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Abstract: This study used monoethanolamine (MEA) as an amine-based solvent, which was blended
with secondary amines (DIPA), tertiary amines, stereo amines, and piperazine (PZ) to prepare mixed
amines at the required concentrations, which were used as the test solvents. To search for the
best-mixed amines, a continuous bubble-column scrubber was adopted to explore the performance
of mixed solvents presented in this study. The solvent regeneration test was also carried out at
different temperatures. The selected factors included the type of mixed amine (A), the ratio of mixed
amines (B), the liquid feed flow (C), the gas flow rate (D), the concentration of mixed amines (E),
and the liquid temperature (F), each having five levels. Using the Taguchi experimental design,
the conventional experimental number could be reduced from 15,625 to 25, saving much time and
cost. The absorption efficiency (EF), absorption rate (RA), overall mass-transfer coefficient (KGa), and
absorption factor (φ) were estimated as the indicators. After the Taguchi analysis, E, D, and C were
found to play important roles in the capture of CO2 gas. Verifications of optimum conditions were
found to be 100%, 19.96 × 10−4 mole/s·L, 1.2312 1/s, and 0.6891 mol-CO2/L·mol-solvent for EF,
RA, KGa, and φ, respectively. The evaluated indexes suggested that MEA + PZ was the best-mixed
amine, followed by MEA and MEA + DIPA. The solvent regeneration tests for the scrubbed solutions
performed at different optimum conditions showed that the heat of the regeneration sequence was
in the order of MEA > MEA + PZ > MEA + DIPA with minimum energy required at 110 ◦C. The
individual energy required was also analyzed here.

Keywords: scrubber; taguchi analysis; mixed amine; overall mass-transfer coefficient

1. Introduction

Due tothe influence of greenhouse gases, in which CO2 is the major component,
climate change is becoming gradually serious in the global world. Therefore, COP26 passed
a resolution to control global warming below 1.5 ◦C before 2050 [1]. The emission amount
of CO2 was about 35 Gt in 2022, and the baseline emission is estimated to be 57 Gt in 2050.
To keep the temperature rise below 1.5 ◦C before 2050, the emission of CO2 needs to be
maintained at 14 Gt; this means that a total amount of 43 Gt CO2 needs to be reduced.
According to the roadmap of the International Energy Agency, the reduction contribution
in CO2 emission using CCSU (Carbon Capture, Storage and Utilization) technology is at
least 8 Gt. This shows that CCSU will be important in the coming 30–40 years. Recently, a
Net-Zero-CO2 emission between 2040 and 2060 was also addressed through three routes:
carbon capture and storage (CCS), carbon capture, and utilization (CCU), and the use
of biomass grown and processed for the specific purpose of making chemicals (BIO) [2].
This impact was largely for some CO2 emissions sectors in the industry such as coal-fired
plants, the petroleum industry, the cement industry, and the steel mill industry. To reduce
CO2 emission, several technologies are used, such as absorption, adsorption, membrane
separation, freezing technology, and chemical looping [3], in which absorption was found
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to be more effective in the CO2 concentration range of 0–20% under 10 atm [4]. Recently,
competing methods for the absorption and utilization of CO2, such as the capture of CO2
in molten salts, were reported in the literature [5,6]. The method used molten salt CO2
capture and an electrochemical transformation process to obtain carbon at the cathode and
oxygen at the anode. In addition, synthesizing oxygen reduction reaction catalysts from
CO2, connecting the fields of carbon capture and fuel cell research was reported in the
literature [7].

Generally speaking, a double-unit process including a combination of scrubber and
stripper is required when using the absorption method, in which the alkanolamine solutions
were proposed as the absorption solvents for CO2 capture before 2030 [8–11]. However,
the capture cost in the stripping step in CCS is about 60–70%, making the selection of
strippers and solvents pivotal. Due to this, several solvents have been adopted, such
as amines [11–15], amino salts [16,17], ammonia water [18,19], sodium hydroxide [20],
potassium carbonate [21], piperazines [22], ionic liquids, and physical solvents [10], with
amines being the most popular solvents in these capture processes. The drawbacks of a
single solvent, such as loading, corrosion rate, degradation rate, and regeneration energy,
were improved by adopting new solvents, including mixed amines and non-aqueous
solvents [23–28]. There are four kinds of amines, basically classified as primary amines
(such as monoethanolamine, MEA) [29,30], secondary amines (such as diisopropanolamine,
DIPA) [31–33], tertiary amines (such as triethanolamine, TEA) [34–36], and steric amine
(such as 2-amino-2-methyl-1-propanol, AMP) [37–39]. Structurally, these amines have at
least one hydroxyl group and one amino group, as shown in Figure 1. The presented
hydroxyl group can reduce the vapor pressure, and the amino group can absorb acidic
gases; therefore, it affects the physical properties of amines (Table 1). The vapor pressures
at 20 ◦C for MEA, DIPA, and TEA are 64 Pa, 2 Pa, and 1 Pa, respectively. The vapor pressure
of amine decreases with an increase in the –OH group. The loadings of various amines are
affected by the functional groups. For instance, theoretically, the loading of MEA is limited
stoichiometrically to 0.5 moles CO2 per mole amine. However, the loading is higher for
secondary and tertiary amines, with loadings of up to 1 mole of CO2 per mole of amine. To
promote the absorption rate, and decrease oxygen degradation and thermal degradation,
aqueous piperazine [40], and a cyclic diamine shown in Figure 1e, solution was used to test
for the capture of CO2 [10,22].
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Table 1. Physical and chemical properties of amines [10,39–42].

Items MEA DIPA TEA AMP PZ

M.W. (g/mol) 61.084 133.19 149.188 89.138 86.136
Density (g/cm3) 1.0117 0.992 1.126 0.934 1.100

BP (◦C) 170 249 335.4 165.5 146
Solubility in water at 20 ◦C Miscible Miscible Miscible Miscible Miscible
Vapor pressure (pa) (20 ◦C) 64 2 1 40 10.66

pKa 9.50 8.80 7.76 9.70 9.78
Reaction rate constant, k2 (m3/s·kmol) (25 ◦C) 3630 2585 2202 810.4 48,533

Activation energy Ea (kJ/mol) 41.2 39.9 36.9 41.7 33.7

The absorption process of CO2 using an amine solution generally includes diffusion
from the bulk gas phase to the gas–liquid interface, from interface diffusion into the
liquid bulk phase, and reaction with an amine. The reaction between CO2 and the amine
can be described by a two-step zwitterions mechanism [43]. First, the reactions of CO2
with a primary amine and secondary amine (CO2/H2O/R1R2NH2) systems, based on the
zwitterion system, are found to be [43,44]:

H2O 
 H++OH−, (1)

CO2+OH− 
 HCO−3 (2)

CO2+H2O 
 HCO−3 +H+, (3)

CO2+R1R2NH 
 R1R2NH+COO− (4)

R1R2NH+COO− + R1R2NH
kamine→ R1R2NCOO− + R1R2NH+

2 , (5)

R1R2NH+COO− + H2O
kH2O→ R1R2NCOO− + H3O+, (6)

R1R2NH+COO− + OH−
kOH−→ R1R2NCOO− + H2O. (7)

In Equations (2) and (3), the reaction constants are kOH− and kH2O, respectively. In
Equation (4), the forward reaction and reverse reaction constants are k2 and k−1, respectively.
In Equations (5)–(7), the amine, OH− and H2O can be expressed as a base B, i.e., the three
equations can be expressed as a single equation:

R1R2NH+COO− + B
kb→ R1R2NCOO− + BH+. (8)

The forward reaction rate equation at quasi-steady state becomes:

rCO2,amine =
k2[CO2][R1R2NH]

1 + k−1
∑ kb [B]

. (9)

In most case, k−1/∑ kb[B] < < 1 resulting simple second-order kinetics is obtained:

rCO2,amine = k2[CO2][R1R2NH]. (10)

Considering the reactions (2) and (3), the overall rate was found to be:

ro = rCO2,amine + rCO2,H2O + rCO2,OH− = kobs[CO2]. (11)
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The total rate of all CO2 reactions in an aqueous solution is thus represented by the
sum of the reaction rates. Where the kobs is:

kobs =

 k2[R1R2NH]

1 + k−1
∑ kb [B]

+ kH2O[H2O] + kOH− [OH−]. (12)

If k−1/∑ kb[B] << 1, the kobs becomes

kobs = k2[R1R2NH] + kH2O[H2O] + kOH− [OH−]. (13)

The tertiary alkanolamines (denoted here as R3N such as TEA) and PZ can also be
expressed as shown in Equation (11) for similar kinetics as [R1R2NH] with replacement
of [R1R2NH] by [R3N] or [PZ] [38,39]. The reaction of CO2 with H2O is usually neglected
in the overall reaction rate equation resulting the terms of rCO2,H2O in Equation (11) and
kH2O[H2O] in Equation (13) can be neglected.

The reaction of CO2 with amines found that the reaction rate constant with CO2
are 3630 [39], 2585 [39], and 2202 m3/s·kmol [37] for MEA, DIPA, and TEA, respectively.
However, the reaction constant is affected by pKa and temperature [40,45]. At a given
temperature, ln k2 is proportional to pKa. In addition, the activation energy in Table 1
shows that reactions with high Ea is very temperature-sensitive and reactions low Ea is
very temperature-insensitive [46]. However, the reaction rate constants for AMP and PZ
were 810.4 and 48,533, respectively. The reaction rate constant for PZ is much higher than
the other amines. Therefore, the addition of PZ into amines has a powerful potential to
promote the absorption rate. For mixed amines, the overall rate can be expressed as:

ro ,Mixed = ∑
i

rCO2,i + rCO2,OH− = kobs ,mixed[CO2], (14)

where rCO2,i is the reaction rate of ith amine and kobs, Mixed is overall rate constant of mixed
amines. Equation (14) states that the reaction rate is affected by concentration of various
amine, [OH−] and [CO2]. In addition, the gas–liquid contact method and temperature are
also affecting the reaction rate [46].

Here, the means of CO2 capture was explored to search for the best-mixed amine
using a combination of amines including MEA, MEA + DIPA, MEA + TEA, MEA + AMP,
and MEA + piperazine (PZ). In the capture process, however, several important factors
need to be considered, such as the ratio of mixed amines, the liquid-flow rate, the gas-flow
rate, the concentration of total amines, and the liquid temperature. In this study, the CO2
absorption experiment was performed by using a continuous bubble-column scrubber
because bubble columns have higher mass-transfer coefficients in the range of 0.04–1.54 s−1

and higher specific surface area in the range of 100–1500 m2/m3 compared with packed bed,
whose mass-transfer coefficient and specific surface area are in the range of 0.02–0.38 s−1

and 100–600 m2/m3, respectively. The larger the mass-transfer coefficient, the smaller
the column size [47,48]. In addition, the bubble column is comparable with packed bed
although the pressure drop for a bubble column was higher than a packed bed. The
scrubbing factor for the former is higher than the latter [20]. Due to this, the bubble-column
has been found that it shows a superior performance, such as a high absorption, high
mass-transfer coefficient, simple structure, higher scrubbing factor, and easy operation,
compared with other scrubbers. In order to evaluate the performance of solvents, the
indexes of solvents include the removal efficiency (EF), the absorption rate (RA), the overall
mass-transfer coefficients (KGa), and the scrubbing factor (φ).

To achieve this purpose, the Taguchi method was used in the experimental design to
reduce the cost and save time. From the experimental data, the optimum conditions and
sequence of parameters could be obtained through the S/N (signal/noise) ratio analysis.
Verification of optimum conditions was required. Accompanying various indexes, the best-
mixed amines for the CO2 capture process could be obtained. Finally, solvent regeneration
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for the best amine was also explored. A schematic of the research framework is shown in
Figure 2.
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2. Methodology
2.1. Experimental Design

Six factors, including the type of mixed amines (A), the ratio of mixed amines (B), the
liquid-flow rate (C), the gas-flow rate (D), the concentration of total amines (E), and liquid
temperature (F), were assessed, each with five levels. According to traditional experimental
design, a total of 15,625 runs had to be performed, leading to high costs and a longer time
for experimentation. Therefore, using the Taguchi experimental design, the experimental
number could be largely reduced to 25 runs, cutting the experimental cost up to 99.84%.
The optimum conditions and sequence of importance could also be obtained from Taguchi
analysis. Table 2 presents the factors and levels in this work, while Table 3 presents the
orthogonal arrays with 25 runs and operating conditions.

Table 2. Factors and levels selected in this research.

Factors/Levels Level 1 Level 2 Level 3 Level 4 Level 5

A (-) MEA MEA + DIPA MEA + TEA MEA + AMP MEA + PZ
B (wt%) 5 10 15 20 25

C (mL/min) 150 200 250 300 350
D (L/min) 4 6 8 10 12

E (M) 1 1.5 2 2.5 3
F (◦C) 25 30 35 40 45
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Table 3. Orthogonal arrays, L25(56).

No. 1 1 1 1 1 1 1
No. 2 1 2 2 2 2 2
No. 3 1 3 3 3 3 3
No. 4 1 4 4 4 4 4
No. 5 1 5 5 5 5 5
No. 6 2 1 2 3 4 5
No. 7 2 2 3 4 5 1
No. 8 2 3 4 5 1 2
No. 9 2 4 5 1 2 3

No. 10 2 5 1 2 3 4
No. 11 3 1 3 5 2 4
No. 12 3 2 4 1 3 5
No. 13 3 3 5 2 4 1
No. 14 3 4 1 3 5 2
No. 15 3 5 2 4 1 3
No. 16 4 1 4 2 5 3
No. 17 4 2 5 3 1 4
No. 18 4 3 1 4 2 5
No. 19 4 4 2 5 3 1
No. 20 4 5 3 1 4 2
No. 21 5 1 5 4 3 2
No. 22 5 2 1 5 4 3
No. 23 5 3 2 1 5 4
No. 24 5 4 3 2 1 5
No. 25 5 5 4 3 2 1

2.2. Indexes Determination

Gas–liquid contact with the co-current flow can be found in Figure 3a, the simulated
flue gas, CO2(A) + N2(B), go through the distributor forming small bubbles and mixing
with absorbent in the bubble-column scrubber. The CO2 gas from the gas film diffuses
into the liquid film and is absorbed by the liquid as shown in Figure 3b. At the interface,
the CO2 gas follows Henry’s law and the absorption rate accompanying with two-film
model becomes:

−rA = (KGa)loc(CA − HCLA). (15)
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In order to obtain the absorption rate and overall mass-transfer coefficient, the isother-
mal mass balance at a steady-state condition is used:
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(Mass transfer of CO2 at inlet) − (Mass transfer of CO2 at outlet) = Absorption rate of CO2. (16)

The equations can be expressed below:

(NA|z − NA| z+∆z)A = (−rA)(A∆z)εL (17)

where NA is the molar flux of component A. Alternatively, Equation (17) becomes:

(FA|z − FA| z+∆z) = (−rA)(A∆z)εL (18)

where NAA = FA, the molar flow rate. Take limit, Equation (18) becomes

−dFA
dz

= (−rA)(AεL). (19)

Integrate the Equation (19), it is

−
∫ FA2

FA1

dFA =
∫ L

0
AεLdz =

∫ VL

0
(−rA)dVL, (20)

FA1 − FA2 = RAVL, (21)

or
RA =

FA1 − FA2

VL
. (22)

Equation (22) shows that the overall absorption rate can be calculated from the mea-
sured input and output CO2 gas molar rates and liquid volume. Because the molar flow
rate of inert gas (N2) is equal to FA1(1 − yA1)/yA1, the molar flow rate of carbon dioxide at
the outlet (FA2) is equal to FA1[(1 − yA1)/yA1][yA2/(1 − yA2)]. Therefore, Equation (22) can
be rewritten as:

RA =
FA1

VL
[1− (

1− yA1

yA1
)(

yA2

1− yA2
)]. (23)

Equation (23) shows that absorption rate can be evaluated when FA1, VL, yA1, and yA2
are given. In addition, Equation (17) can be written as

(uzCA|z − uzCA| z+∆z)A = (−rA)(A∆z)εL (24)

where uz is the linear velocity of gas through the column. Substitute Equation (15) into
Equation (24) and it is divided by ∆z and take the limit, the equation becomes

−uz
dCA
dz

= (−rA)εL = (KGa)loc(CA − HCLA)εL. (25)

For most systems, CA > > HCLA [49]. Therefore, Equation (25) can be rearranged and
integration, which is

−uz

∫ CA2

CA1

dCA
CA

=
∫ L

0
(KGa)locdz. (26)

Finally, the overall mass-transfer coefficient becomes

KGa(s−1) =
uz

εLL
ln

CA1

CA2
=

Qg(L/s)
VL(L)

ln
CA1(mol/L)
CA2(mol/L)

, (27)

where KGa is defined as the following:

KGa =
1
L

∫ L

0
(K Ga)locdz. (28)
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Equation (27) shows that overall mass-transfer coefficient can be estimated when CA1,
CA2, VL, and Qg are measured. In addition, the absorption efficiency and scrubbing factor
are defined below:

EF(%) = (
yA1−yA2

yA1
)× 100%, (29)

ϕ(molmol−1L−1) =
FG(mol/s)EF(%)(10−2)

Vb(L)FL(mol/s)
. (30)

Heat duty of solvent regeneration includes three parts, i.e., heat of adsorption (qads),
sensitive heat (qsen), and heat of evaporation (qsol):

q(G Jt−1) = qads(GJ/t) + qsen(GJ/t) + qsol(GJ/t)

= ∆Had(GJ/t) + msol(kg)Cp(kJkg−1K−1)∆T(K)
∆mCO2 (kg) + ∆m1(kg)

∆mCO2 (kg)∆Hvap(GJ/t)
. (31)

They can be determined when thermal data are available [32,50–54]. Thermal data
used here include those of heat capacity [50], the heat of absorption [32,52–54], and la-
tent heat [51]. In Equation (31), Cp is the heat capacity of scrubbed solutions, ∆Had the
heat of absorption, ∆T the temperature difference, msol the mass of regeneration solution,
∆mCO2 [kg] the mass loss of CO2 after stripping, ∆Hvap the heat of evaporation, and ∆m1
the scrubbed solution loss during stripping.

3. Experimental Procedure
3.1. Absorption Test

The experimental devices are depicted in Figure 4, including the bubble column,
tubing pumps for gas-flow and liquid-flow, a mass flow controller, pH-meter, CO2 meter,
gas heating chamber, and cooler. To start with, the desired mixed amine concentration was
prepared using distilled water. Next, the flow rate of carbon dioxide and nitrogen was
adjusted using a mass flow controller into the proportion of 15% of CO2, maintaining the
gas inlet temperature at the bottom of the scrubber at 50 ◦C. The mixed amine was placed
into the scrubber after the desired temperature and CO2 concentration were achieved,
and the experiment was started. During the experimentation, the pH of the solution,
liquid temperature, gas inlet temperature, gas outlet temperature, pressure, and CO2
concentration were recorded every 5 min. The liquid at the outlet was also withdrawn for
titration to observe the concentration of carbonate in the scrubbing solution. At the end
of steady-state operation, the liquid input was closed, and the solution was withdrawn
to measure the volume of liquid (VL) in the scrubber using a tubing pump. Using the
measured data, including P, yA1, yA2, T, and VL, all the indicators can be evaluated.

3.2. Regeneration Test

The equipment for regeneration tests is similar to those used in the previous work [17].
First, 0.05 kg scrubbed solution was prepared, and the ball condenser tube, three-neck
round flask, heating system, and cooling circulator were assembled. The input cooling
water temperature was set to 5 ◦C. When the heating oil temperature reached the desired
value (100, 110, or 120 ◦C) and the cooling circulator temperature was stable, the 0.05 kg
scrubbed solution was poured into the flask, and the magnetic stirrer was switched on.
The experimental time was at least 60 min, and the temperature change was recorded
once every 5 min. When the experiment was finished, the heating controller and cooling
circulator were switched off, the mass of the scrubbed solution was measured, and the
samples were taken for titration to measure the CO2 loading.
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Figure 4. Experimental device for CO2 capture test.

4. Results and Discussions
4.1. Steady-State Operation

A plot of Y versus t for No. 1 showing the variation in measured data with time
is shown in Figure 5, wherein Y is defined as the ratio of the measured value to the
initial value or the setting value. The figure shows that CO2 concentration, pH, liquid
temperature, gas temperature at the inlet, and gas temperature at the top of the scrubber
were maintained constant after 30 min. This variation showed that the system reached
a steady-state condition. Due to this, the measured data could be used to evaluate the
values of indexes. Calculated data for EF, RA, KGa, and φ are listed in Table 4. The range
of data was 56.58–100.0%, 4.42 × 10−4–18.95 × 10−4 mol s−1 L−1, 0.1195–0.9139 s−1, and
0.0433–0.2923 mol-CO2 mol-solvent−1 L−1 for EF, RA, KGa, and φ, respectively. The steady-
state pH values were 9.60–11.42, depending on the operating conditions. In addition,
γ-values were in the range of 0.2942–2.3056. All data were analyzed to search further for
the optimum mixed amine.



Appl. Sci. 2023, 13, 7321 10 of 18

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 19 
 

Figure 4. Experimental device for CO2 capture test. 

3.2. Regeneration Test 
The equipment for regeneration tests is similar to those used in the previous work 

[17]. First, 0.05 kg scrubbed solution was prepared, and the ball condenser tube, 
three-neck round flask, heating system, and cooling circulator were assembled. The input 
cooling water temperature was set to 5 °C. When the heating oil temperature reached the 
desired value (100, 110, or 120 °C) and the cooling circulator temperature was stable, the 
0.05 kg scrubbed solution was poured into the flask, and the magnetic stirrer was 
switched on. The experimental time was at least 60 min, and the temperature change was 
recorded once every 5 min. When the experiment was finished, the heating controller and 
cooling circulator were switched off, the mass of the scrubbed solution was measured, 
and the samples were taken for titration to measure the CO2 loading. 

4. Results and Discussions 
4.1. Steady-State Operation 

A plot of Y versus t for No. 1 showing the variation in measured data with time is 
shown in Figure 5, wherein Y is defined as the ratio of the measured value to the initial 
value or the setting value. The figure shows that CO2 concentration, pH, liquid 
temperature, gas temperature at the inlet, and gas temperature at the top of the scrubber 
were maintained constant after 30 min. This variation showed that the system reached a 
steady-state condition. Due to this, the measured data could be used to evaluate the 
values of indexes. Calculated data for EF, RA, KGa, and ϕ are listed in Table 4. The range 
of data was 56.58–100.0%, 4.42 × 10−4–18.95 × 10−4 mol s−1 L−1, 0.1195–0.9139 s−1, and 
0.0433–0.2923 mol-CO2 mol-solvent−1 L−1 for EF, RA, KGa, and ϕ, respectively. The 
steady-state pH values were 9.60–11.42, depending on the operating conditions. In 
addition, γ-values were in the range of 0.2942–2.3056. All data were analyzed to search 
further for the optimum mixed amine. 

 
Figure 5. Variation of measurements showing steady-state condition (No. 1). 

Table 4. Values of indexes for different runs. 

No. pH EF (%) RA(104) (mol/L·s) KGa (1/s) γ (–) ϕ (mol-CO2/L·mol-Solvent) 
1 10.18 71.05 4.42 0.1195 1.2147 0.1485 
2 10.75 80.26 7.74 0.2543 0.8856 0.1223 

Figure 5. Variation of measurements showing steady-state condition (No. 1).

Table 4. Values of indexes for different runs.

No. pH EF (%) RA(104) (mol/L·s) KGa (1/s) γ (–) φ (mol-CO2/L·mol-Solvent)

1 10.18 71.05 4.42 0.1195 1.2147 0.1485
2 10.75 80.26 7.74 0.2543 0.8856 0.1223
3 10.70 84.00 10.52 0.3808 0.6943 0.0990
4 10.56 84.42 14.68 0.5241 0.5902 0.0868
5 10.96 88.00 18.95 0.7740 0.5055 0.0755
6 10.55 90.67 13.54 0.6006 0.7201 0.1108
7 11.42 80.00 12.93 0.4179 0.5831 0.0792
8 10.20 58.67 12.46 0.2875 1.7294 0.1722
9 11.35 94.67 5.47 0.2825 0.3428 0.0551
10 10.65 89.33 8.21 0.3424 0.9110 0.1382
11 10.16 69.33 14.27 0.3962 1.3963 0.1643
12 10.61 94.67 5.79 0.3007 0.3086 0.0496
13 11.02 86.67 7.81 0.2980 0.2942 0.0433
14 9.60 79.73 9.98 0.3285 0.7979 0.1066
15 10.09 56.58 10.05 0.2283 2.2523 0.2192
16 10.90 90.79 8.30 0.3534 0.3055 0.0477
17 10.11 74.03 10.10 0.2938 1.0995 0.1419
18 9.85 72.73 12.79 0.3666 2.3056 0.2923
19 10.64 68.00 15.76 0.4150 1.3803 0.1593
20 10.98 96.00 5.60 0.3073 0.3149 0.0513
21 10.57 81.33 13.38 0.4497 0.6659 0.0919
22 10.43 77.33 15.62 0.4884 1.7929 0.2354
23 11.03 100.00 5.43 0.9139 0.3323 0.0564
24 9.96 89.33 7.71 0.3326 1.0898 0.1653
25 10.56 88.00 10.77 0.4339 0.8702 0.1300

4.2. Effects of Mixed Amines on the Indexes

Factor A represents mixed amine, as shown in Table 3, including A1 (MEA; Nos.
1–5), A2 (MEA + DIPA; Nos. 6–10), A3 (MEA + TEA; Nos. 11–15), A4 (MEA + AMP;
Nos. 16–20), and A5(MEA + PZ; Nos. 21–25). The combination of operating conditions
for B, C, D, E, and F are all involved in A1-A5. Considering EF as an example, the mean
values for A1, A2, A3, A4, and A5 were 81.55%, 82.67%, 77.40%, 80.31%, and 87.20%,
respectively. The sequence of A was found to be A5 > A2 > A1 > A4 > A3, showing that
mixed amine (MEA + PZ) for EF was the best. The result also showed that the addition of
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PZ into MEA could enhance the absorption efficiency of CO2. Likewise, the mean values
for other indexes are listed in Table 5. The importance sequence for RA was in the order of
A1 > A5 > A2 > A4 > A3, meaning that the rate of absorption of MEA (A1) was the highest.
In addition, the importance sequence for KGa in the order of A5 > A1 > A2 > A4 > A3,
showing (MEA + PZ) could promote the overall mass transfer coefficient up to 28% as
compared with MEA (A1), while the results of other mixed amines were contrary. On
average, compared with MEA, the use of MEA + PZ mixed solvent could reduce the
scrubber size by about 30%. Finally, the importance sequence for φ was in the order of
A4 > A5 > A3 > A2 > A1, showing that the addition of DIPA, TEA, AMP, and PZ into MEA
could improve the CO2 loading, while MEA + AMP (A4) increased by about 30%. The
score for each mixed amine needs to be defined for quantitative comparison. According
to the sequence of importance, the corresponding points were 5, 4, 3, 2, and 1. Using EF
as an example (A5 > A2 > A1 > A4 > A3), the points for A1, A2, A3, A4, and A5 were 3, 4,
1, 2, and 5, respectively. All the scores and mean values are listed in Table 6. The whole
sequence of importance was in the order of A5(4.5) > A1(3.25) > A2(3) > A4(2.75) > A3(1.5).
The analysis shows that MEA + PZ (A5) was the best-mixed amine.

Table 5. Importance sequence analysis for various indicators.

Indexes A1 A2 A3 A4 A5

EF 81.54 82.67 77.40 80.31 87.20
RA (104) 11.26 10.52 9.58 10.51 10.58

KGa 0.410 0.386 0.310 0.347 0.524
φ 0.1064 0.1111 0.1166 0.1385 0.1358

Table 6. Points for various indicators.

Indexes A1 A2 A3 A4 A5

EF 3 4 1 2 5
RA 5 3 1 2 4
KGa 4 3 1 2 5
φ 1 2 3 5 4

mean 3.25 3 1.5 2.75 4.5

4.3. Taguchi Analysis

Using EF as an example, the S/N (signal/noise) ratio analysis for larger-the-better can
be determined by Equation (32):

S
N

= −10× log

(
1
n

n

∑
1

z2
i

)
, (32)

where n is the number of data and zi is the outcome data such as EF, RA, KGa, and φ. Using
No. 1 as an example, for A1 mixed solvent, the data for EF presented in Table 5 were
71.05%, 80.26%, 84.00%, 84.42%, and 88.00%, respectively. On substituting these values
into Equation (32), A1 was estimated to be 38.1559. In the same method, all S/N ratios
were evaluated and are listed in Table 7. The bracket words shown in this table are the
maximum values for each factor, which includes the optimum condition, A5B4C5D1E5F5.
The ‘DELTA’ value in this table is the difference between the maximum and minimum
values of each factor, such as (A5–A3), yielding 1.37. According to the reported data, the
parameter sequence was found to be in the order of E > D > A > F > C > B. Using the
same analysis, the optimum condition and parameter sequence for other indexes could be
determined and are listed in Table 8, in which the mixed amines in optimum conditions
were A5, A2, A5, and A1, respectively. This supports the finding presented in Section 3.2
that MEA + PZ is the best amine.
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Table 7. S/N ratio analysis for EF giving optimum condition and parameter significance.

Level A B C D E F

1 38.1559 37.9573 37.7625 (38.9978) 36.5413 37.784
2 37.9301 38.1093 37.4206 38.7922 37.9967 37.6308
3 37.3404 37.6729 37.7078 38.343 38.262 37.674
4 37.8643 (38.2346) 37.9977 37.2163 38.7237 38.2035
5 (38.7104) 37.9347 (38.4925) 36.9414 (38.7678) (38.6857)

DELTA 1.37 0.5617 1.0719 2.0564 2.2265 1.0549
RANK 3 6 5 2 1 4

Table 8. Optimum condition and parameter sequence for all indicators.

Indicators Optimum Condition Parameter Sequence

EF (No. 26) A5B4C5D1E5F5 E > D > A > F > C > B
RA (No. 27) A2B2C3D5E4F5 D > C > E > F > A > B
KGa (No. 28) A5B3C3D5E5F4 E > A > D > F > C > B
φ (No. 29) A1B4C1D5E1F4 E > C > D > A > B > F

Based on points (0–5) analysis for six factors, the importance of parameters among the
whole factors became E (4.5) > D (3.75) > C (2.5) = A (2.5) > F (1.5) > B (0.25), showing that
the concentration of mixed amine (E) is the most important factor obtained. However, the
optimum condition needs to be verified further.

4.4. Verifications of Optimum Conditions

The experiments were performed further according to optimum conditions listed in
Table 8 and the results are listed in Table 9. The reported values were 100%,
19.9584 × 10−4 mol/s·L, 1.1675 1/s, and 0.4148 mol-CO2 /L·mol-solvent for EF, RA, KGa,
and φ, respectively. The values are listed in bracket words. Compared with Nos. 1–25,
the obtained values were all maximum, i.e., the results could be confirmed. This also
demonstrates the feasibility of the Taguchi experimental design in this study.

Table 9. Verifications of optimum conditions.

No. EF (%) RA × 104 (mol/s·L) KGa (1/s) φ (mol-CO2/L·mol-Solvent)

1–25 56.58–100.0 4.4153–18.9500 0.1195–0.9139 0.0433–0.2923
EF(26) (100.0) 5.6630 1.1698 0.0313
RA(27) 90.67 (19.9584) 0.8784 0.1507
KGa(28) 96.67 19.2220 (1.1675) 0.1316
φ(29) 82.67 17.3165 0.6144 (0.4148)

4.5. Effects of Variables on the Indexes

Figure 6 presents a plot of EF versus γ for different mixed amines. According to the
trend, EF decreases with an increase in γ, while mixed amine A5 (MEA + PZ) yielded a
higher EF at the same γ, suggesting that PZ can promote mass transfer and, hence, the
absorption efficiency. There are two points that affect the γ and hence EF value; one is the
resident time of CO2 gas and the other is the solvent molar flow rate. A lower residence
time meaning a higher gas flow rate leads to reduce EF, while the EF can be increased when
a higher molar flow rate was used. Nonetheless, the EF is also affected by temperature and
pH, which are not included in Figure 6a. Therefore, a regression was required to assess the
influences of γ, T, and pH on the EF. The results are shown below:

EF(%) = 3.0532× 102 exp(− 4137

R(JK−1mol−1
)

T(K)
)γ−0.1801 pH0.09684. (33)
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The R2 was found to be 0.7453 (>0.5), indicating that the powder law model is suitable
for EF and that the results are reliable. EF increased with an increase in t and pH and
decreased with an increase in γ. Figure 6b is a plot of calculated values versus measured
values; almost all data were within 10% error, showing the confidence of Equation (33).

A similar regression was also performed for RA and KGa, but the R squares for both
were <0.5 showing the differences in solvents. Due to this, the regressions could be carried
out for different solvents and were expressed as: ξ = α pHaγbtc. Tables 10 and 11 show
both parameters and R2 for different solvents. A2 and A3 were excluded because R2 < 0.5,
and RA decreased with an increase in γ for A1 and decreased with an increase in t for
A5. In addition, RA increased with an increase in pH, γ, and t, respectively. According to
Figure 7a, a plot of calculated data versus measured data showed that the error limit for
most data was within 20%. A2 and A3 showed some scattering data; conversely, for A1,
KGa decreased with an increase in γ and KGa and increased with an increase in pH, γ, and
t, respectively. Figure 7b shows that a plot of calculated data versus measured data showed
that the errors of most data were within 20%. Some scattering data were also observed for
A2 and A3. The results also reveal that the effect of terminal pH was more significant for
RA and KGa, while that of was γ minor.

Table 10. Regression parameters of RA for different solvents.

Mixed Solvent α a b c R2

A1 1.067 × 10−6 0.9495 −0.7488 1.2368 0.9966
A2 2.459 × 10−7 3.4971 0.6338 0.03703 <0.5
A3 6.959 × 10−3 −0.3646 0.2882 −0.3088 <0.5
A4 5.063 × 10−21 15.3879 0.9809 1.0931 0.6863
A5 3.608 × 10−5 2.6498 0.5845 −0.7938 0.7099



Appl. Sci. 2023, 13, 7321 14 of 18

Table 11. Regression parameters of KGa for different solvents.

Mixed Solvent α a b c R2

A1 3.286 × 10−6 3.0754 −1.1424 1.1148 0.9994
A2 8.256 × 10−12 8.4837 0.5876 1.2734 <0.5
A3 5.733 −1.5210 −0.1029 0.1648 <0.5
A4 1.576 × 10−20 16.8625 0.7071 1.4307 0.9680
A5 4.146 × 10−14 11.7191 0.08486 0.7232 0.9792
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4.6. Solvent Regeneration Test

Solvent regeneration tests for four optimum conditions were explored further. The
scrubbed solution included two MEA + PZ mixed amines (No. 26 and No. 28), one
MEA + DIPA (No. 27) scrubbed solution, and one MEA (No. 29) scrubbed solution.
The tested temperatures were set to 100, 110, and 120 ◦C, separately. The overall heat of
regeneration was 3.39–8.45 GJ/t, within the range of 2 GJ/t and 12 GJ/t reported in the
literature [13,55,56]. Figure 8a presents a plot of q versus t showing the effect of different
solvents on the heat of solvent regenerations. The plots showed that the minimum energy
requirement was at 110 ◦C for mixed solvents, No. 26-No. 28., while the heat of regeneration
decreased with a decrease in temperature for No. 29 (MEA single solvent). Comparing No.
26 and No. 28 (both MEA + PZ), at the same factor E (3M) but for factor B, were 20% and
15%, respectively. The final loadings were 0.0866 and 0.1349 mol-CO2/mol-solvent for No.
26 and No. 28, respectively. The heat of regeneration for No. 28 was lower than that for No.
26, suggesting a lower heat of regeneration at higher loading than that at lower loading. A
similar result was reported in the literature [13]. The sequence of the heat of regeneration
was in the order of MEA > MEA + PZ > MEA + DIPA (Figure 6).

The results of individual energy estimation revealed that qsen were in the range
0.45–1.43 GJ/t, qsol were in the range 1.04–5.51 GJ/t, and qads were in the range of
1.83–1.93 GJ/t. The fractions (F) of individual required energies were in the range of
0.102–0.232, 0.317–0.652, and 0.229–0.577 for qsen, qsol, and qads, respectively. For further
discussion, the distribution in individual energy was plotted and is shown in Figure 8b,
wherein qsen and qsen both increase with an increase in F, while qads causes a small change
in F in the range of 0.229–0.577. When F > 0.4, the energy required was in the order of
qsol > qads > qsen. Three major choices were found to decrease q: one is selecting a lower
heat of absorption solvent; second, using a higher concentration solvent to reduce the
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heat of evaporation; third, an increase in γ, which can increase CO2 loading and hence
decreasing q.
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5. Conclusions

Using the Taguchi experimental design, the experimental number of runs could be
reduced from 15,625 to 25, cutting the experimental cost up to 99.84%. A continuous
bubble-column scrubber was successfully used to assess the performance of mixed solvents.
Solvent regeneration tests were also carried out. It is a shortcut and also a quick method to
obtain the best solvent, optimum condition, and the order of parameter importance. Based
on the six factors analysis here, the importance of parameters of the whole factors was
found to be in the order of E > D >C = A > F > B, showing the concentration of mixed amine
(E) is the most significant factor, while the ratio of mixed amine is a minor one. The priority
sequence of mixed amine was found to be in the range of A5 > A1 > A2 > A4 > A3, and
the regeneration energy was in the range of A1> A5 > A2, showing that A5 (MEA + PZ)
is the best solvent. The absorption efficiency could be controlled to a higher value (>90%)
when γ < 0.5. The sequence of promoting the CO2 loading was AMP > PZ > TEA > DIPA.
According to overall mass-transfer coefficients, the scrubber size could be reduced by
30% when using A5 (MEA + PZ) mixed amine as compared with A1 (MEA) solvent.
Alternatively, the indexes were expressed in terms of pH, γ, and t with different parameters,
depending on the mixed solvent used. The better conditions were found to be B = 15–20%,
C = 250–350 mL/min, D = 4–12 L/min, and E = 3 M; F = 40–45 ◦C. In addition, the minimum
heat of regeneration was achieved when the operating heating temperature was 110 ◦C.
The individual energy required was in the sequence of qsol > qads > qsen when F > 0.4.
The heat of regeneration of scrubbed solutions could be controlled under 3 GJ/t or lower
when increasing the concentration of mixed amines or using a solvent with a lower heat
of absorption.
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