SS 57.14 61.11 61.11 78.33 61.11
PS 93.81 94.44 95.00 97.00 94.66

Table 8. Comparison of sample pair and single samples after LDA on RF.

Dataset Method Acc (%) Prec (%) Sens (%) Spec (%) F1_Score
(%)

PID
SS 81.52 82.54 80.22 82.84 82.24.
PS 84.32 82.68 87.30 81.33 84.85

Maxlettle
SS 89.57 91.57 89.11 89.78 89.44
PS 89.67 94.18 85.33 94.00 89.15

Heart
SS 89.17 92.96 85.00 93.33 88.71
PS 93.75 95.75 91.67 95.83 93.61

PD
SS 80.19 81.42 78.26 82.12 79.80
PS 85.09 85.21 85.19 85.01 85.08

AD
SS 62.22 66.24 62.22 81.11 64.12
PS 55.56 58.60 55.56 77.78 56.94

Wisconsin
SS 98.32 97.56 99.16 97.48 98.34
PS 98.95 97.98 100 97.91 98.97

Vehicle
SS 89.19 89.46 89.20 96.39 89.33
PS 92.57 92.70 92.57 97.53 92.63
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Table 8. Comparison of sample pair and single samples after LDA on RF.

Dataset Method Acc (%) Prec (%) Sens (%) Spec (%) F1_Score
(%)

WDBC
SS 98.59 99.53 97.64 99.52 98.57
PS 98.59 99.52 97.65 99.52 98.57

lung
cancer

SS 83.33 83.33 88.89 91.67 86.02
PS 94.28 93.33 96.67 96.67 94.92

Table 9. Comparison of sample pairs and single samples after FESSAE on SVM.

Dataset Method Acc (%) Prec (%) Sens (%) Spec (%) F1_Score
(%)

PID
SS 77.44 77.30 79.15 75.77 77.81
PS 83.80 88.60 79.14 88.48 83.03

Maxlettle
SS 99.00 100 98.00 100 98.95
PS 98.89 100 97.78 100 98.82

Heart
SS 91.25 91.64 90.83 91.67 91.16
PS 97.08 97.59 96.67 97.50 97.07

PD
SS 75.00 73.26 79.33 70.67 76.07
PS 81.49 80.92 82.69 80.29 81.69

AD
SS 71.11 74.96 71.11 85.56 72.95
PS 75.56 78.70 75.56 87.78 77.07

Wisconsin
SS 99.16 98.38 100 98.32 99.18
PS 99.58 99.18 100 99.16 99.58

Vehicle
SS 80.77 82.34 80.78 93.57 81.53
PS 84.53 85.56 84.54 97.82 85.05

WDBC
SS 97.17 97.80 96.71 97.62 97.18
PS 99.76 99.53 100 99.53 99.76

lung
cancer

SS 85.71 83.33 91.67 91.67 87.30
PS 97.14 96.67 98.33 98.33 97.46

Table 10. Comparison of sample pairs and single samples after FESSAE on RF.

Dataset Method Acc (%) Prec (%) Sens (%) Spec (%) F1_Score
(%)

PID
SS 77.44 77.30 79.15 75.77 77.81
PS 83.80 88.60 79.14 88.48 83.03

Maxlettle
SS 92.61 97.50 87.56 97.78 91.89
PS 96.78 100 93.33 100 96.32

Heart
SS 91.25 91.64 90.83 91.67 91.16
PS 97.08 97.59 96.67 97.50 97.07

PD
SS 75.00 73.26 79.33 70.67 76.07
PS 81.49 80.92 82.69 80.29 81.69

AD
SS 58.89 60.82 58.89 79.44 59.78
PS 62.22 64.08 62.22 81.11 63.04

Wisconsin
SS 99.16 98.38 100 98.32 99.18
PS 99.58 99.17 100 99.16 99.58

Vehicle
SS 80.77 82.34 80.78 93.57 81.54
PS 84.53 85.57 84.54 94.82 85.05

WDBC
SS 97.41 97.79 97.18 97.62 97.42
PS 99.76 99.53 100 99.53 99.76

lung
cancer

SS 50.00 50.00 38.89 75.00 43.75
PS 87.62 87.78 91.11 93.67 89.33

As seen from Tables 5 and 6, all the sample-pair-based methods performed better than
the single-sample-based method for these datasets on the SVM and RF classifiers. This
indicates that the SP_EMNCM is more effective than the single-sample-based methods.
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As seen from Tables 7 and 8, most of the sample-pair-based methods are better than the
single-sample-based results in these databases with the LDA on the SVM and RF classifiers.
Thus, in general, SP_EMNCM is effective for manifold feature reduction.

As seen from Tables 9 and 10, most of the sample pair results in the dataset are better
than single sample results on the SVM and RF classifiers. Thus, in general, SP_EMNCM is
effective under deep learning.

4.3.2. Effectiveness Analysis of DFLM

Verification of the performance of the different steps in DFLM is conducted by ablation
experiments. First, the sample pairs are input to the classification model as original features
(OFs) input. Second, the samples are processed with the FESSAE and the OFs converted
into deep features (DFs). Third, OFs and DFs are combined to construct new features (CF).
The CF is processed by the L1_wLPPD to become the reduced features (CF and DFLM).
Different feature sets are used with the same classifier and dataset. A comparison of the
results is shown in Table 11.

Table 11. Result of principal stages of the proposed method.

Dataset Method Acc (%) Prec (%) Sens (%) Spec (%) F1_Score
(%)

PID

OFs 79.29 79.30 79.48 79.11 79.32
DFs 83.80 88.60 79.14 88.48 83.03
CF 82.31 86.97 77.66 86.97 81.38

CF and DFLM 84.54 88.50 80.99 88.11 84.18

Heart

OFs 91.67 94.19 89.17 94.17 91.54
DFs 97.08 97.59 96.67 97.50 97.07
CF 96.25 97.51 95.00 97.50 96.13

CF and DFLM 96.67 97.59 95.83 97.50 96.65

PD

OFs 68.94 69.84 67.31 70.58 68.29
DFs 81.49 80.92 82.69 80.29 81.69
CF 78.73 81.36 75.96 81.49 77.53

CF and DFLM 79.93 80.05 79.81 80.05 79.60

AD

OFs 58.89 65.78 58.89 79.44 62.07
DFs 75.56 78.70 75.56 87.78 77.07
CF 68.89 69.97 68.89 84.44 69.41

CF and DFLM 72.22 74.55 72.22 86.11 73.36

Wisconsin

OFs 97.70 98.31 97.07 98.32 97.67
DFs 99.58 99.18 100 99.16 99.58
CF 98.95 98.76 99.16 98.74 98.95

CF and DFLM 99.37 98.77 100 98.74 99.58

Vehicle

OFs 84.65 84.76 84.65 94.90 84.71
DFs 84.53 85.56 84.54 97.82 85.05
CF 85.54 86.37 85.55 95.18 85.95

CF and DFLM 87.80 88.73 87.82 95.93 88.27

WDBC

OFs 99.06 100 98.11 100 99.04
DFs 99.76 99.53 100 99.53 99.76
CF 98.82 99.09 98.58 99.05 98.82

CF and DFLM 99.53 100 99.53 100 99.53

Maxlettle

OFs 81.24 84.37 79.33 83.33 81.02
DFs 98.89 100 97.78 100 98.82
CF 97.84 100 95.56 100 97.65

CF and DFLM 97.89 100 95.56 100 97.50

lung cancer

OFs 91.75 87.78 91.11 93.67 89.33
DFs 97.14 96.67 98.33 98.33 97.46
CF 87.62 87.78 91.11 93.67 89.40

CF and DFLM 95.24 91.67 96.67 95.83 93.84

Table 11 shows that in some cases the CF and DFLM has better results. This result
indicates that the proposed diamond-like feature learning mechanism (DFLM) is effective.
The accuracy of DFs also performs well. The results show that FESSAE is effective, and it
can learn as many high-quality features as possible and expand features well. The fact that
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the CF and DFLM performs better than the CF means that the proposed feature reduction
mechanism is effective. The accuracy of the CF does not improve as much as that of the OFs.
We hypothesize that the reason is that the simple combination of the OFs and DFs leads to
high redundancy. Therefore, it needs to consider feature reduction. Different datasets have
different results, due to characteristics of data and disease. For example, most metrics of
PID, Wisconsin and Heart datasets have higher results in CF and DFLM but, for the AD,
PD, lung cancer, and Maxlettle datasets, the metrics have higher results in DFs in most
cases. We hypothesize that this is due to the former’s sample size being medium-sized
with dimensionality of 200 to 768, but the number of features is small. While the latter’s
features are medium-scale with dimension of 20 to 35, the number of samples is large or
small. The difference between the number of samples and features possibly is one of the
reasons for the different performance of the metrics in different datasets and may also be
related to the internal structure of the data.

To visualize the DFLM, the features extracted at the different stages are shown in
Figure 8. Here, four datasets (PID, Heart, WDBC, and Wisconsin) are used.
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As shown in Figure 8, the change in the number of features tends to increase first and
then decrease as the stages of the proposed method progress. The distribution of number
of features in the stages appear as a diamond topology. The number of features increased
after combining the OFs and DFs. After the first L1_wLPPD stage, the expanded features
are reduced. The second L1_wLPPD stage further reduces the number of features. Finally,
high-quality features are obtained for small or medium size of samples and features.

4.4. Algorithm Comparison
4.4.1. Comparison with Typical Feature Learning Algorithms

In order to evaluate the performance of the SP_DFsaeLA, its performance is compared
to those of feature learning algorithms that are representative. These included both feature



Appl. Sci. 2023, 13, 7322 20 of 29

selection methods, such as least absolute shrinkage and selection operator (LASSO) [44]
and Relief [45], as well as feature extraction algorithms, such as PCA [46], LDA [47], and
locality preserving projection (LPP) [48]. The SVM is used as the base classifier, since it is a
commonly used classifier. The results are listed in Table 12.

Table 12. Comparison of typical feature learning algorithms.

Dataset Performance
Indices

OFs
(%) PCA (%) LDA (%) LPP (%) Relief (%) LASSO

(%)
SP_DFsaeLA

(Proposed) (%)

PID

Acc 79.29 80.03 80.21 80.03 78.17 77.59 84.54
Prec 79.30 79.82 80.09 79.38 78.30 77.76 88.50
Sens 79.48 80.59 80.58 81.33 78.34 77.59 80.99
Spec 79.11 79.48 79.85 78.74 77.99 77.60 88.11

F1_score 79.32 80.13 80.30 80.25 78.24 77.67 84.18

Maxlettle

Acc 81.24 91.73 97.00 95.84 90.62 84.52 97.89
Prec 84.37 91.33 94.85 96.37 88.32 91.86 100
Sens 79.33 93.78 100 95.78 93.78 77.33 95.56
Spec 83.33 89.78 94.00 96.00 87.56 91.78 100

F1_score 81.02 91.91 97.23 95.87 90.92 82.65 97.50

Heart

Acc 91.67 95.42 94.17 94.58 93.33 88.75 96.67
Prec 94.19 95.93 95.12 94.36 94.85 89.54 97.59
Sens 89.17 95.00 93.33 95.00 91.67 88.33 95.83
Spec 94.17 95.83 95.00 94.17 95.00 89.17 97.50

F1_score 91.54 95.39 94.12 94.61 93.19 88.76 96.65

WDBC

Acc 99.06 99.29 99.29 99.29 99.29 98.11 99.53
Prec 100 100 100 100 99.53 99.05 100
Sens 98.11 98.58 98.58 98.57 99.05 97.17 99.53
Spec 100 100 100 100 99.52 99.06 100

F1_score 99.04 99.28 99.28 99.27 99.28 98.09 99.53

PD

Acc 68.94 71.25 69.90 70.58 71.25 67.21 79.93
Prec 69.84 71.89 70.80 71.35 71.72 66.67 80.05
Sens 67.31 70.19 68.27 69.42 70.38 68.65 79.81
Spec 70.58 72.31 71.54 71.73 72.12 65.77 80.05

F1_score 68.29 70.88 69.26 70.12 70.86 67.49 79.60

AD

Acc 58.89 71.11 72.22 66.67 68.89 62.22 72.22
Prec 65.78 74.01 80.00 66.83 73.70 66.30 74.54
Sens 58.89 71.11 72.22 66.67 68.89 62.22 72.22
Spec 79.44 85.56 86.11 83.33 84.44 81.11 86.11

F1_score 62.07 72.00 75.91 66.75 71.19 64.07 73.36

Vehicle

Acc 84.65 87.55 87.15 87.44 86.79 82.77 87.80
Prec 84.76 87.61 87.56 87.46 87.20 83.20 88.73
Sens 84.65 87.55 87.17 87.44 86.78 82.77 87.82
Spec 94.89 95.86 95.05 95.14 95.60 94.25 95.93

F1_score 84.71 87.58 87.36 87.45 86.99 82.99 88.27

Wisconsin

Acc 97.70 98.53 98.54 98.54 98.11 97.70 99.37
Prec 98.31 97.55 98.34 97.94 97.58 97.52 98.77
Sens 97.06 99.57 98.74 99.16 98.74 97.91 100
Spec 98.32 97.49 98.32 97.91 97.49 97.49 98.74

F1_score 97.67 98.55 98.53 98.54 98.13 97.70 99.38

lung
can-cer

Acc 91.75 91.75 94.28 84.65 91.42 88.57 95.24
Prec 87.78 87.78 94.44 84.76 92.22 90.00 91.67
Sens 91.11 91.11 96.11 84.65 92.22 90.00 96.67
Spec 93.67 93.67 97.00 94.89 95.67 94.33 95.83

F1_score 89.33 89.33 95.24 84.71 92.22 90.00 93.84
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The results in Table 12 show that the SP_DFsaeLA compared with the other feature-
learning algorithms has superior performance, can obtain better quality features than other
feature learning algorithms, and can considerably improve the classification accuracy. The
first possible reason is that the compared methods are based on the original features, but
the proposed algorithm expands the original features, thereby obtaining higher-quality
features efficiently. The second possible reason is the high effectiveness of the two-stage
feature-reduction mechanism.

4.4.2. Comparison with Representative Stacked Autoencoders

To verify the accuracy of FESSAE, we experimentally compared its performance to
that of some representative stacked autoencoders that are representative, including the
stacked autoencoder (SAE) [49], stacked sparse autoencoder (SSAE) [50], stacked denoising
autoencoder (SDAE) [51], stacked pruning sparse autoencoder (SPSAE) [52], and SSAE
combined with LASSO (SSAE and LASSO) [53]. The performance of FESSAE without
sparse term is verified, and the method is referred to as ESAE. There are some main reasons
why the autoencoders are considered as a deep learning method: (1) the proposed algorithm
includes an autoencoder, so representative autoencoders are compared for fairness; (2) the
autoencoder is a kind of deep network, which is more suitable for datasets with a small
number of samples and features compared with other kinds of deep learning methods.

Since the number of the samples and features is small or medium, the number of
hidden layers and neurons cannot be large. For a fair comparison, the SP_EMNCM is not
considered and all parameters are set to the same parameters for all the methods. The
observed accuracy is presented in Table 13. Three datasets (PD, AD, and Vehicle) are used.

Table 13. Classification accuracy of different deep autoencoder classifiers.

Dataset SAE [49]
(%)

SSAE [50]
(%)

SDAE [51]
(%)

SPSAE [52]
(%)

SSAE and
LASSO [53]

(%)

ESAE
(%)

Proposed
FESSAE

(%)

PD 64.15 66.48 66.48 66.22 65.87 60.29 75.67
AD 57.67 61.67 59.58 61.78 57.66 60.94 71.11

Vehicle 67.30 70.00 72.00 74.76 80.06 74.89 80.77

As seen from Table 13, the FESSAE achieved the highest accuracy, showing that the
proposed FESSAE is effective. Table 13 shows that the sparse constraints can substantially
enhance the classifier accuracy. For all datasets, the proposed FESSAE achieved the best
classification accuracy.

4.4.3. Comparison with Recent Chronic Disease Detection Algorithms

To further verify the accuracy of SP_DFsaeLA algorithm, its performance is compared
to those of state-of-the-art algorithms proposed in recent years for classifying chronic
diseases, including those by Hasan et al. [54], Wang et al. [55], Guia et al. [56], Hasan
et al. [57], Lu H et al. [21], and Taghizadeh E et al. [22], Abdollahi J et al. [30]. For a more
visual representation of the comparative algorithm information, we describe the state-of-
the-art (SOTA) studies with their pros and cons in Table 14. Tables 15 and 16 show that all
the models perform better in either positive or negative chronic disease prediction; the two
cross-validation methods (CV, including k-fold and Holdout) are used for fair comparison.
As seen from the table, the SP_DFsaeLA is better than the others in precision or F1_score or
both. The cases are similar under fivefold and Hold out CV.
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Table 14. SOTA studies with their pros and cons.

Literature Method Pros Cons

Hasan M K et al. [54]

A framework for diabetes prediction is
proposed in which data
standardization, feature selection, and
different Machine Learning classifiers.

High robustness.
Requires significant time to
search for the best
combination.

Wang Q et al. [55]

An effective prediction algorithm for
diabetes is proposed, which include
Naïve Bayes method, adaptive
synthetic sampling method and
random forest.

Relatively simple and
computationally efficient. Low universality.

Guia J et al. [56]

Six classification algorithms were used
to predict chronic kidney disease,
including support vector classifier,
decision trees, random forest, Gaussian
Naive Bayes, Multilayer Perceptron,
and K-Nearest neighbors.

Saving computational
overhead.

Classification performance
is dependent on tuning
parameters.

Hasan K A et al. [57]

Using logistic regression, analysis of
variance and to identify by using
multiple supervised machine learning
algorithms.

Ability to select the most
significant risk factors
associated with diabetes.

Limited improvement in
classification accuracy.

Lu H et al. [21]

A patient network and machine
learning approach is developed to
combine the attributes of the patient
network with the sample features and
eight machine learning models are used
to predict disease.

Discover the potential
characteristics of the patient.

Classification performance
is too dependent on the
dataset.

Taghizadeh E et al. [22]

Three groups of machine learning
algorithms were employed: four
feature selection procedures are
employed and compared to select the
most valuable feature; Principal
Component Analysis, 13 classification
algorithms accompanied with
automated hyperparameter tuning.

Effectively reducing the
number of features.

The sample size was
relatively large.

Abdollahi J et al. [30]

Selection of 10 machine learning
algorithms as the basic algorithms in a
stack generalization algorithm to
predict chronic diseases and
implementation of a hybrid
meta-algorithm for prediction.

High classification accuracy
and interpretability.

Only original features are
operated on. When the
quality of the original
feature is not high, it does
not work well.

Table 15. Performance comparison of proposed method with state-of-the-art chronic disease detec-
tion algorithms.

Dataset Performance
Indices

Literature
[54]

(5-Fold)

Literature
[55]

(5-Fold)

Literature
[56]

(Holdout)

Literature
[57]

(5-Fold)

Proposed
Method
(5-Fold)

Proposed
Method

(Holdout)

PID

Acc (%) 88.8 87.1 80.04 75.71 84.54 83.18
Sens (%) 78.9 85.4 73.51 - 80.99 74.07
Spec (%) 93.4 - - - 88.11 92.45
Prec (%) 84.2 80.6 84.93 - 88.50 90.91

F1_score (%) - 82.9 78.80 - 84.18 81.63
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Table 15. Cont.

Dataset Performance
Indices

Literature
[54]

(5-Fold)

Literature
[55]

(5-Fold)

Literature
[56]

(Holdout)

Literature
[57]

(5-Fold)

Proposed
Method
(5-Fold)

Proposed
Method

(Holdout)

WDBC

Acc (%) 97.3 95.6 97.65 95.61 99.76 98.82
Sens (%) 83.0 95.1 95.35 - 99.53 100
Spec (%) 95.7 - - - 100 98.82
Prec (%) 87.8 96.0 100 - 100 97.67

F1_score (%) - 95.5 97.62 - 99.76 98.82

Wisconsin

Acc (%) 98.1 97.1 96.84 96.79 99.37 98.95
Sens (%) 53.3 97.1 97.87 - 100 100
Spec (%) 99.5 - - - 98.74 97.87
Prec (%) 86.7 97.2 95.83 - 98.77 97.96

F1_score (%) - 97.1 96.84 - 99.38 98.97

Heart

Acc (%) 73.9 86.7 85.42 82.96 96.67 95.83
Sens (%) 74.8 81.7 75.00 - 95.83 100
Spec (%) 73.0 - - - 97.50 91.67
Prec (%) 69.7 90.8 94.74 - 97.59 92.31

F1_score (%) - 86.0 83.72 - 96.65 96.00

Table 16. Comparison of proposed method with state-of-the-art chronic disease detection algorithms.

Dataset Performance
Indices

Literature
[21]

(5-Fold)

Literature
[30]

(5-Fold)

Literature
[22]

(5-Fold)

Proposed Method
(5-Fold)

PID

Acc (%) 79.38 81.13 80.19 84.54
Sens (%) 87.50 83.02 79.25 80.99
Spec (%) 71.25 79.25 81.13 88.11
Prec (%) 75.27 80.00 80.77 88.50

F1_score (%) 80.92 81.48 80.00 84.18

WDBC

Acc (%) 96.85 98.82 95.29 99.76
Sens (%) 96.83 100 92.86 99.53
Spec (%) 96.88 97.67 97.67 100
Prec (%) 96.83 97.67 97.50 100

F1_score (%) 96.83 98.82 95.12 99.76

Wisconsin

Acc (%) 94.41 97.89 95.79 99.37
Sens (%) 94.37 100 95.74 100
Spec (%) 94.44 95.74 95.83 98.74
Prec (%) 94.37 96.00 95.74 98.77

F1_score (%) 94.37 97.86 96.00 99.38

Heart

Acc (%) 83.33 95.83 85.42 96.67
Sens (%) 91.67 100 83.33 95.83
Spec (%) 75.00 91.67 87.50 97.50
Prec (%) 78.57 92.31 86.96 97.59

F1_score (%) 84.62 96.00 85.00 96.65

4.5. Parameter Analysis
4.5.1. Analysis of FESSAE Parameters

The FESSAE model is a critical part of the SP_DFsaeLA. Therefore, it is critical to
assess the impact of different FESSAE parameter settings on overall performance. First, the
effect of the FESSAE’s sparsity parameter is discussed. The sparsity parameter, ranging
from 0.02 to 0.1, is chosen based on previous research.

As seen from Figure 9, different sparse parameters give different results. The sparse
parameter had an apparent impact for the FESSAE algorithm’s accuracy. The optimal
sparse parameter is different for different datasets, and there is no fixed selection criterion.
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The datasets used have different numbers of samples, feature dimensions, and numbers of
categories, and the optimal sparse parameter may be related to these factors.
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Figure 9. Effect of sparse proportion on FESSAE with (a) PID; (b) Heart; (c) WDBC; and (d) Wisconsin
datasets.

The effects of the λ in the range of 10−5 to 10−3 and β in the range of 1 to 6 on the
performance of the proposed FESSAE are analyzed together. Figure 10 shows that, when
the λ is fixed, the β had relatively little effect on the network. When the β is fixed, the closer
the λ is to 0, the more robust is the model.
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4.5.2. Analysis of Classifier Type

The impact of different classifiers (extreme learning machines (ELM), SVM, and RF)
on the proposed algorithm’s performance is experimentally studied. The results are listed
in Table 17.

Table 17. Classification accuracy of proposed algorithm with different classifiers.

Dataset
SVM (%) RF (%) ELM (%)

Acc Spec Sens Acc Spec Sens Acc Spec Sens

PID 84.54 88.11 80.99 83.61 85.85 81.38 80.83 92.54 69.14
Maxlettle 100 100 100 98.89 100 97.78 99.00 98.00 100

Heart 96.67 97.50 95.83 96.67 97.50 95.83 96.67 97.50 95.83
PD 81.73 81.35 82.12 81.44 78.27 84.62 80.67 80.00 81.35
AD 71.11 85.56 71.11 61.11 80.56 61.11 67.78 83.89 67.78

Wisconsin 99.37 98.74 100 99.16 98.32 100 99.16 99.15 99.15
Vehicle 87.80 95.93 87.82 87.06 95.67 87.06 87.55 95.16 87.55
WDBC 99.76 100 99.53 97.41 97.63 97.16 98.82 98.58 99.06

Table 17 shows that, for five of the eight datasets, the highest accuracy, sensitivity,
and specificity are achieved with the SVM. For the AD dataset, classification accuracy
obtained using SVM is 71.11%, which is 10 and 3.33% higher than those with RF and ELM,
respectively, and the sensitivity is 71.11%, which is 10 and 3.33% higher than those with RF
and ELM. In addition, the specificity is 85.56%, which is 5% and 1.67% better than those
with RF and ELM, and it had better stability, since the SVM is most accurate in most cases.
Overall, the SVM outperformed the RF and ELM.

4.5.3. Analysis of the Number of Classifiers

To verify whether subclassification has an effect on the performance, we designed
experiments with different numbers of sub-classifiers and the results are shown in Figure 11.
From Figure 11 it is clear that the accuracy of the different numbers of sub-classifiers did
not differ significantly.
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5. Discussion and Conclusions

In recent years, chronic diseases have become a serious threat to human health. Cur-
rently, a practical approach is to first use wearable sensors to collect data from the human
body and then process the data using machine learning. Machine learning algorithm is
an effective tool for the analysis of sensing data of chronic disease. The machine learning
method mainly includes two parts: feature learning and classifier, where feature learning is
very important. Therefore, it is important and challenging to study highly efficient feature
learning methods for sensor monitoring of chronic disease. Traditional feature learning
methods are restricted from original features and cannot construct high-quality features,
whereas deep feature learning methods suffer from the small-sample problems.

To overcome these limitations, this paper proposed a solution—sample-pair envelope
diamond stacked sparse autoencoder ensemble learning algorithm (SP_DFsaeLA). First,
the sample-pair envelope manifold neighborhood concatenation mechanism (SP_EMNCM)
is designed by searching the manifold nearest samples in manifold neighborhood and
generating sample pairs. Second, the feature embedding stacked sparse autoencoder
(FESSAE) is designed to extend features. Third, a staged feature reduction mechanism is
designed to reduce extended feature redundancy. The first stage uses the L1 regularized
feature-reduction algorithm and the second stage uses an improved manifold dimensional-
ity reduction algorithm to further reduce features. Fourth, the sample-pair-based model
and single-sample-based model are combined by weighted fusion.

In the experimental section, three sets of experiments are organized to verify the
proposed method’s effectiveness to validate the effectiveness of the innovation points and
to research the algorithm’s parameters. The results show that the SP_EMNCM is valid
apparently. Compared with feature extraction methods, such as LDA, the accuracy of
SP_DFsaeLA’s classification recognition is higher because the chronic disease samples are
often random. However, LDA is not sensitive to non-Gaussian-distributed samples. Com-
pared with feature selection algorithms, including Relief, the advantages of SP_DFsaeLA
are its greater learnability and lower tolerance to faults. Relief gives higher weights to all
features that are correlated with the class, so the limitation of Relief is in that it does not
effectively remove redundant features. Compared with deep learning methods (SAEs), the
accuracy of SP_DFsaeLA is improved by up to 20.5%. However, SAE only considers the fea-
ture extraction without considering the intrinsic structural information between samples.

As mentioned previously, effective feature learning of sensor data for chronic diseases
is important and challenging, and there are some contributions for solving the problem.
Firstly, a diamond-like feature learning mechanism is proposed in this paper. This mech-
anism combines deep learning and traditional feature-reduction methods’ advantages
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and can better adapt to the data characteristics of chronic diseases and the requirement
for high recognition accuracy than the deep learning and traditional feature-reduction
methods. Secondly, this paper proposes a sample-pair envelope manifold neighborhood
concatenation mechanism (SP_EMNCM), which has the advantage of enriching the feature
information. Thirdly, this paper designs lightweight FESSAE, which has the advantage
of improving the complementarity of original features with deep features and achieving
high-quality deep features in small or medium sample sizes. Fourth, a feature expansion
mechanism is proposed by combining SP_EMNCM and FESSAE, which has the advantage
of improving the original features richer and better by considering the sample structure
relationship and feature complementary relationship. Fifth, a two-stage feature reduction
mechanism for L1_wLPPD is proposed, and the advantages of this method are making the
features more compact without losing high-quality features.

As far as we know, the proposed method is designed for feature learning of chronic
diseases’ sensor data, and no similar published reports have been found. In addition, the
SP_DFsaeLA is a framework approach, which is more inclusive of concrete algorithms.
The proposed method can produce different variations by using different feature learning
methods and different classifiers. Therefore, the SP_DFsaeLA has good generalization.
There are limited types of the feature learning algorithms, but they are representative and
some of them had been used for sensing of chronic diseases. Compared with other deep
learning algorithms, the autoencoder has lightweight structure and parameters. Therefore,
it is discussed in this paper as a representative deep neural network. That is a major reason
why only autoencoder rather than other deep learning methods is involved.

Although the proposed method is effective, it has limitations for datasets with a large
number of samples and features. In future work, other types of deep neural networks can be
considered for further verification and improvement. In addition, the proposed algorithm
can be validated on more datasets and embedded in portable systems for practical diagnosis
of chronic diseases.
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