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Abstract: The stability analysis of rock slopes has been a prominent topic in the field of rock mechanics,
primarily due to the widespread occurrence of discontinuous structural planes in rock masses.
Based on this complex characteristic of rock slopes, this paper proposes a novel numerical method,
the Partitioned-Rigid-Element and Interface-Element (PRE-IE) method. In the PRE-IE method,
the structure is modeled as several rigid bodies and discontinuous structural planes, which are,
respectively, divided into partitioned rigid elements and interface elements. Taking the contact force
of node pairs and the displacement of the rigid body centroid as mixed variables, according to the
principle of minimum potential energy, the governing equations of PRE-IE can be established using
the Lagrange multiplier method and then solved using the nonlinear contact iterative method and the
incremental method. A classic case study demonstrates that using the failure of all contact node pairs
as the criterion for slope failure is appropriate. This criterion is objective and avoids the potential
impact of personal bias on safety factor calculations. Two numerical examples of differently shaped
slopes are provided to verify the correctness and validity of the PRE-IE method. By comparing the
safety factor calculated using the PRE-IE method with those obtained from other different methods,
as well as comparing the computational time, it is shown that the PRE-IE method, in combination
with the SRM, can accurately and efficiently analyze the stability problems of rock slopes.

Keywords: numerical method; rock slope; stability analysis; discontinuous structural plane; nonlinear
contact; SRM

1. Introduction

In recent years, China has planned to establish numerous water conservancy and
hydropower projects in the southwest. In these areas, there may be a large number of rock
slopes with complex structures and frequent geotectonic movements, which can cause
serious consequences for nearby facilities in case of landslides or earthquakes. Therefore,
ensuring the stability of rock slopes is crucial for the long-term safe and effective operation
of engineering projects. Rock slopes often contain many discontinuous structural planes,
such as joints, fissures, and weak interlayers. As a result, the slope can be viewed as
consisting of two distinct structures: the rock masses segmented by structural planes, which
collectively form a continuous medium, and the discontinuous structural planes themselves,
characterized by their irregular shapes, thinness, and vastly different mechanical properties
compared to the adjacent rock masses. As such, the structural plane becomes a potential slip
surface during slope failure. Therefore, in order to study and analyze the failure mechanism
of rock slope, it is necessary to explore innovative methods and conduct in-depth research
on the nonlinear and discontinuous characteristics of the structural planes.

The commonly used methods for slope-stability analysis are the limit equilibrium
method (LEM) [1–3], limit analysis method (LAM) [4,5], and other numerical methods. The
first two methods are based on the assumption of elastic and perfectly plastic material or
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rigid and perfectly plastic material, ignoring the loading process and only considering the
ultimate load at the time of structural failure. Therefore, they are mostly used for simple two-
dimensional problems, are not suitable for solving complex three-dimensional problems,
and cannot simulate the process of slope transformation from continuous-medium to
discontinuous-medium when slope failure occurs. With the popularization of computers
and the improvement in computational efficiency, the use of numerical methods to analyze
slope stability has gradually become mainstream [6]. These numerical methods can not only
satisfy the mechanical equilibrium conditions while considering the nonlinear constitutive
relation of materials, but also demonstrate the development process of the plastic zone
during slope failure, which is suitable for solving slope problems with complex conditions.

Since Zienkiewicz [7] proposed the finite-element method–strength-reduction-method
(FEM-SRM) in 1975, FEM has gradually become a popular numerical method for slope-
stability analysis [8–10]. Lin et al. [11] constructed a 3D slope model by extending the
2D model longitudinally to study the effects of the dilatancy angle using the PLAXIS
3D FEM with the built-in strength reduction technique. The results showed that the
effects of the dilatancy angle on the convergence of 3D and 2D slope models are different.
Liu et al. [12] proposed a 2D and 3D slope-stability finite-element limit equilibrium
method using elastic finite-element stress fields and indicated that FEM can be applied
to solve various slope problems. The FEM also introduces a large number of special
elements (such as joint element [13,14], and thin layer element [15,16]) to simulate the
nonlinear characteristics of the slope structural plane. However, this will put forward a
high requirement for meshing, which not only requires the mesh near the discontinuity
to be dense enough to ensure the computational accuracy, but also requires the mesh
of ordinary elements and special elements to satisfy the compatibility condition on the
boundary. Furthermore, in the dynamic case, despite the introduction of special elements,
the elastic–plastic constitutive relationship adopted by the finite element makes it difficult to
simulate the stick and debonding of discontinuous interfaces. Moreover, in the calculation
process, the stiffness matrix of the whole region needs to be updated even if the nonlinear
relationship only appears in the local region. Therefore, the conventional FEM is inefficient
in solving complicated discontinuity issues. In 1999, Belytschko [17] proposed a minimal
remeshing finite-element method for crack growth. This method allows the crack to
be arbitrarily aligned within the mesh. For severely curved cracks, remeshing may be
needed, but only away from the crack tip, where remeshing is much easier. Then it
evolved into a novel method called the extended finite element method (XFEM) and
has subsequently been developed quickly worldwide. XFEM can be used to simulate
heterogeneous materials with voids and inclusions, interfaces of bimaterial, and two-phase,
so it is a possible computational alternative to treat slope instability, concrete cracking, and
interfacial problems [18].

With the in-depth study of numerical methods, the numerical methods based on
the continuous medium hypothesis can hardly meet the requirements of researchers for
calculation accuracy, and the numerical simulation of complex structural planes in the
rock slope has gradually developed into discontinuous medium methods. The continuum
medium method is dominated by FEM, and the discontinuous medium method is domi-
nated by the discrete element method (DEM) [19] and discontinuous deformation analysis
(DDA) [20]. Jiang et al. [21] presented a numerical investigation into the rainfall-induced
instability mechanism of a jointed rock slope with two joint inclinations of dipping 45°
and 60° and the corresponding safety factor using the two-dimensional DEM, where the
non-uniform strength reduction approach is employed. The results show that the proposed
DEM strength reduction provides a feasible approach to analyze the rainfall-triggered
instability of the jointed rock slope. Gong et al. [22] took an anti-dip layered rock slope
supported with anchor cables that failed owing to flexural toppling as an example, and
took the DDA as the main analytical tool. The rationality of DDA was verified by correctly
simulating the failure state of the anti-layered rock slope, and the underlying failure mech-
anism was studied. In recent years, the coupled FEM-DEM approach [23] has been widely
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used. In this method, DEM is used in the discontinuous medium region and FEM is used
in the continuous medium region, and the two regions are connected by defining a special
transition layer, which can be used to simulate the failure process of local discontinuous
and heterogeneous structures. However, DEM and DDA have the following limitations in
practical use: DEM and DDA can usually only simulate two-dimensional models or simple
three-dimensional models; these two methods require many mechanical and kinematic
parameters to be determined before calculation, but the relationship between these parame-
ters and the macroscopic properties of object is not clear; and most importantly, the DEM
and DDA have high requirements for computer performance and are time-consuming
when solving large and complex slope stability problems.

The rigid element method (REM) [24,25] is another numerical method that can simulate
structural planes in rock slopes. The REM regards the system as a mass of rigid elements
connected by springs distributed on contact surfaces, and the strain energy of the structure
is only stored at the interface between the rigid elements. Compared with FEM, REM can
solve the problems of cracking, dislocation, and sliding between elements. Compared
with DEM and DDA, the computational efficiency is greatly improved. However, since
the displacement interpolation function of REM is first-order, the displacement has only
first-order approximation. In addition, the node stress cannot be obtained directly by
REM, but only indirectly by the surface force on the interface. Therefore, the accuracy of
displacement and stress solved by REM is low, which makes it difficult apply to practical
slope stability analysis.

To solve such problems as slope instability, concrete cracking, and opening or closing of
internal contraction joints in the dam, Li [26] proposed an interactive method of partitioned
finite elements and interface elements (PFE-IE). This method divides the structure into
several continuous and locally discontinuous interfaces. Treating nodal displacement as
a variable, the elastic deformation of the continuum is solved using PFE, and the rigid
displacements in each body and the constraining internal forces on the interface are solved
using IE based on the continuous stress condition and the static force equilibrium condition.
The PFE-IE method absorbs the advantages of FEM, DEM, and DDA and partitions the
large-scale model with structural discontinuity and nonlinear mechanical properties so
that each region can be solved independently and the solution speed can be improved.
Moreover, the PFE-IE method can conveniently calculate the stability safety factor of rock
slopes with the SRM [27].

With PFE-IE method, most of the time is spent solving the stiffness matrix of the elastic
body in the slope. However, in practice, when the rock slope is in the limit equilibrium state,
the elastic deformation of the rock mass can be ignored compared with the deformation at
the structural plane. Therefore, we would like to find a new method to treat the rock mass
as a rigid body, which can greatly improve the computational speed with less impact on
the calculation accuracy.

In this paper, the partitioned rigid elements and interface elements (PRE-IE) method
is proposed as an improvement to the existing PFE-IE method: the structure is divided into
several rigid bodies and discontinuous structural planes, on which the partitioned rigid
element and interface element are established, respectively, so that the contact forces and
displacements on the nodes between the rigid elements and the corresponding interface
elements can be coupled. By taking the contact force of node pairs and the displacement of
the rigid body centroid as mixed variables, the Lagrange multiplier method is used to estab-
lish a potential energy functional according to the principle of minimum potential energy.
Then, the governing equations of PRE-IE are obtained through variational calculus and
solved using the nonlinear contact iterative method and the incremental method. Finally,
taking the failure of all contact node pairs as the criterion of slope failure, the stability safety
factor of rock slope can be calculated using SRM. PRE-IE method absorbs the advantages of
PFE-IE method and only performs nonlinear iteration on possible discontinuous structural
planes, which greatly improves the efficiency of numerical calculation.
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The PFE-IE method can be applied to analyze the dynamic stability of a high steep
rock slope [28,29] and can be coupled with the smoothed particle hydrodynamics (SPH)
method to investigate the effects of a landslide-generated wave (LGW) for the the safety of
reservoir areas [30]. As an improvement to the PFE-IE method, the PRE-IE method also has
the potential to solve these problems. Therefore, future research could focus on using the
PRE-IE method to analyze the dynamic behaviors of structures such as slopes, dams, and
retaining walls and investigate the coupling of the PRE-IE method with other emerging
methods [31,32] to monitor the stability of reservoir bank slopes and the structural health
of dams.

2. Theory

A schematic diagram of the PRE-IE method is shown in Figure 1:

(a) There are a large number of joints, fissures, and weak interlayers in the rock slope.
(b) The rock masses are considered as a rigid body, which are connected by discontinuous

structural planes between them. The thicknesses of structural planes are much smaller
than the geometric sizes of adjacent rock masses.

(c) The interface elements are divided on the structure planes, and the corresponding
rigid elements are partitioned, so that the contact forces and displacements of nodes
on the contact interface can be coupled.

(d) The contact node pair can be used to transfer the contact force and judge the contact
mode.

Rock mass

Joint, fissure,weak interlayer

Contact node pair

Rigid body

Structural plane

 (a) Slope Model                                       (b) Theoretical Simplified Model                (c) Mesh Model                (d) Contact Model            

Figure 1. Schematic diagram of the PRE-IE method.

The main theory of the PRE-IE method is based on the innovative modifications of the
PFE-IE method [33], as detailed below.

2.1. Equations of Rigid Element

As shown in Figure 1b, The boundary of the rigid element consists of three parts: the
stress boundary Sσ, the displacement boundary Su, and the interface boundary Si. Since
there is no deformation inside the rigid element, the strain is 0. According to the princi-
ple of virtual displacement, the equivalent integral weak form of equilibrium equations
and boundary conditions of the rigid element can be obtained, which has the following
matrix expression: ∫

Sσ

δuTtdS +
∫

Si

δuT FdS +
∫

V
δuT f gdV = 0 (1)
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where δu is the virtual displacement, t is the surface force on the Sσ, F is the surface force
on the Si, f g is the body force, and V is the integral region of the rigid element. According
to the principle of minimum potential energy, Equation (1) can be expressed as

δΠr
P = 0 (2)

where Πr
P is the potential energy of a rigid element, which can be expressed as

Πr
P =

∫
Sσ

uTtdS +
∫

Si

uT FdS +
∫

V
uT f gdV (3)

The displacement u of any node on a rigid element can be expressed as

u =

 ux
uy
uz

 =

 1 0 0 0 z− zc yc − y
0 1 0 zc − z 0 x− xc
0 0 1 y− yc xc − x 0




uc
x

uc
y

uc
z

θc
x

θc
y

θc
z


= Wγe (4)

where W is the rigid displacement transformation matrix, γe is the displacement of the
rigid body centroid, and (xc, yc, zc) is the coordinates of the rigid body centroid. Substi-
tuting Equation (4) into Equation (3), the potential energy of rigid element can be written
as follows:

Πr
P =

∫
Sσ

γeT
W TtdS +

∫
Si

γeT
W T FdS +

∫
V

γeT
W T f gdV (5)

2.2. Equations of Interface Element

Since the use of non-thickness joint elements may cause the adjacent rigid elements
to overlap, PRE-IE uses thin-layer elements as interface elements [15,16] (as shown in
Figure 1c). In this paper, we take the eight-node hexahedral thin-layer element shown in
Figure 2 as an example. The thickness of the interface element is t, and the mass force is
negligible. According to the principle of virtual displacement, the equivalent integral weak
form of equilibrium equations and boundary conditions of the interface element can be
obtained, which has the following matrix expression:∫

Ω
δεTσdV −

∫
Si

δuT FdS = 0 (6)

where Ω is the integral region of the interface element, ε and σ are the stress and strain
inside the interface, and F is the surface force on the Si. According to the principle of
minimum potential energy, Equation (6) can be expressed as

δΠi
P = 0 (7)

where Πi
P is the potential energy of the rigid element, which can be expressed as

Πi
P =

1
2

∫
Ω

εTσdV −
∫

Si

uT FdS (8)

uup is the displacement of any point on the upper surface of the interface element, and
udown is the nodal displacement, the displacement of any point on the lower surface of the
interface element, which can be expressed as follows:

uup = N1u1 + N2u2 + N3u3 + N4u4 = Nae
up (9)

udown = N1u5 + N2u6 + N3u7 + N4u8 = Nae
down (10)
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where N is the shape function matrix of the four-node quadrilateral isoparametric element,
u is the nodal displacement, ae

up is the nodal displacement array on the upper surface of
the interface element, and ae

down is the nodal displacement array on the lower surface of the
interface element.

x

y
z

1
5

4

2
6

8

3
7t

si

Figure 2. Interface element (eight-node hexahedral thin-layer element).

Then, the displacement difference between upper and lower surfaces ∆u can be
expressed as

∆u =

 ∆ux
∆uy
∆uz

 = uup − udown = Bae (11)

where B is the shape function matrix of the interface element and ae is the nodal displace-
ment array of the interface element, which can be expressed as follows:

B =
[

N1 N2 N3 N4 −N1 −N2 −N3 −N4
]

(12)

ae =



u1
u2
u3
u4
u5
u6
u7
u8


=

[
ae

up
ae

down

]
(13)

Since the element thickness t is small compared to the whole structure, there are only
tangential strains γzx and γzy parallel to the interface and normal strain εz perpendicular to
the interface in the interface element. The strain ε is related to the displacement difference
∆u and is constant in the thickness direction, which can be expressed as follows:

ε =

 γzx
γzy
εz

 =


∆ux

t
∆uy

t
∆uz

t

 =
∆u
t

(14)

the stress σ can be expressed as:

σ =

 τzx
τzy
σz

 =

 tkxx 0 0
0 tkyy 0
0 0 tkzz

 γzx
γzy
εz

 = Dε (15)

where D is the elastic matrix of the structural plane, kzz is the normal stiffness, and kxx and
kyy are the tangential stiffnesses.
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Substituting Equations (11), (14) and (15) into Equation (8), the potential energy of the
interface element can be written as follows:

Πi
P =

1
2

∫
Ω

εT DεdV −
∫

Si

uT FdS

=
1
2

∫
Ω

1
t2 ∆uT D∆udV −

∫
Si

aeT
NT FdS

=
1
2

∫
Ω

1
t2 aeT

BT DBae dV −
∫

Si

aeT
NT FdS

(16)

2.3. Equations of PRE-IE

In order to make the force and displacement of the rigid element and interface element
transfer correctly on the contact surface, the rigid element is partitioned so that the rigid
element and interface element have corresponding nodes on the contact surface (as shown
in Figure 1c). It is also necessary to make the following assumptions about the distribution
modes of contact force and nodal displacement so that the force and displacement of the
rigid element and the interface element can be coupled on the contact surface:

ae = Wγe on Si (17)

F = N p f e on Si (18)

where N p is the interpolation function matrix. By setting different interpolation functions,
the contact force can be interpolated to obtain the linear distribution, quadratic distribution,
or other forms of distribution surface force. In the following numerical examples, the
surface forces are assumed to be linearly distributed. f e is the contact force array of contact
node pairs on the interface element.

By combining Equations (5) and (16), the potential energy equation of PRE-IE can be
obtained. By taking Equations (17) and (18) as constraint conditions, using the Lagrange
multiplier method, the modified functional equation as shown below can be obtained :

Πe
P =

∫
Sσ

γeT
W TtdS +

∫
Si

γeT
W T FdS +

∫
V

γeT
W T f gdV

+
1
2

∫
Ω

1
t2 aeT

BT DBaedV −
∫

Si

aeT
NT FdS

+
∫

Si

λ(ae −Wγe)dS +
∫

Si

µ
(

F − N p f e)dS

(19)

The total potential energy ΠP of a structure is the sum of the potential energy of
each element:

ΠP = ∑
e

Πe
P (20)

The above equation requires that the order of each matrix in the element is the same as
that in the overall structure, so the following transformation matrix needs to be introduced:

f e = G f f (21)

γe = Gγγ (22)

where G f and Gγ are the transformation matrixes, f is the contact force array of overall
structure, and γ is the rigid displacement array of the overall structure.
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The governing equation of PRE-IE shown below can be obtained from Equation (20)
by using the variational calculus:[

K f f K f γ

Kγ f Kγγ

][
f
γ

]
=

[
0
P

]
(23)

where
K f f = −∑

e

∫
Si

Gγ
TW T NT N pG f dS (24)

K f γ = ∑
e

∫
Ω

1
t2 Gγ

TW T BT DBWGγdV (25)

Kγ f = −∑
e

∫
Si

Gγ
TW T N pG f dS (26)

Kγγ = 0 (27)

P = ∑
e

(∫
Sσ

GT
γW TtdS +

∫
V

GT
γW T f g dV

)
(28)

The contact force f and rigid displacement γ can be obtained by solving the Equation (23).

2.4. Nonlinear Contact Iterative Method

The change in nodal displacement on a discontinuous interface will change the contact
mode of the node pair (as shown in Figure 1d), and the change in the contact mode will
lead to a change in the contact force; furthermore, the change in the contact force will affect
the constitutive relation of interface material. This nonlinear problem can be solved using
the contact iterative method below, and the contact model is shown in Figure 3. ξηζ is
the local coordinate system of the contact node pair, f 1 and f 2 are the contact forces of
any contact node pair, and δ is the vertical distance between the node pair, which can be
written as

f 1 = − f 2 =
(

fξ , fη , fζ

)
(29)

δ = (u1 − u2) · ξ (30)

where u1 and u2 are the nodal displacements of the contact node pair.

ξ

ζ

η

f 1

f 2
δ

Figure 3. Contact model of node pair between partitioned rigid elements.

Assuming that the interface material is elastic and perfectly plastic, according to the
Mohr–Coulomb criterion, the contact modes of node pairs can be divided in three modes,
as shown in Table 1. When the contact force or the vertical distance between the node pair
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changes, the contact mode of the node pair will also change. The relevant parameters of
the node pair can be modified using the operations in Table 2.

Firstly, the vertical distance between the contact node pair is δ, which determines
whether the contact node pair is in the close or debonding mode. When the vertical distance
is greater than t + σt/kzz before iteration and less than 0 after iteration, the contact mode is
changed from debonding to close, and the vertical distance is modified to 0 because the
node pairs cannot penetrate each other.

Next, the normal force fξ is used to determine whether the contact node pair will
debond or not. When the normal force is greater than the limit after iteration, the contact
mode is changed from close to debonding. According to the principle that the debonding
node pair cannot transfer the contact force, the contact force is modified to have a small
value of s .

Then, the tangential forces fζ and fη are used to determine whether the contact node
pair will slip or not. When the node pair is in the stick mode and does not yield before the
iteration and then yields after the iteration, the contact mode changes from stick to slip,
and the tangential forces are modified according to the Mohr–Coulomb criterion.

Table 1. Definition of contact mode.

Contact Mode Displacement Criterion Stress Criterion

Debonding δ > t + σt/kzz f 1 = − f 2 = 0

Close Stick 0 ≤ δ ≤ t + σt/kzz fξ < σt A,
√

f 2
ζ + f 2

η < − tan ϕ fξ + Ac

Slip 0 ≤ δ ≤ t + σt/kzz fξ < σt A,
√

f 2
ζ + f 2

η = − tan ϕ fξ + Ac

t is the initial thickness of interface; A is the control area of contact node pair; σt, ϕ, and c are the tensile strength,
internal friction angle, and cohesion, respectively.

Table 2. Contact mode transformation.

Contact Mode Before Iteration After Iteration Modified Parameters

Debonding–close δ > t + σt/kzz δ < 0 δ = 0
Close–debonding fζ < σtA fζ > σt A f 1 = − f 2 = s

Stick–slip fξ < σt A
√

f 2
ζ + f 2

η > − tan ϕ fξ + Ac
α1 =

∣∣ fζ

∣∣/√ f 2
ζ + f 2

η

α2 =
∣∣ fη

∣∣/√ f 2
ζ + f 2

η

fζ = α1
(
− tan ϕ fξ + Ac

)
fη = α2

(
− tan ϕ fξ + Ac

)
When the contact node pair is in the close mode, according to the equivalent defor-

mation, the normal stiffness kzz can be taken as E/t, where E is the elasticity modulus of
the structural plane based on the test and t is the thickness of the interface. However, the
normal compression deformation is not the main cause of slope failure, and to prevent
the excessive interpenetration of the node pair and ensure the normal displacement co-
ordination of the rigid element and interface element on the contact surface, the normal
stiffness can be taken as a value according to experience, such as kzz = 107 kN/m3. When
the contact node pair is in the debonding mode, a small value of kzz is taken as the normal
stiffness, such as kzz = 10 kN/m3.

Different nonlinear elastic models can be used for tangential stiffness kxx and kyy
according to the mechanical properties of the structural plane. The following Clough–
Duncan hyperbolic model [6] is used for the numerical examples in this paper (assuming
that the tangential modulus is isotropic):

kxx = kyy = k1γw

(
σn

Pa

)n(
1−

R f τ

σn tan ϕ1

)2

(31)
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where γw is the volumetric weight of water; Pa is the atmospheric pressure, k1, n, R f ,
and ϕ1 are model parameters; which can be obtained using the direct shear test; and σn
and τ are the normal stress and tangential stress, which can be obtained by dividing the
contact force f by the nodal control area A. In the iteration, the contact force which is
that by the operations in Table 2 needs to be substituted into Equation (31) to modify the
interface stiffness.

When modifying the parameters using the operations in Table 2, the excess contact
force can be obtained by subtracting the initial contact force from the modified contact
force. According to the interpenetration control method proposed by Desai [16], the excess
contact force can also be obtained by multiplying the difference between the modified
vertical distance and the initial vertical distance by the normal stiffness. In the iteration, the
excess contact force is converted into the equivalent node load and carried into the next
incremental iteration as the incremental load.

2.5. Solutions of PRE-IE Equations

The governing equations of PRE-IE can be solved by using the incremental method
and the contact iterative method above. The flow chart is shown in the Figure 4.

Figure 4. Iterative solution of PRE-IE equations.

3. Slope Stability Analysis

According to the FEM-SRM proposed by Zienkiewicz [7], the PRE-IE method can
also be combined with the SRM to calculate the slope safety factor and analyze the slope
stability. In order to improve the reduction efficiency, we also need to find a new failure
criterion suitable for the PRE-IE method.
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3.1. Strength-Reduction Method

Duncan [34] states that the slope safety factor can be defined as “the factor by which
the shear strength of soil would have to be divided to bring the slope into a state of barely
stable equilibrium”. Therefore, we can obtain the safety factor via the following method:

c′ =
c
Fs

(32)

ϕ′ = arctan
(

tan ϕ

Fs

)
(33)

where c is the cohesive force and ϕ is the internal friction angle. These two strength
parameters are divided by the reduction coefficient until slope failure occurs, and the
reduction coefficient Fs is exactly the safety factor.

With the PRE-IE method, the failure of the slope is limited to the structural plane, So
when using SRM, only the strength parameters in the interface element need to be reduced.

3.2. Criteria of Slope Failure

The following three criteria are often used in slope stability analysis when using the
SRM [35].

(1) Non-convergence of the solution.
When slope failure occurs, it is impossible to find a solution from the governing
equations that can not only satisfy the static equilibrium but also satisfy the stress–
strain relationship and strength criterion, so in this case, neither the displacement
solution nor the force solution converges. Therefore, many numerical methods take
non-convergence as the criterion of slope failure. However, when the slope does not
fail but has large deformation, the solution will also not converge, so it is necessary to
combine other criteria to judge the stability of the slope.

(2) A plastic zone going through the slope from the bottom to the top.
This is only a necessary condition for slope instability, but not a sufficient condition.
Because the plastic zone penetration does not necessarily represent the failure of the
structure, the slope will be unstable only when there is infinitely developing plastic
deformation and large displacement on the slip surface.

(3) Displacement mutation
Zienkiewicz used it as a failure criterion when he proposed the SRM. By focusing on
the nodal displacement on the slope, with the extension of the plastic zone and the
increase in the number of iterations, the displacement will mutate somewhere and the
slope will become unstable. However, when the slope failure occurs, not all the nodal
displacements will change dramatically, so it is necessary to select and observe the
node with the obvious displacement mutation artificially; as a result, the judgment
may be subjective.

According to the characteristics of the above criteria, a slope failure criterion suitable
for the PRE-IE method can be obtained through the following example.

3.3. Slope Failure Criterion Suitable for the PRE-IE Method

A rock slope with an inclined weak structural plane is a classic example in slope
stability analysis. The slope model is shown in Figure 5: a vertical concentrated load
F = 1500 kN is applied to the midpoint of a strip foundation, the angle between the weak
structural plane and the horizontal direction is 45◦, the gravity of slope is not considered,
and there are displacement constraints on the right and bottom of the slope. The material
properties of the structural plane are cohesion c = 200 Pa, friction angle ϕ = 0◦, elasticity
modulus E = 1.0 × 105 Pa, and Poisson ratio ν = 0.495. It can be obtained from the
calculation that the theoretical safety factor K∗ = 1.333.
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Figure 5. Rock slope model with an inclined weak structural plane.

The mesh model is shown in Figure 6. The slope is divided into rigid elements I and II,
which are connected by an interface element with nine contact node pairs. Under the initial
condition, all node pairs are in the stick mode. When the node pair changes to debonding
or slip mode, the node pair is regarded as a failure. Using the PRE-IE method andthe
SRM described above, we can obtain the rigid displacements of element I centroid and the
number of failed node pairs under different reduction coefficients. The results are shown
in Table 3 and Figure 7.

x

y

z

GiD

1

2

3

4

5

6

7

8

9

Figure 6. PRE-IE mesh model with 9 contact node pairs.

It can be seen from Table 3 and Figure 7 that when the reduction coefficient increases
from 1.0 to 1.333, the rigid displacement of the element I centroid is almost unchanged, and
the number of failure node pairs is gradually increasing. When the reduction coefficient
exceeds 1.333, the rigid displacement of the element I centroid changes dramatically, and
all node pairs on the interface debond or slip. It can be seen in Figure 7 that when the
Reduction coefficient is 1.333, there is an obvious displacement mutation in the X direction,
and all node pairs fail. Therefore, we can draw a conclusion: when the reduction coefficient
gradually approaches the theoretical safety factor, the contact node pairs on the interface
will gradually slip or debond, and finally, all the node pairs will not stick while the slope
failure occurs. Figure 8 is the Mises stress contour plot of the interface element when the
reduction coefficient is 1.334. From Figure 8a, we can see that all the node pairs are in the
stick mode before the iteration, and the stress is concentrated in the middle part of the
interface element. After the nonlinear contact iterative method described in Figure 4 is used,
all the node pairs change to the slip mode. Therefore, it can be seen from Figure 8b that
the stress is modified and redistributed according to Table 2, which satisfies the criterion
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of plastic zone penetration. Accordingly, the failure of all node pairs on the interface
indicates that the infinitely developing plastic deformation appears on the slip surface. At
the same time, there is no need to set convergence criteria and select nodes to observe the
displacement mutation, which prevents the subjective effect on the safety factor. To sum
up, the failure of all the contact node pairs is very suitable to be used as the slope failure
criterion of PFE-IE method.

Table 3. Results for different reduction coefficients.

Reduction Coefficient
Fs

Displacement /m Number of Failure Node Pairx y

1.000 −0.0112 −0.017 0
1.100 −0.0112 −0.017 2
1.200 −0.0116 −0.0175 6
1.300 −0.0100 −0.0174 8
1.330 −0.0107 −0.0178 8
1.333 −0.0108 −0.0178 8
1.334 −0.0333 −0.0403 9
1.340 −0.2348 −0.2419 9
1.350 −0.5667 −0.5737 9
1.360 −1.0399 −1.0471 9
1.370 −1.4158 −1.4229 9

Failure of all node pairs 

Displacement mutation

Figure 7. Relationship curve between reduction coefficient with displacement in the x direction and a
number of failure node pairs.

y
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(a) Before iteration (stick mode)
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(b) After iteration (slip mode)

Figure 8. Mises stress contour plot of the interface element when the reduction coefficient is 1.334 (Pa).

3.4. Safety Factor Search Method

In the conventional FEM-SRM, in order to make the displacement mutation obvious
and easy to observe, the increment of the reduction coefficient will be taken as a small value
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in the reduction calculation, which makes the reduction occur too many times and become
time-consuming. However, with the PFE-IE method, the failure of all node pairs is taken
as the criterion of slope failure, so with reference to the bracketing and bisection method
proposed by Dawson [36], the safety factor search method shown in Figure 9 can be used
to obtain the safety factor efficiently.

Stability analysis by PFE-IE method

Stability analysis by PFE-IE method

Start

Input data

Safety factor search interval 

End

Figure 9. Safety factor search method.

[Fa, Fb] is the initial search interval for the safety factor, m is the iteration coefficient
greater than 1, N is the number of contact node pairs, Na and Nb are the number of failure
node pairs when the safety factors are Fa and Fb. respectively. After the search interval is
determined using the bracketing method, the safety factor of slope can be obtained using
bisection method.

4. Numerical Example

Two typical numerical examples are used to verify the reliability and validity of the
PRE-IE method in slope stability analysis.

4.1. Stability Analysis of the Symmetrical Wedge

The stability analysis of a rock slope containing a symmetrical wedge is a classic
three-dimensional limit equilibrium problem, which is often used to verify the correctness
and rationality of a new numerical method. Hoek [37] and Li [27] have solved this problem
using different methods. The overall model is a homogeneous rock slope composed of
bedrock and a symmetric wedge, as shown in Figure 10. The structural model of the
symmetric wedge is shown in Figure 11. The maximum height of the wedge is 64.89m, and
its attitude is listed in Table 4. The left and right sides of the wedge are weak structural
planes, on which the interface elements are built.

Table 4. The attitude of the symmetric wedge.

Surface L-WSP R-WSP Top Surface Front Surface

Dip angle/(◦) 45 45 10 60
Dip direction/(◦) 115 245 180 180
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Figure 10. Rock slope model containing a symmetrical wedge [27].

64.89m

Front surface

Right weak structural plane
(R-WSP)

Left weak structural plane
(L-WSP)

Top surface

Figure 11. Structural model of the symmetric wedge [27].

Both the bedrock and the wedge are considered rigid elements, so only their density
needs to be considered. The material properties are listed in Table 5. The values of model
parameters k1, n, R f , and ϕ in Equation (31) are 4800, 0.56, 0.74, and 36◦. The tensile
strength of the structural plane is 0.

Table 5. Material properties of the rock mass and structural plane.

Material E/(GPa) v c/(kPa) ϕ/(◦) ρ/(kg/m3)

Rock mass - - - - 2600
Structural plane 1 0.3 50 20 2000

The displacement distribution of the symmetric wedge on the YZ cross-section is
shown in Figure 12 when the slope failure occurs with the PRE-IE method. Since the
wedge is regarded as a rigid body, the displacement can be decomposed into translational
displacement along the intersection of the left and right structural planes and rotational
displacement around the centroid of the wedge. The following observations can be made
based on the figure. The wedge mainly slides along the intersection of the left and right
structural planes. At the same time, due to gravity, the lower part of the wedge has a larger
vertical displacement compared to the upper part, which causes the wedge to have a small
rotation around the centroid. This displacement model is consistent with the practical
situation of slope failure.
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Figure 12. Displacement distribution of the symmetric wedge on the YZ cross-section.

The values of the safety factor are shown in Table 6. The analytical solution of the
slope safety factor given by E. Hoek is 1.556. Li treats the slope as an elastic body and
uses the PFE-IE method with SRM to obtain the safety factor of 1.554. In this paper, the
safety factor 1.554 is calculated via the PRE-IE method with SRM, which uses the slope
failure criterion proposed above. Figure 13 shows the maximum and minimum y-direction
displacements of the wedge on the XY cross-section: (a) is the result calculated using the
PRE-IE method proposed in this paper, and (b) is the result calculated using the PFE-IE
method. Compared with the PFE-IE method, the PRE-IE method treats the wedge as a rigid
body, and its elastic deformation was not taken into account; the maximum displacement
increased by 3.98%, the minimum displacement increased by 5.45%, and the displacement
distribution was the same. It can be seen from the above results that although there are
some differences in the displacement calculated using the two methods, the safety factor
is the same and very close to the analytical solution. Therefore, when the external load
is only self-weight, the failure of the slope mainly exists in the weak structural plane, the
elastic deformation of the rock mass has little influence on the safety factor, and the PRE-IE
method can be used to calculate the slope-stability safety factor.

Table 6. Comparison of safety factor values obtained with various methods.

Analytical Solution PFE-IE [27] PRE-IE

1.556 1.554 1.554

The computation time of two numerical methods is shown in Table 7. The total
computation time of PRE-IE method is only 5 s. When using the incremental method to
solve the governing equation of PFE-IE, the nodal displacement increment includes elastic
displacement and rigid displacement, and most of time is spent on solving the stiffness
matrix of the elastic part in the element. Moreover, the elastic deformation of the element
makes the contact node pairs more likely to debond and penetrate, which requires several
modifications to the parameters. Therefore, each iteration takes a lot of time, and the total
computation time is 305 s. For large practical slope-stability problems, the parameters need
to be reduced many times and the equations need to be repeatedly calculated. In this case,
the PRE-IE method can greatly improve the computation speed.
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Figure 13. Maximum and minimum y-direction displacements of the wedge on the XY cross sec-
tion [27].

Table 7. Computation times of two numerical methods.

Numerical Method Single Iteration Time (s) Total Time (s)

PRE-IE 1 5
PFE-IE 52/54/63/68/70 305

4.2. Stability Analysis of a Slope with Circular Slip Surface

A circular slip surface is a common type of slip surface in slope stability analysis. The
following numerical example is of a homogeneous slope with a circular slip surface. The
schematic diagram of the circular slip surface is shown in Figure 14, and the slip surface
equation is shown below:

(x− 40)2

1600
+

y2

800
+

(z− 40)2

1600
= 1 (34)

ox

z

40m

40
m

40m

z

y

40m

o

Figure 14. Schematic diagram of the circular slip surface.
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The mesh model of the slope is shown in Figure 15. The model is divided into two rigid
elements—the rotational sliding mass (gray) and the rock bed (blue)—and the interface
elements (fuchsia) are on the circular slip surface between them.

Figure 15. PRE-IE mesh model of the slope with a circular slip surface.

The material properties are listed in Table 8. The values of model parameters k1, n, R f ,
and ϕ in Equation (31) are 4800, 0.56, 0.74, and 36◦, respectively. The tensile strength of the
structural plane is 0.

Table 8. Material properties of the rock mass and slip surface.

Material E/(GPa) v c/(kPa) ϕ/(◦) ρ/(kg/m3)

Rock mass - - - - 2200
Slip surface 1 0.1 30 30 2000

After using the PRE-IE method combined with SRM, the slope failure is shown to
occur when the reduction coefficient is 1.464, and the failure model of slope is shown in
Figure 16 (since the displacement is very small, it is magnified three times in order to make
the failure model more obvious). It can be seen from the figure that the rotational sliding
mass slides along the circular slip surface, which is consistent with the practical situation
of slope failure.

The safety factors calculated with different methods are shown in Table 9. The Felle-
nius method does not consider the side force of the slice, so the safety factor calculated is
significantly smaller than that of other methods. Both the Janbu method and the Bishop
method take into account the side force between slices, and the Bishop method also con-
siders the moment equilibrium, so the calculated safety factor is larger than that of the
Sweden slice method. The above methods cannot satisfy horizontal force equilibrium, and
the improved LEM proposed by Li Tonglu [38] can satisfy all conditions of equilibrium and
supposes all the slices are in limit equilibrium, so the maximum safety factor is calculated.
The PFE-IE method regards the slope as an elastic body, while the PRE-IE method regards
the slope as a rigid body. Neither methods needs to consider the distribution of the inter-
slice forces, and each can satisfy all of the requirements for a statically admissible solution.
Moreover, the kinematically admissible velocity discontinuities are permitted along the
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interface according to the nonlinear-contact iterative method. Therefore, the calculated
safety factor is between the lower bound limit analysis and upper bound limit analysis,
which is close to the practical condition. The above results prove that the PRE-IE method
can effectively calculate the slope stability safety factor when the slip surface is circular.

Figure 16. Failure model of the slope after the PRE-IE method is used combined with SRM (reduction
coefficient is 1.464).

Table 9. Values of safety factors from different methods.

Method PRE-IE Fellenius Janbu Bishop PFE-IE Improved LEM [38]

Safety factor 1.464 1.15 1.25 1.30 1.42 1.48

5. Conclusions

In this paper, the PRE-IE method is proposed for analyzing the stability of rock slopes
with joints, cracks, and weak interlayers. The structure is modeled as consisting of several
rigid bodies and discontinuous structural planes, which are divided into partitioned rigid
elements and interface elements to couple contact forces and displacements on the node
pairs. The contact force of node pairs and the displacement of the rigid body centroid are
taken as mixed variables, and the governing equations of PRE-IE are established using
the Lagrange multiplier method based on the principle of minimum potential energy.
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These equations are then solved using the nonlinear contact iterative method and the
incremental method.

• By incorporating the advantages of the PFE-IE method, the PRE-IE method performs
nonlinear iteration only on potential discontinuous structural planes, significantly
improving computational efficiency while minimally affecting calculation accuracy.

• The criterion for slope failure, which considers the failure of all contact node pairs,
provides an objective measure and eliminates the potential impact of personal bias on
safety factor calculations.

• Two numerical examples are utilized to verify the correctness and validity of the
PRE-IE method. The results demonstrate that the calculated slope failure pattern is
consistent with real situations.

• Through a comparative analysis of the safety factor calculated using the PRE-IE
method and those obtained from other different methods, it is shown that the PRE-IE
method, in conjunction with the SRM, is well suited for analyzing rock slope stability
problems.

• While the PRE-IE method presented in this paper focuses on static stability problems,
previous studies have applied the PFE-IE method to dynamic problems. In future
studies, by modifying the equations of PRE-IE from static equilibrium to dynamic
equilibrium and enhancing the nonlinear contact iterative method, the PRE-IE method
can be extended to analyze the dynamic stability of structures such as slopes or dams.
Furthermore, exploring the integration of the PRE-IE method with other innovative
approaches for monitoring the stability of reservoir bank slopes and ensuring the
structural safety of dams holds significant potential for future research.
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PRE-IE Partitioned rigid element and interface element
PFE-IE Partitioned finite element and interface element
SRM Strength-reduction method
LEM Limit equilibrium method
LAM Limit analysis method
FEM Finite element method
XFEM Extended finite element method
DEM Discrete element method
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