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Abstract: Considering the change of different soil layer parameters of a two–layered strip foundation,
a planar kinematically permissible multi–block failure mechanism of a two–layered strip foundation
under vertical uniform load is formulated. Based on upper–bound limit analysis theorem, the solution
process of ultimate bearing capacity of a two–layered strip foundation is proposed. The improved
radial movement optimization (IRMO) could search the critical slip surface of the foundation and
calculate associated ultimate bearing capacity. On this basis, analyze the influence parameters. The
results show that the IRMO algorithm is feasible, stable, and efficient in solving the ultimate bearing
capacity. With the increase in the internal friction angle and cohesion of the two–layered strip
foundation, the critical slip surface will expand more deeply, and the ultimate bearing capacity will
increase. The influence of upper soil parameters on the calculation results is greater than that of lower
soil. For the case with upper–hard soil, the ultimate bearing capacity of it increases gradually with
the increase in the H/B ratio. For the upper–soft case, the ultimate bearing capacity of it decreases
gradually with the increase in the H/B ratio. Moreover, the increase of ground overload will also
cause a linear–increasing in the ultimate bearing capacity.

Keywords: improved radial movement optimization (IRMO); two–layered soils; upper–bound limit
analysis theorem; ultimate bearing capacity of strip foundation; vertical uniform loading

1. Introduction

Numerous practical projects widely use two–layered strip foundations. To reason-
ably determine the ultimate bearing capacity of two–layered strip footing, scholars have
conducted many studies on the solution methods, such as the diffusion angle method [1],
the Hanson weighted average method [2], shear failure theory [3,4], and the limit analysis
method [5–7]. These methods only take into account the velocity model and soil energy
dissipation when applying the upper–bound limit analysis theorem. With this approach,
the ultimate load can be solved immediately without the complex elastic–plastic body
being deformed. The upper–bound limit analysis theory has nonetheless been adopted by
numerous researchers due to its simplicity even if it frequently somewhat overestimates
the ultimate load. Two–layered soils differ mechanically from homogeneous soil founda-
tions in that they have more complex failure modes and bearing processes. The ultimate
carrying capability of a layered soil foundation must therefore be determined differently.
Determining the ultimate bearing capacity of a two–layered foundation is crucial in both
theory and practice. Scholars have relatively limited research on the critical sliding surface
of double–layer foundations. Therefore, studying the ultimate bearing capacity of double–
layer foundations has great practical significance. How to determine the critical sliding
surface of double–layer foundations and calculate the corresponding ultimate bearing
capacity of foundations to reasonably evaluate the safety status of foundations is still a
subject that needs to be continuously improved.
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With the development of numerical methods, the finite element method is more and
more used to study the ultimate bearing capacity of foundation. Lee [8] used FEM to
calculate the numerical results of the undrained vertical bearing capacity of a rough ring
foundation on two layers of clay, and compared the small displacement finite element
prediction with existing experience, analysis, and numerical solutions to determine the
coupling effects of the dimensionless parameters. Tootoonchi [9] proposed a smooth
spread method based on enrichment elements for numerical modeling of regions including
weak and strong discontinuities. The triangular background grid is used to discretize the
region. Kalourazi [10] mainly studied the influence of shear strength anisotropy on the
bearing capacity of surface foundation near the slope. The lower limit analysis method is
used with finite element and linear programming techniques to predict the limit pressure.
Experimental methods can also be used to analyze the mechanical properties of layered
soil. Jiao [11] analyzed the mechanical properties of backfill soil when the bedding plane is
inclined, and as the dip angle of the interlayer increases, the crack distribution of the fine
filler becomes more concentrated.

Numerous studies have been conducted recently on various optimization techniques to
locate the crucial slip surface and ascertain the ultimate bearing capacity of the foundation.
Based on the limit analysis, Lin et al. [12] created an optimization model of the two–layered
clay foundation through the rigid block discrete system, then used the dichotomy method
to find the critical slip surface and determine the ultimate bearing capacity. By using
an updated Hoek–Brown failure criterion, Hazim AIKhafaji [13] examined the bearing
capacity of a shallow rigid foundation on rock mass under horizontal seepage. Yang
XL [14] used the upper–bound theorem in conjunction with the spatial discretization
technique to calculate the ultimate bearing capacity of the foundation in nonhomogeneous
and anisotropic clays. For the reinforced foundation under the strip footing, Liu [15,16]
combined the critical sliding field method with the limit equilibrium slice method to locate
the critical slip surface and compute the related ultimate bearing capacity. The ultimate
bearing capacity of a cohesionless soil foundation was calculated by Zhang R [17] using
the multi expression programming method. Jin et al. have investigated the critical slip
surface and associated ultimate bearing capacity for unsaturated soil foundations (Jin and
Pan [18], Jin and Zhang [19]), nonhomogeneous clay foundation adjacent to slopes (Jin
and Feng [20]), and strip footing on sands (Jin and Zhang [21]) using the IRMO algorithm.
In the analysis of the ultimate bearing capacity of double–layer foundation, due to the
different parameters of each soil layer, the upper bound method is used to consider the
more complex velocity field of the maneuvering permission, and a more precise analysis of
the velocity field is needed to reduce errors in calculating the ultimate bearing capacity of
the foundation.

The difference of the two–layered strip foundation soils mechanical characteristics
give rise to more complex rigid block partitioning situations, which usually result in more
complex computing procedures and more computations. Based on the upper–bound limit
analysis theorem, this study develops a multi–block failure mechanism that is planarly
kinematically acceptable. The IRMO algorithm is used to compute the ultimate bearing
capacity of a two–layered strip foundation while simultaneously identifying a crucial slip
surface and optimizing both procedures. It is also examined how the characteristics of the
soil layers, the thickness of the upper soil, and overload affect the critical slip surface and
the ultimate bearing capacity.

2. Multi Rigid Block Failure Mechanism
2.1. Two–Layered Strip Foundation Failure Mode

In terms of the different soil characteristics of a two–layered strip foundation, this
paper makes the following assumptions before analyzing the bearing capacity of the
foundation:

1. The two–layered soils are assumed as elastic–perfectly plastic material, and the soils
above the base level are simplified as overload q on both sides of the foundation.
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2. Two–layered soils are subjected to the associated flow rule and Mohr–Coulomb
yield criterion.

3. The foundation is assumed to be relatively still, and its base surface is assumed to be
completely rough.

4. The foundation moves downward at an assumed vertical speed v0.

Based on the above assumptions, a planar kinematically permissible multi–block
failure mechanism under vertical uniform load is established (Take the right half for a
diagram), as shown in Figure 1a. B0 is the width of the strip footing, H is the thickness
of the upper soil, Pu is the vertical uniformly distributed load, q is the overload on both
sides, and v0 is the vertical downward speed of the strip foundation. ϕ1, γ1, c1 and ϕ2,
γ2, c2 are the internal friction angle, soil weight, and cohesion of the upper and lower soil,
respectively. In this model, the base angle of the isosceles triangle is marked as θ, and
base edge length is B0. Starting from the rigid block ABC, the remaining rigid blocks are
numbered to the nth block in turn from the left to right. For each rigid block, its angle
variable is recorded as αi (i = 1, 2, 3, . . . , n), βi (i = 1, 2, 3, . . . , n), and the side length is
recorded as li (i = 1, 2, 3, . . . , n), di (i = 1, 2, 3, . . . , n). The side length can be calculated
through the geometric relationship of triangles, and the area of each rigid block is recorded
as SABC, Si (i = 1, 2, 3, . . . , n). It should be mentioned that, due to the uncertain position of
the soil layer boundary, the multi–rigid block failure mechanisms for the two–layered strip
foundation are discussed with three cases herein. The soil layer boundary passes through
the stiff block ABC in the first case, which is depicted in Figure 1a. The second case is that
the soil layer boundary line does not pass through rigid block ABC but passes through
some subsequent rigid blocks, which is depicted in Figure 1b. The third case is that the soil
layer boundary is completely placed under the foundation failure mechanism, as shown in
Figure 1c.

Since the weight of the upper and lower soil layers is different, it is necessary to
calculate the gravity of the rigid block of different soil layers. Thus, the superscripts u (up),
m (middle), and d (down) are used to differ the variables of the rigid block in the upper
and lower soil layers, respectively.

Figure 1. Cont.
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Figure 1. Three Cases of Two–Layered Strip Foundation Failure Mechanism: (a) Failure mechanism
of the soil layer passing through the rigid block ABC; (b) Failure mechanism of the soil layer not
passing through the rigid block ABC but through the subsequent rigid block; (c) Failure mechanism
with the soil layer completely under the rigid block.

The rigid blocks in the multi–rigid block failure mechanism of the two–layered strip
foundation are divided into three types to calculate their area. The rigid block ABC is
Type I. The failure mechanism of a stiff block of Type II only penetrates the top layer of soil,
while that of Type III penetrates two soil layers.
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(1) Type I

When calculating Type I, there are two cases, that is, whether Type I passes through
the upper and lower soil layers at the same time, as shown in Figure 2a,b.

Figure 2. Schematic diagram of rigid block calculation for failure mechanism Type I: (a) Rigid block
ABC not passing through the soil layer; (b) Rigid block ABC passing through the soil layer.

It is necessary to determine whether the rigid block ABC passes through the two layers
soil by Equation (1). If Equation (1) is valid, Type I passes through the two–layered soil,
and is calculated according to Figure 2a. The area expression is shown in Equation (2),
otherwise, Type I does not pass through the two–layered soil. It is calculated according to
Figure 2b, and the area expression is shown in Equation (3).

B0

2
× tan θ > H (1)

SABC =

(
B2

0
2

)
tan θ (2)

Su
ABC= H

(
B0 − H

tan θ

)
Sd

ABC =
(

B0
2

)2
tan θ − Su

ABC

 (3)

where SABC represents the area of the rigid block in Figure 2a. Su
ABC represents the area

containing only upper soil in Figure 2b. Sd
ABC represents the area of the lower triangle in

Figure 2b.

(2) Type II and Type III

For other rigid blocks i except for Type I, it is necessary to determine whether the rigid
block belongs to Type II or Type III by Equation (4). When Equation (4) is valid, it means
that the rigid block i passes through the two–layered soil, which belongs to Type III. The
rigid block needs to be divided into two rigid blocks, namely, iu and id, for calculation.
Otherwise, it means that the rigid block i belongs to Type II, which can be calculated directly.

li × sin

(
θ+

i−1

∑
i=1

αi

)
> H (4)

The triangular rigid block i of Type II is shown in Figure 3, and its variable expression is
shown in Equation (5):

Si =
1
2

lidisin βi (5)

where li and di represent the two side lengths of the rigid block i, and Si represents the area
of the rigid block i.
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Figure 3. Calculation Diagram of Type II of Failure Mechanism.

For the triangular rigid block of Type III, the rigid block id is composed of a triangle.
Since the rigid block iu is in two layers of soil, it will be divided into two areas, namely, Su

i
and Sm

i , as shown in Figure 4. The area expression such as Equations (6)–(8):

Su
i =

1
2

lu
i lm

i sin

(
θ+

i−1

∑
i=1

αu
i

)
(6)

Sm
i =

1
2

du
i lm

i sin

(
β − θ −

i−1

∑
i=1

αu
i

)
(7)

Sd
i =

1
2

dd
i ld

i sin
(

βd
i

)
(8)

where the parameters with superscripts u and d represent the parameters on the corre-
sponding small rigid block after the rigid block of Type III is divided into upper and lower
rigid blocks iu and id. lm

i is the length of the soil layer boundary line passing through the iu

rigid block. Su
i refers to the area where the iu rigid block belongs to the upper soil. Sm

i is
the area of the iu rigid block that belongs to the subsoil. Sd

i is the area of the id rigid block.

Figure 4. Calculation Diagram of Type III of Failure Mechanism (The bottom edge of the rigid block
under the soil layer).

The transition of two types of different rigid blocks needs to be calculated separately,
as shown in Figure 5. It means that the area formula will be different from the above
situation when the type III rigid block is transformed into a Type II rigid block. Sm

i means
that the soil layer where the area is located has changed, but the solution idea is similar, so
it will not be repeated here.
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Figure 5. Calculation Diagram of Type III of Failure Mechanism (The bottom edge of the rigid block
is above the soil layer).

2.2. Establishment of the Permissible Velocity Field

To do an upper-bound analysis of strip footing under vertical uniform load, a flexible
permitted velocity field must be created for each rigid block. The allowable velocity field
can be determined using the triangular geometric relationship of the allowable velocity
field. The absolute and relative velocity vectors of three types of rigid blocks are analyzed
and solved, respectively:

In Equations (9)–(33), the internal friction angle of the upper soil is ϕ1. The internal
friction angle of the soil is ϕ2. θ is the bottom angle of rigid block ABC. ∑i−1

i=1 αi is the sum of
i − 1 triangle the rigid block’s top angle α1 before rigid block i. βu

i is the bottom angle β of
rigid block iu. θu

i , θv
id and θv

iu represents the absolute velocity vector direction angle of rigid
block i, rigid block id, and rigid block iu, where θv

i is determinable. vi, vid and viu represents
the absolute velocity vector of rigid block i, rigid block id, and rigid block iu. The relative
speed between the two rigid blocks, i − 1 and i, is represented by vi−1,i. The expression of
relative velocity between the other rigid blocks is similar, so it will not be repeated.

For rigid block: Type I

When the two–layered strip foundation fails, rigid block ABC of Type I is designed to
travel vertically downward at a speed of v0.

For rigid block: Type II

During the analysis of Type II, due to the uncertainty of the relative motion direction
between rigid blocks, there are two cases of compatible velocity relationship between rigid
blocks i and rigid blocks i − 1, as shown in Figure 6.

Figure 6. Two different cases of permissible velocity field between rigid blocks i − 1 and i: (a) The
relative velocity vi−1,i between rigid blocks i and i − 1 face upwards along the velocity disconti-
nuity; (b) The relative velocity vi−1,i between rigid blocks i − 1 and i face downward along the
velocity discontinuity.
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According to the compatible velocity vector triangle in two cases, we can calculate
vi−1,i using the Equations (9) and (10) or the Equations (11) and (12).

Case: II–1: (Figure 6a)

For Figure 6a, the relative velocity vi−1,i between rigid blocks i and i − 1 face upwards
along the velocity discontinuity and form an angle ϕ1.

vi =
sin
(

π
2 +ϕ1+θv

i−1 − θ − ∑i−1
i=1 αi

)
sin
(
−π

2 − ϕ1 − θv
i +θ+∑i−1

1 αi

)vi−1 (9)

vi−1,i =
sin
(
θv

i − θv
i−1
)

sin
(
−π

2 − ϕ1 − θv
i +θ+∑i−1

i=1 αi

)vi−1 (10)

Equation (11) applies to case: II −1: (Figure 6a):

θv
i > θv

i−1

−π
2 < ϕ1+θv

i−1 − θ −
i−1
∑

i=1
αi <

π
2

π
2 < −ϕ1 − θv

i +θ+
i−1
∑

i=1
αi <

3π
2

 (11)

Case: II–2: (Figure 6b)

In the second case in Figure 6b, the relative velocity vi−1,i between rigid blocks i − 1
and i face downward along the velocity discontinuity ϕ1.

vi =
sin
(

π
2 +ϕ1 − θv

i−1+θ+∑i−1
i=1 αi

)
sin
(

π
2 − ϕ1+θv

i − θ − ∑i−1
i=1 αi

) vi−1 (12)

vi−1,i =
sin
(
θv

i−1 − θv
i
)

sin
(

π
2 − ϕ1+θv

i − θ − ∑i−1
i=1 αi

)vi−1 (13)

To make Equations (12) and (13) work, the following requirements need to be met:

θv
i < θv

i−1

−π
2 < ϕ1 − θv

i−1+θ+
i−1
∑

i=1
αi <

π
2

−π
2 < −ϕ1+θv

i − θ −
i−1
∑

i=1
αi <

π
2

 (14)

It should be noted that when the rigid block (i − 1) belongs to Type III, that is, at
the joint of two types of rigid blocks, vi−1, θv

i−1 and vi−1,i in the above formula should be
changed to vi−1u , θv

i−1u and vi−1u ,i for calculation.

For rigid block: Type III

The velocity vector solution of Type III shall be divided into two rigid blocks: iu and id.
Rigid block iu and id are, respectively, the upper and the lower parts of each rigid block i
of Type III separated by the intersection of the boundary line of the foundation soil layer
and the triangle edge connecting the vertex of the triangle. In the calculation process, it
is necessary to analyze the permissible velocity relationship between rigid block i − 1u

and rigid block id, rigid block i − 1u and rigid block iu, rigid block id and rigid block iu.
Then, the relative velocity of rigid block iu and id are solved simultaneously through the
permissible velocity relation.

Type III–id:
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According to the relationship of permissible velocity between rigid block i − 1u and id,
the direction angle of the velocity vector of rigid block id can be obtained as Equation (15).

θv
id =

π

2
− βid+ϕ2+θ+

i−1

∑
i=1

αu
i (15)

As shown in Figure 7, there are two cases of permissible velocity relationship between
rigid block i − 1u and id:

Figure 7. Two different cases of permissible velocity fields between rigid block i − 1u and id: (a) The
relative velocity vi−1u ,id between the rigid block i − 1u and id face upwards along the velocity

discontinuity; (b) The relative velocity vi−1u ,id between the rigid block i − 1u and id face downward
along the velocity discontinuity.

According to the compatible velocity vector triangle in two cases:

Case: III–id rigid block −1 (Figure 7a)

For Figure 7a, the relative velocity vi−1u ,id between the rigid block i − 1u and id face
upwards along the velocity discontinuity and forms an angle ϕ2.

vid =
sin(π

2 +ϕ2+θv
i−1u − θ − ∑i−1

i=1 αu
i

)
sin(π

2 − ϕ2 − θv
id+θ+∑i−1

i=1 αu
i

) vi−1u (16)

vi−1u ,id =
sin(θ v

id − θv
i−1u

)
sin(π

2 − ϕ2 − θv
id+θ+∑i−1

i=1 αu
i

)vi−1u (17)

Requirements of Equations (16) and (17):

θv
id> θv

i−1u

−π
2 < ϕ2+θv

i−1u − θ −
i−1
∑

i=1
αu

i < π
2

−π
2 < −ϕ2 − θv

i−1u+θ+
i−1
∑

i=1
αu

i < π
2

 (18)

Case: III–id rigid block −2 (Figure 7b)

The relative velocity vi−1u ,id between the rigid block i − 1u and id in Figure 7b face
downward along the velocity discontinuity and forms an angle ϕ2.

vid =
sin(π

2 +ϕ2 − θv
i−1u+θ+∑i−1

i=1 αu
i )

sin(π
2 − ϕ2+θv

id − θ − ∑i−1
i=1 αu

i )
vi−1u (19)
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vi−1u ,id =
sin(θ v

i−1u − θv
id)

sin(π
2 − ϕ2+θv

id − θ − ∑i−1
i=1 αu

i )
vi−1u (20)

Requirements of Equations (19) and (20)

θv
id< θv

i−1u

−π
2 < ϕ2 − θv

i−1u+θ+
i−1
∑

i=1
αu

i < π
2

−π
2 < −ϕ2+θv

id − θ −
i−1
∑

i=1
αu

i < π
2

 (21)

Since the direction angle θv
id of the rigid block is known, it is possible to calculate

the absolute and relative velocity vectors of the rigid block id directly for the identified
multi–rigid block failure mechanism.

Type III–iu:
For rigid block iu, since the direction angle θv

iu of its absolute velocity vector cannot be
determined directly, it is necessary to analyze the compatible velocity relationship between
rigid block i − 1u and iu, rigid block id and iu, and perform simultaneous solution.

(1) Type III–iu rigid block and i − 1u rigid block:

The compatible velocity relationship of rigid block iu and i − 1u, as shown in Figure 8:

Figure 8. Possible compatible velocity relationship between rigid block i − 1u and iu: (a) The relative
velocity vi−1u ,iu between the rigid block i − 1u and iu face upwards along the velocity discontinuity;
(b) The relative velocity vi−1u ,iu between the rigid block in Figure 8b face downward along the velocity
discontinuity.

Case: 1 (Figure 8a)
For Figure 8a, the relative velocity vi−1u ,iu between the rigid block i − 1u and iu face

upwards along the velocity discontinuity and forms an angle ϕ1

viu =
sin(π

2 +ϕ1+θv
i−1u − θ − ∑i−1

i=1 αu
i )

sin(π
2 − ϕ1 − θv

iu+θ+∑i−1
i=1 αu

i )
vi−1u (22)

vi−1u ,iu =
sin(θ v

iu − θv
i−1u)

sin(π
2 − ϕ1 − θv

iu+θ+∑i−1
i=1 αu

i )
vi−1u (23)
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Requirements of Equations (22) and (23):

θv
iu> θv

i−1u

−π
2 < ϕ1+θv

i−1u − θ −
i−1
∑

i=1
αu

i < π
2

−π
2 < −ϕ1 − θv

iu+θ+
i−1
∑

i=1
αu

i < π
2


Case: 2 (Figure 8b)

The relative velocity vi−1u ,iu between the rigid block in Figure 8b face downward along
the velocity discontinuity and forms an angle ϕ1.

viu =
sin(π

2 +ϕ1 − θv
i−1u+θ+∑i−1

1 αu
i )

sin(π
2 − ϕ1+θv

iu − θ − ∑i−1
1 αu

i )
vi−1u (24)

vi−1u ,iu =
sin(θ v

i−1u − θv
iu)

sin(π
2 − ϕ1+θv

iu − θ − ∑i−1
1 αu

i )
vi−1u (25)

Requirements of Equations (24) and (25):

θv
iu< θv

i−1u

−π
2 < ϕ1 − θv

i−1u+θ+
i−1
∑
1

αu
i < π

2

−π
2 < −ϕ1+θv

iu − θ −
i−1
∑
1

αu
i < π

2

 (26)

(2) Type III–iu and id:

The possibility of two compatible velocity relationships between rigid block iu and id

is shown in Figure 9:

Figure 9. Two possible compatible velocity relationships between rigid block id and iu: (a) The
relative velocity vid ,iu between the rigid block id and iu face upwards along the velocity discontinuity;
(b) The relative velocity vid ,iu between the rigid block in Figure 9b faces downward along the velocity
discontinuity.

Case: 3 (Figure 9a)
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For Figure 9a, the relative velocity vid ,iu between the rigid block id and iu face upwards
along the velocity discontinuity and forms an angle ϕ2.

viu =
sin(− π

2 +ϕ2+βu
i +θv

id − θ − ∑i−1
1 αu

i )

sin( 3π
2 − ϕ2 − βu

i − θv
iu+θ+∑i−1

1 αu
i )

vid (27)

vid ,iu =
sin(θ v

iu − θv
id)

sin( 3π
2 − ϕ2 − βu

i − θv
iu+θ+∑i−1

1 αu
i )

vid (28)

Requirements of Equations (27) and (28):

θv
iu> θv

id

π
2 < ϕ2+βu

i +θv
id − θ −

i−1
∑
1

αu
i < 3π

2

− 3π
2 < −ϕ2 − βu

i − θv
iu+θ+

i−1
∑
1

αu
i < −π

2

 (29)

Case: 4 (Figure 9b)

The relative velocity vid ,iu between the rigid block in Figure 9b faces downward along
the velocity discontinuity and forms an angle ϕ2.

viu =
sin( 3π

2 +ϕ2 − βu
i − θv

id+θ+∑i−1
1 αu

i )

sin(− π
2 − ϕ2+βu

i +θv
iu − θ − ∑i−1

1 αu
i )

vid (30)

vid ,iu =
sin(θ v

id − θv
iu)

sin(− π
2 − ϕ2+βu

i +θv
iu − θ − ∑i−1

1 αu
i )

vid (31)

Requirements of Equations (30) and (31):

θv
iu< θv

id

− 3π
2 < ϕ2 − βu

i − θv
id+θ+

i−1
∑
1

αu
i < −π

2

π
2 < ϕ2 − βu

i − θv
id+θ+

i−1
∑
1

αu
i < 3π

2

 (32)

To solve the velocity vector of rigid block iu, it can be seen from the above that there
are four cases (2*2). For example, we can get θv

iu by Equations (22) and (27) and then get
each velocity vector by substituting Equations (22), (23), (27) and (28). The other three cases
are also considered similar.

When calculating the velocity vector of Type III rigid blocks, there will be two types of
connections in the two–layered strip foundation multi–rigid block failure mechanism. If
the rigid block i − 1 is Type II, it is only necessary to replace all rigid blocks i − 1u in the
above calculation formula with rigid block i − 1 to calculate normally.

2.3. Upper Limit Solution of Ultimate Bearing Capacity of Two–Layered Foundation

The virtual work theory serves as the foundation for the upper−bound limit analysis
theorem. According to the virtual work concept, the elastic−plastic material deforms with a
little displacement (virtual displacement). According to Equation (33), under the influence
of this virtual displacement, the virtual external power produced by the external force
acting on the elastic−plastic material is equal to the virtual internal power produced by the
system’s internal virtual strain.∫

V
FiduidV +

∫
S

TiduidS =
∫

V
σijdεijdV (33)
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In the multi–rigid block failure mechanism of the two–layered strip foundation, the
work performed by the external force includes: the power

.
WPu made by the ultimate load

Pu of the foundation, the power
.

Wq made by the overload q on both sides of the foundation,

and the power Gi made by the gravity of each rigid block. Where
.

WABC represents gravity
work of No.0 rigid block,

.
Wiu and

.
Wid represent gravity work of rigid block iu and id, and

.
Wi represents gravity work of rigid block i. The expressions of each external force power
are as follows: Equations (35)–(40).

.
WPu = B0 · Puv0 (34)

.
WABC = (S u

ABC · γ1+Sd
ABC · γ2) (35)

.
Wi = Si · γ1 · vi · θv

i (36)

.
W

u
i = (S u

i · γ1+Sm
i · γ2) · viu · cos θv

iu (37)

.
W

d
i = Sd

i · γ2 · vid · cos θv
id (38)

.
Wq = 2 · q ·

lnsin βn
sin(π − αn − βn)

· vncos θv
n (39)

At the connection of different types of rigid blocks, the division of the area of the rigid
blocks will be different. It is necessary to recalculate the gravity work

.
Wi of its rigid block i,

which is similar to the above expression and will not be introduced in detail.
The soil mass does not experience internal plastic deformation according to the upper

bound theory of limit analysis, and the internal force energy consumption only happens on
the velocity discontinuities li, di (including lu

i , ld
i , du

i , dd
i , but excluding lm

i , because lm
i does

not belong to the interface of rigid blocks) between adjacent rigid blocks. The internal force
energy consumption expression is shown in Equations (40)–(43).

Type II rigid block:

.
Wli = c1livi−1,icos ϕ (40)

.
Wdi

= c1divicos ϕ1 (41)

Type III rigid block:

Wli = c1lu
i vi−1u ,iu cos ϕ1+c2ld

i vi−1u ,id cos ϕ2 (42)

Wdi
= c2du

i vid ,iu cos ϕ2+c2dd
i vid cos ϕ2 (43)

where
.

Wli and
.

Wdi
refer to the internal force energy consumption on the velocity discontinu-

ity between each rigid block in the failure mechanism, and the subscripts l and d correspond
to the side lengths L and D of the rigid block in the failure mechanism.

At the connection of different types of rigid blocks, such as Type III rigid blocks
connected to type II rigid blocks, the corresponding c1 and ϕ1 should be used for the
calculation of the velocity discontinuity plane du

i in Equation (43). Other calculation
methods are the same.
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According to the principle of virtual work, in the assumed failure model, the external
force power and internal energy consumption are equal, then the expression of ultimate
bearing capacity Pu can be deduced according to Equation (44).

Pu =

.
Wl +

.
Wd −

.
Wsoil −

.
Wq

B0 · v0
(44)

3. Improved Radial Movement Optimization (IRMO) Algorithm

The IRMO algorithm [22] can be summarized as the situation that a group of articles
moves to seek the global optimal solution in the search space that is shrinking with the
change of algebra. After setting a strict and reasonable objective function F and variable
value range, the IRMO algorithm starts to randomly generate multiple particles, which are
recorded as the initial particle swarm X1

i . The objective function expression F could be used
to evaluate the fitness value of each particle, then the particle with the best fitness value is
chosen as the central particle of the initial particle swarm and recorded as Center1 (Center1

is the first generation of central particles). When generating a new generation particle
swarm Yk

i , two additional parameters h1 and h2 will be used to decide whether each of the
new particles is generated by a central particle or just inherit the particle information from
the last generation. As the location information of particles is updated from generation to
generation, the search space is shrinking, and its center will move toward the direction of
the global optimal solution to the set final generation. Currently, the search space is close to
a point, and the corresponding particle location information is the global optimal solution.

3.1. IRMO Algorithm

Based on the radial movement algorithm (RMO), the enhanced radial movement
optimization (IRMO) is a global optimization algorithm. The phenomena of a set of
particles travelling in a search space that continuously contracts with algebra to find the
overall optimal solution can be summed up as the IRMO algorithm. By setting a more
strict and reasonable objective function expression F and variable value range, the IRMO
algorithm starts to randomly generate multiple particles, denoted as the first–generation
particle swarm X1

i . The objective function expression F evaluates the fitness of each particle
and takes the best particle as the first–generation central particle, recorded as Center1. When
generating a new generation of particle swarm Yk

i , The IRMO algorithm not only relies
on the central particle alone, but also determines that some particles directly inherit the
particle information of the adjacent generation according to the control parameters h1 and
h2. As generations continue to update the position information of particles, the search space
continues to shrink, and its center will move towards the direction of the global optimal
solution. By the end of the set generation, the search space has approached a point, and the
corresponding particle position information is recorded as the global optimal position. The
objective function value is the global optimal solution. Figure 10 shows the implementation
of the IRMO algorithm [23].

Figure 10. Schematic diagram of radial movement of particle swarm in IRMO.
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3.2. Implementation of IRMO

According to the above two–layered strip foundation multi–rigid block failure mech-
anism, for the determination of the critical sliding surface, only the bottom angle θ and
bottom edge B0 of the rigid block ABC and the angle variables αi, λi, and side length li of
the ith rigid block can determine a unique critical sliding surface. A particular collection of
variables for the foundation’s critical sliding surface corresponds to a solution vector in
matrix X. The IRMO algorithm could automatically search the critical sliding surface of the
foundation and calculate the corresponding ultimate bearing capacity.

Combined with the implementation process of the IRMO algorithm, each generation
of particle swarm generates N particles in total, representing N critical sliding surfaces of
the two–layered strip foundation. Equation (45) implements the application of the IRMO
algorithm to the calculation of the ultimate bearing capacity of the two–layered strip foun-
dation in the analysis of the ultimate bearing capacity of the two–layered strip foundation.

X =


θ1,1 α1

1,2 λ1
1,3 · · · αn

1,M−1 λn
1,M

θ2,1 α1
2,2 λ1

2,3 · · · α1
2,3 λn

2,M
...

...
...

. . .
...

...
θN,1 α1

N,2 λ1
N,3 · · · αn

N,M−1 λn
N,M

 (45)

The variable in the matrix must adhere to the geometric restrictions in Equation (46)
in order to guarantee that the critical sliding surface can be located within a tolerable
range and that the ultimate bearing capacity of the two–layered strip foundation can
be calculated:

0 < θ < π
2

θ+
n
∑

i=1
αi = π

βi+1< αi+βi< π
α1+2θ − π < λ1< 2θ − 2ϕmax

λi> 0
αi+αi−1+βi−1 − π < λi< αi−1+βi−1 − 2ϕmax


(46)

where ϕmax refers to the maximum value of the two–layered strip foundation soil layer
parameters ϕ1 and ϕ2.

According to the above basic variable matrix X and geometric constraints, all the codes
and procedures were realized by the commercial software Matlab2021b. In the specific
engineering example following, the basic parameters c1, c2, ϕ1, ϕ2, γ1, and γ2 of the two–
layered soil and the parameters N, M, G, max xj, min xj of the IRMO algorithm are set in
advance, so that the location of the critical slip surface of the two–layered foundation under
vertical uniform load can be searched and the corresponding ultimate bearing capacity can
be determined simultaneously.

4. Example Calculation and Comparative Analysis

This section discusses the viability of using the IRMO algorithm to determine the
ultimate bearing capacity of a two–layered strip foundation and verifies the IRMO algo-
rithm’s effectiveness and stability in searching for the critical slip surface of a two–layered
strip foundation and calculating the upper bound solution of the corresponding ultimate
bearing capacity.

4.1. Example 1

The strip foundation of example 1 is located at a two–layered soil with an upper sand
soil layer and a lower clay layer. The foundation width of the two–layered strip foundation
is 2 m, regardless of the ground overload. The soil parameters are listed in Table 1. The
angle of internal friction is not considered for the clay layer, and the clay weight is taken as
19 kN/m3. The parameters of the IRMO algorithm are N = 50, M = 51, and G = 500.
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Table 1. Soil layer parameter information of calculation example.

Soil Layer Classification H (m) ϕ (◦) c (kPa) γ (kN/m3)

Upper soil 4 35 0 17
Lower soil − − 50 19

The ultimate bearing capacity of the foundation calculated by the IRMO algorithm
in this paper is compared with the corresponding calculation results of predecessors
(Michalowski and Shi [24] and Qin Huilai [25]), as shown in Table 2. The solution in
this paper is higher than Michalowski’s, Shi’s, and Qin Huilai’s solutions. The reason
for this kind of deviation may be that although the three solutions are the same upper
bound solution of limit analysis, the specific optimization algorithms implemented are
different. For example, the IRMO algorithm is used in this paper to search and solve, and
there are 25 rigid blocks for calculation. Qin Huila uses the Monte Carlo optimization
method to solve, and the rigid block division is not as detailed as in this paper, resulting in
different calculation results. Therefore, the comparative analysis in this example verifies
the feasibility of the IRMO algorithm in calculating the ultimate bearing capacity of a
two–layered foundation.

Table 2. Foundation ultimate bearing capacity Qu of different scholars.

Literature Computing Method Qu/kPa

Michalowski and Shi [24] Upper−bound limit analysis theorem 764.16
Qin Huilai [25] Upper−bound limit analysis theorem 660.69

This Study Upper−bound limit analysis theorem 810.74

After repeated calculation 20 times in this example, the search results of the critical
sliding surface of the two–layered foundation were obtained by running the IRMO al-
gorithm 20 times, as shown in Figure 11. The corresponding upper limit solution of the
ultimate bearing capacity of the two–layered foundation is shown in Figure 12.

Figure 11. Search results of the critical sliding surface of the two–layered foundation after 20 times
IRMO algorithm operation.



Appl. Sci. 2023, 13, 7299 17 of 26

Figure 12. Calculation value of ultimate bearing capacity of the two–layered foundation after 20 times
of IRMO algorithm operation.

Figure 11 shows that the results of 20 searches of the IRMO algorithm almost overlap,
the relative error control between the calculation results of each generation is quite small.
Figure 12 shows that the standard deviation is 0.2599, and the average is 810.7433 (the
position of the red line in the figure). Therefore, it demonstrates the great stability of the
algorithm in determining the critical sliding surface of the two–layered strip foundation
and calculating the corresponding ultimate bearing capacity.

Figure 13 shows the convergence of the upper limit solution of the ultimate bearing ca-
pacity of the two–layered strip foundation with the number of iterations after the algorithm
has been run three times under the same conditions. The IRMO algorithm has gradually
become stable after 250 generations. The convergence rate of the proposed algorithm is
compared with the convergence generations of Wu [26] which shows that the algorithm in
this paper is efficient and has an ideal convergence efficiency.

Figure 13. Convergence efficiency analysis of IRMO algorithm.

4.2. Example 2

This paper also compared the upper bound solution of IRMO with three commonly
used calculation methods for the ultimate bearing capacity of the two–layered strip founda-
tion in China—the diffusion angle method [1], Hansen’s weighted average method [2], and
Meyerhof and Hannah’s shear failure theory [3,4], respectively. Moreover, the results in
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Xiao [27] carried out by using a large load plate test are compared herein as well. The test
is carried out by loading a square load plate with different widths of 0.707 m, 1 m, and 2 m.
The soil layer parameters of example 2 are shown in Table 3.

Table 3. Parameters of each soil layer.

Soil Layer H (m) c (kPa) ϕ (◦) γ (kN/m3)

Hard soil layer 0.75 7.0 19.5 19
Soft soil layer − 5.0 10 17

Table 4 shows the comparison between the results of the ultimate bearing capacity
obtained by the IRMO algorithm and other methods of this example. The B − Pu relation-
ship diagram of the ultimate bearing capacity of the two–layered foundation is obtained by
various calculation methods under the above load plates with different widths, as shown
in Figure 14.

Table 4. Result comparison of example 2.

B (m) Diffusion Angle
Method (kPa)

Hansen Weighted
Average Method (kPa)

Meyerhof and Hannah’s
Shear Failure Theory (kPa)

Large Load Plate
Test [27] (kPa) This Study

0.707 151.83 176.17 132.47 150 146.71
1.0 116.28 169.36 118.58 120 126.51
2.0 79.70 126.73 103.40 80 109.28

Figure 14. B − Pu diagram.

It can be seen from the data and corresponding charts that the calculation results of
this IRMO algorithm for the ultimate bearing capacity of a two–layered foundation are
basically consistent with the actual field test values when the width is small. As shown
in Figure 13, with the width of the load plate expanding, errors occur. The reason for the
errors is that the jack is generally used to apply pressure on the square plate in the field
test, which is somewhat different from the uniform load of the strip foundation considered
in this calculation. Considering that the upper−bound limit analysis theorem is adopted in
this study, the calculated load is always greater than the real load. Therefore, it is reasonable
that the result of the IRMO algorithm is larger than the actual test result, which shows
that the IRMO algorithm strives to be correct and effective in solving the ultimate bearing
capacity of the two–layered strip foundation.
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4.3. Example 3

Xu Yang [6] adopted the slip line theory and assumed the shape of the slip line in the
composite double−layer foundation, and derived a calculation method for its ultimate
bearing capacity. The following examples are compared with the upper limit solution
calculation of limit analysis for the double−layer foundation in this article, as shown in
Table 5. At present, the internal friction angle of the current upper soil ϕ1 = 22◦, 25◦, 30◦,
35◦, respectively.

Table 5. Soil parameter.

Soil Layer Classification ϕ (◦) H (m) c (kPa) γ (kN/m3)

Upper soil 22 2 20 19.5
Lower soil 22 − 20 19.5

The calculation results of the two methods are shown in Figure 15. It can be seen that
the solution to the ultimate bearing capacity of the double−layer foundation is similar to
the upper limit analysis method used in this article and Xu Yang’s slip line method. As the
internal friction angle of the upper soil increases, there is a gradual gap between the two
due to the different calculation methods used.

Figure 15. ϕ1 − Pu diagram.

5. Analysis of Influence Parameters

This section discusses the influence of internal friction angle ϕ1, ϕ2, cohesion c1, c2,
the thickness of upper soil H, and ground overload q of two–layered soil on the ultimate
bearing capacity of a two–layered strip foundation.

5.1. Internal Friction Angle ϕ1, ϕ2

Before parameter analysis, it is uniformly stipulated that the foundation width is 4 m
and the upper soil height is 2 m, regardless of the ground overload. The soil parameters of
the two–layered foundation are shown in Table 6 (except for specific modifications). The
internal friction angle of foundation soil reflects its shear strength. At present, the internal
friction angle of the current upper soil ϕ1 = 10◦, internal friction angle of subsoil ϕ2 = 10◦,
20◦, 30◦, 40◦, and 50◦, respectively, then ϕ1/ϕ2 is 1, 2, 3, 4, 5 in turn; retrieving ϕ2 = 10◦,
ϕ1 = 10◦, 20◦, 30◦, 40◦, and 50◦, respectively, then the ratio ϕ2/ϕ1 is 1, 2, 3, 4, 5 in turn.
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Table 6. Soil parameter.

Soil Layer Classification ϕ (◦) H (m) c (kPa) γ (kN/m3)

Upper soil 15 2 5 10
Lower soil 5 − 5 10

The crucial sliding surface of the internal friction angle between the top soil and the
lower soil is shown by Figure 16 in the ratio ϕ1/ϕ2. Figure 17 shows the influence of
the internal friction angle ratio of two–layered soil on the ultimate bearing capacity of
the foundation.

Figure 16. Search results of the critical sliding surface of the foundation under different ratios ϕ1/ϕ2.

Figure 17. Comparison of ultimate bearing capacity of foundation under different internal friction
angle ratios.

It is discovered that the essential sliding surface under search would deepen and
expand when the internal friction angle ratio rises (Figure 16). In order to expand the area
of the soil affected by the foundation and drive more soil to contribute to the instability of
the foundation, the internal friction angle must be increased. This will raise the foundation’s
overall bearing capacity. As shown in Figure 17, when the internal friction angle of the
subsoil is fixed, the internal friction angle of the upper soil increases, enhancing the ultimate
bearing capacity of the foundation. The ultimate bearing capacity of the double−layer
foundation will initially increase and then essentially remain unchanged when the internal
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friction angle of the upper soil is fixed and the value of the internal friction angle of the
lower soil is continuously increased. Therefore, in the actual project, appropriate measures
should be taken to increase the ratio of the internal friction angle between the upper soil
and the lower soil, so as to improve the ultimate bearing capacity of the foundation.

5.2. Analysis on the Influence of Cohesive Force c1 and c2 of Two–Layered Soil

The cohesion of the soil layer is another important characteristic relating to the shear
strength of the soil. The cohesion c1 is taken as 10 kPa, and c2 is taken as 10 kPa, 20 kPa,
30 kPa, 40 kPa, and 50 kPa, respectively, so c1/c2 is taken as 1, 2, 3, 4, and 5 in turn; then
take c2 as 10 kPa, c1 as 10 kPa, 20 kPa, 30 kPa, 40 kPa, and 50 kPa, respectively, then c2/c1
is 1, 2, 3, 4 and 5 in turn. Other soil parameters are shown in Table 6. The method in this
paper is used to solve the ultimate bearing capacity of the two–layered foundation under
different cohesion ratios. The specific data changes are shown in Figure 18.

Figure 18. Comparison of ultimate bearing capacity of foundation under different cohesion ratios.

As shown in Figure 18, the ultimate bearing capacity of the two–layered foundation
gradually increases as the cohesion ratios c1/c2 and c2/c1 of the upper soil and lower soil
increase from 1 to 5. However, the change in c1/c2 has a more noticeable impact on the
ultimate bearing capacity of the foundation, meaning that the cohesion of the upper soil
has a greater impact.

5.3. Analysis of the Influence of Upper Soil Thickness H

In the calculation of the ultimate bearing capacity of the two–layered foundation, the
thickness of upper soil H has a significant influence on the results. The soil parameters of
the two–layered foundation in Example 1 are adopted. The fixed foundation width B is 2 m,
and the thickness H of the upper layer soil is 1 m, 1.5 m, 2 m, 3 m, and 4 m, respectively. To
determine the ultimate bearing capacity of a two–layered foundation, the IRMO algorithm
is employed. The comparison of the ultimate bearing capacity of the foundation under
different H/B ratios is shown in Figure 19. And Figure 20 shows the corresponding search
result of the critical sliding surface of the two–layered foundation.

It can be seen that for the two–layered foundation with a hard upper layer and
soft lower layer, when the value of H/B ranges from 0.5 to 1.5, both upper and lower
layers of soil participate in the foundation failure, so the ultimate bearing capacity of
the foundation increases gradually, and the critical sliding surface of the foundation also
gradually expands. When the value of H/B changes from 1.5 to 2, the ultimate bearing
capacity of the foundation almost does not change, and the critical sliding surface is close
to coincidence. This is because when the value of H/B is 1.5, only the upper layer of the
foundation soil is involved in the foundation damage, and further increasing the thickness
of the upper layer of the foundation will not have a great impact.



Appl. Sci. 2023, 13, 7299 22 of 26

Figure 19. Comparison of ultimate bearing capacity of foundation under different H/B ratios (the
upper soft and lower hard two–layered foundation).

Figure 20. Search results of the critical sliding surface of the foundation under different H/B ratios.

On the contrary, if the upper and lower soil layers in Example 1 are interchanged, that
is, the upper soft and lower hard two–layered foundation is formed. The fixed foundation
width B is 2 m, and the thickness H of the upper soil is taken as 1 m, 1.5 m, 2 m, 3 m, 4 m,
and 5 m, respectively. The ultimate bearing capacity of the foundation under different H/B
ratios is solved by IRMO algorithm, as shown in Figure 21.

Figure 21. Comparison of ultimate bearing capacity of foundation under different H/B ratios (the
upper soft and lower hard two–layered foundation).
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It can be found that the ultimate bearing capacity of the two–layered strip foundation
tends to decrease with the increasing H/B value. After the H/B value is greater than 2, only
the upper soil will participate in the foundation damage, so the variation of the foundation
bearing capacity in this example is relatively small. Therefore, in the actual project, the
H/B value can be appropriately increased to improve the ultimate bearing capacity of the
two–layered foundation.

5.4. Analysis of the Influence of Overload q

The soil parameters in Example 1 are also used. Considering that the upper and
lower soil layers are affected together, H = 2 m is selected for analysis. At this time, the
upper and lower soil layers are involved in the foundation damage. Keep other parameters
unchanged, the overload q = 0 kPa, 5 kPa, 10 kPa, 15 kPa, 20 kPa, and calculate the ultimate
bearing capacity and bearing capacity coefficient Nq of the foundation.

Figure 22 shows the change of the ultimate bearing capacity of the foundation with
different overloads q. It can be seen that the ultimate bearing capacity of the foundation
increases gradually with the increase in overloads q, and the trend is close to the linear
increase. The variation in bearing capacity coefficient Nq with various overloads q is shown
in Figure 23. As can be observed, the bearing capacity coefficient Nq varies slightly in value.

Figure 22. Comparison of ultimate bearing capacity of foundation under different overload q.

Figure 23. Comparison of bearing capacity coefficient Nq under different overload q.
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6. Conclusions

A planar kinematically allowed multi−block failure mechanism and the flexible per-
missible velocity field are established based on the upper−bound limit analysis theorem.
Based on this, the IRMO algorithm, which offers a new calculation method for figuring out
the critical slip surface and the ultimate bearing capacity of a two–layered strip foundation,
is used to optimize the ultimate bearing capacity of the two–layered strip foundation.

(1) The IRMO algorithm can accurately and stably search the critical slip surface of
the two–layered strip foundation and calculate the corresponding ultimate bearing
capacity of the foundation. This study demonstrates the feasibility, stability, and
efficiency of the IRMO algorithm in solving the ultimate bearing capacity of a two–
layered strip foundation by two examples. Example 1 shows that the IRMO algorithm
has great stability in global optimization since the contact ratio of the crucial slip
surface, which is searched 20 times, is high and the standard deviation is 0.2599.
The comparative analysis of Example 2 demonstrates the viability of using IRMO to
determine the ultimate bearing capacity of a two–layered strip foundation.

(2) The critical slip surface and ultimate bearing capacity of the two–layered strip foun-
dation are significantly impacted by the soil parameters and overloads. The ultimate
bearing capacity of the foundation will rise regardless of whether the internal friction
angle or cohesiveness of the top and lower layers of soil are enhanced. Additionally,
the area of soil involved in destroying the foundation will grow, and the upper layer
of soil will ultimately improve the foundation’s carrying capacity more than the lower
layer. With the increase in overload q, the ultimate bearing capacity of the founda-
tion gradually increases linearly, but the bearing capacity coefficient Nq is kept to a
constant level.

(3) Considering the strip foundation fixed on upper−soft and lower−hard soils, the
ultimate bearing capacity of the upper−hard and lower−soft foundation gradually
increases with the increase in the H/B ratio. When the ratio increases to a certain
level, the ultimate bearing capacity of the strip foundation tends to be stable, and the
critical slip surfaces almost coincide. While the analysis results of the strip foundation
fixed on upper−soft and lower−hard soils are opposite. With the increase in the H/B,
the ultimate bearing capacity of the strip foundation decreases, and it will also tend to
a certain level eventually.
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Abbreviations

Pu the vertical uniformly distributed load
B0, B the width of the strip footing
H the thickness of the upper soil
θ the base angle of the isosceles triangle
q the overload on both sides
v0 the vertical downward speed of the strip foundation
ϕ1, ϕ2 the internal friction angle of the upper and lower soil layers
γ1, γ2 the soil weight of the upper and lower soil layers
c1, c2 the cohesion of the upper and lower soil layers
SABC the area of rigid block ABC
Si the area of rigid block i
Su

ABC the area of the upper soil portion of block ABC
Sd

ABC the area of the lower soil portion of block ABC
li, di the length of the Type II rigid block i
αi, βi the angle variable of Type II rigid block i
lu
i , du

i the length of the upper triangle iu of type III rigid block i
αu

i , βu
i the angle variable of the upper triangle iu of type III rigid block i

lm
i the length of the soil layer boundary line passing through the iu rigid block

ld
i , dd

i the length of the lower triangle id of type III rigid block i
αd

i , βd
i the angle variable of the lower triangle id of type III rigid block i

θv
i absolute velocity vector direction angle of type III rigid block i

θv
iu absolute velocity vector direction angle of the upper triangle iu of rigid block i

θv
id absolute velocity vector direction angle of the lower triangle id of rigid block i

vi absolute velocity vector of rigid block i
viu absolute velocity vector of the upper triangle iu of rigid block i
vid absolute velocity vector of the lower triangle iu of rigid block i
vi−1,i relative velocity vector of rigid block i−1 and i
vi−1u ,id relative velocity vector of rigid block i − 1u and id

vi−1u ,iu relative velocity vector of rigid block i − 1u and iu

vid ,iu relative velocity vector of rigid block id and iu

Pu the ultimate bearing capacity
Nq bearing capacity factor
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