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Abstract: Modern distributed systems that operate concurrently generate interleaved logs. Identifiers
(ID) are always associated with active instances or entities in order to track them in logs. Consequently,
log messages with similar IDs can be categorized to aid in the localization and detection of anomalies.
Current methods for achieving this are insufficient for overcoming the following obstacles: (1) Log
processing is performed in a separate component apart from log mining. (2) In modern software
systems, log format evolution is ongoing. It is hard to detect latent technical issues using simple
monitoring techniques in a non-intrusive manner. Within the scope of this paper, we present a reliable
and consistent method for the detection and localization of anomalies in interleaved unstructured
logs in order to address the aforementioned drawbacks. This research examines Log Sequential
Anomalies (LSA) for potential performance issues. In this study, IDs are used to group log messages,
and ID relation graphs are constructed between distributed components. In addition to that, we
offer a data-driven online log parser that does not require any parameters. By utilizing a novel log
parser, the bundled log messages undergo a transformation process involving both semantic and
temporal embedding. In order to identify instance–granularity anomalies, this study makes use of a
heuristic searching technique and an attention-based Bi-LSTM model. The effectiveness, efficiency,
and robustness of the paper are supported by the research that was performed on real-world datasets
as well as on synthetic datasets. The neural network improves the F1 score by five percent, which is
greater than other cutting-edge models.

Keywords: log parsing; deep relational learning; natural language processing; anomaly detection

1. Introduction

High internal software faults (an infinite loop, wrong configuration, resource hogs,
and node disconnection) and external errors regularly threaten the availability and de-
pendability of cloud services (resource hogs). When a system performs as predicted with
adequate resources, we refer to it as “normal”, and when it behaves otherwise, we call
it an “anomaly”. The issues highlighted (anomalies in logs, resource utilization spikes,
and request failure increases) may all be indicators of anomalies in a distributed system.
These issues may be brought on by several circumstances, including hardware or software
failures, resource contention, or changes in workload or consumption [1]. It is feasible to
identify and localize anomalies in a distributed system by monitoring for and thoroughly
studying these types of problems. This may involve gathering and analyzing data from
various sources, such as log files, performance indicators, and business KPIs, and utilizing
techniques such as machine learning or statistical analysis to find anomalous patterns or
deviations from typical behavior. After identifying and localizing abnormalities, corrective
action can be performed to resolve underlying issues and restore normal system operation.

Software developers rely heavily on log data to determine the system’s status and
to identify anomalies. Modern computer systems frequently generate large volumes of
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interleaved logs as they simultaneously process or execute operations [2]. This can make it
difficult to manually analyze the logs and to identify anomalies, particularly as the system
grows in size and complexity. Frequently, automated tools and techniques for log analysis,
such as machine learning algorithms or statistical analysis methods, are required to address
this issue. These tools can help identify patterns and correlations in the log data that
may indicate the presence of anomalies, as well as provide insight into the components or
subsystems responsible for the anomalies.

Maintaining the stability and performance of these complex systems requires the
detection of anomalies utilizing neural networks and their localization utilizing relation
graphs. Localization refers to the process of identifying the specific components or subsys-
tems responsible for the anomalies. Anomaly detection involves identifying unusual or
abnormal system behavior.

Recent research has focused extensively on data-driven and log-based anomaly detection,
with or without localization [3–11]. Current methodologies are based on assumptions that are
difficult to confirm in a real-world production setting. When employing the aforementioned
techniques in a production setting, the following three issues must be considered:

I Dependencies in logs. In distributed systems, logs are utilized to monitor the statuses
and significant events of active instances or entities. Insufficiently, the current method-
ologies only correlate them with one component. Using log data, developers can
identify dependencies between various components or subsystems in a distributed
system and use this information to locate anomalies. By correlation of logs with a
similar identifier on distributed components, developers can gain a deeper under-
standing of the relationships and interactions between various system components
and use this knowledge to identify and localize anomalies.

II Modifying the logs. In reality, log formats in software systems change frequently, by
as much as 45 percent over the lifetime of a software system [9,12]

III Hidden performance problems. Latency issues are a main indicator of biased fail-
ure [13], which refers to partially compromised functionalities [1,14–17]. Frequently,
it is necessary to analyze a variety of system observations, including log data, to
determine whether or not there is a performance issue, and discovering hidden issues
in log data can help to improve system reliability.

For the detection and localization of anomalies in distributed systems, there are a vari-
ety of methods available. Here are some common methods that are frequently employed:

a Statistical analysis: This technique entails analyzing performance metrics and other
system data to identify anomalous patterns or deviations from normal behavior.
Statistical methods such as hypothesis testing and regression analysis can be used to
identify and comprehend anomalies.

b Machine Learning: Machine learning algorithms can be used to first learn the typical
behavior of a system and then to detect and label as anomalies any behavior that
deviates from the learned normal behavior. This method can be used in conjunction
with statistical analysis techniques to manage large amounts of data.

c Rule-based systems: A set of rules or thresholds are defined to identify anomalies
based on specific conditions or events. For instance, a rule could be configured to
trigger an alarm if a server’s CPU utilization exceeds a certain threshold.

d Heuristic techniques: They employ human expertise and intuition to identify anoma-
lies based on patterns or trends in the data. This may involve manual inspection of
log data or other types of data or the use of automated tools that employ heuristics to
detect anomalies.

e Graph-based systems: Graph-based systems use graph theory and network analysis
techniques to determine dependencies and correlations between a system’s various
components. This is useful for identifying anomalies that may not be immediately
apparent from individual metrics or events.
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One approach to detect and locate anomalies in distributed systems is by leveraging
neural networks and relation graphs. Neural networks are models of machine learning that
can be trained to recognize patterns and correlations in data, making them well suited for
anomaly detection in distributed systems. Relation graphs, on the other hand, are graphical
representations of the relationships between various distributed system components or
subsystems. By combining these two methods, it is possible to not only detect anomalies
but also to identify the specific components or subsystems that are causing them.

We provide a log anomaly detection and localization tool based on techniques of deep
learning. The application excels at managing unstructured interleaved logs, which may
contain both natural language text and IDs within individual log messages. This is one of
the areas in which the application shines. Changes to log time intervals and log sequence
orders are identified as two typical forms of log modification based on real-world log
data. This research focuses on log-based data anomalies, including sequential-based log
anomalies and latency issues, taking into account the aforementioned two categories as the
primary considerations.

This research is conducted in stages, the first of which is relation construction, followed
by log parser, anomaly identifier, and then anomaly localizing. A step that takes place
offline is distinct from a phase that takes place online. Instead of assigning log templates
an index, this work uses BERT, which is an encoder module of modern transformers [18],
to encode the semantic information in the templates. BERT makes templates resistant to
updated arriving templates and takes temporal data into account through projection onto
large-dimensional embeddings. During the online phase, encoded templates are used to
detect and localize anomalies in log data.

The following are the four major contributions to this research:

1. We propose a novel method for processing online logs that are dictionary based
and generalized without the need for any parameter tuning. This method offers a
significant increase in efficiency, as well as robustness and generalization.

2. Rarely has log analysis been used to investigate hidden performance issues. Our
method for detecting anomalies involves adding semantic and temporal information
to log sequences. This allows us to identify a variety of anomalies, such as sequential
log anomalies and latent performance issues.

3. To identify anomalies at the instance level, a heuristic technique is developed. This
heuristic technique can be utilized to rapidly detect and localize anomalies in a
distributed system.

4. We collect a dataset of real-world Papertrail logs and use this research to identify and
locate anomalies. Papertrail collects log data from a variety of sources, such as servers,
applications, and devices, and provides a central location for viewing and analyzing
these data. The results prove the validity and dependability of this investigation. We
evaluate this study using both synthetic and actual datasets.

Using neural networks and relation graphs, we propose a method for anomaly de-
tection and localization in distributed systems and name it ADAL-NN, which stands for
“Anomaly Detection and Localization using Neural Networks”. We describe the specifics
of our approach and evaluate its efficacy through a series of simulation experiments on
a distributed system simulator. Our results indicate that our method for detecting and
localizing anomalies in distributed systems is effective.

Several different areas are explored in this study, such as log correlation, heuristic-
based anomaly localization, and sophisticated time embedding. Figure 1 also depicts the
real-time logs we will be using.

Anomaly detection and localization in a distributed system has many advantages.

1. Improved system stability: System stability is improved when anomalies are found
and corrected before they have a chance to grow into major issues that would threaten
the system’s integrity.
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2. Increased performance: Improved responsiveness and productivity can result from
the use of anomaly detection and localization to pinpoint the source of performance
degradation and to fix it.

3. Improved resource utilization: Resource optimization and waste reduction can be
achieved through the use of anomaly detection and localization by highlighting and
resolving potential resource contention issues.

4. Increased reliability: In order to improve the system’s reliability, anomaly detection
and localization can be used to pinpoint and repair the underlying causes of any
unexpected behavior.

5. Better decision making: Better decision making and improvement opportunity identifica-
tion can be achieved through anomaly detection and localization because of the enhanced
understanding of the system’s behavior and performance that is made possible.

Figure 1. Papertrail’s real-time logs. The logs were created by the multi-tenant system.

A total of five parts make up this study. Section 1 discusses the historical context
and theoretical justifications for the research. There is a discussion of the research process
and its results in this section. The second part of this paper is a literature review on log
processing, anomaly detection, and anomaly localization. In addition, a study table is
provided in this section for the purpose of filling in potential knowledge gaps. In Section 3,
we lay out in great detail the ADAL-NN methodology that will be used throughout the
various procedures. To better visualize the ADAL-NN proposed technique, an architecture
diagram for anomaly detection and localization is provided here as well. In Section 4, we
go over the implementation details. Extensive explanations of the dataset and the results
of numerous log parsing, anomaly detection, and anomaly localization experiments are
provided. Section 5 wraps up the research and discusses what comes next.

2. Literature Review

Workflow Creation. CloudSeer, IntelLog and Stitch are some of the most popular
tools for reconstructing a targeted system’s workflow. CloudSeer creates workflows and
monitors them using interleaved logs [5], while Stitch builds the graph for dependencies as
an S3 using identifiers found in log-based data [19]. IntelLog employs natural language-
processing techniques to create the workflow graphs that depict the relationships [7].

Log Parsing. Log parsing is a fundamental step in many log analysis works, such
as those that have been thoroughly researched in [3,20,21]. These works parse logs by
generating regular expressions from source codes in order to perform log parsing. In
reality, all codes are already available online, and log parser techniques are classified into a
few groups.

(1) Threshold-based grouping: LKEs [22], LogSigs [23], Log-Mines [24], SHISOs [25], and
LenMas [26] find variation between two logs before grouping them via the threshold
method. For finding the template associated with a single group, threshold-based
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grouping techniques typically need a predefined value. Parameter tuning is time-
consuming, labor-intensive, and non-universal.

(2) Frequency-based grouping: Finding the counts of an entity in the logs is a simple
method for automatically parsing the logs. Because a group of static entities is
repeated in the logs, finding the counts makes it easier to understand how the logs are
created. SLCT [27], LFA [28], and LogCluster [29] first record the frequency of items
before categorizing them into multiple groups.

(3) Heuristics based on tree searching: Drain divides log messages into nodes using a
fixed-depth prefix tree [30]. Spell utilizes a tree structure to parse the logs into numer-
ous templates [31]. Each layer of the prefix tree reflects a distinct log characteristic,
such as the length or first token features.

(4) Dictionary-based clustering: Both Logram [32] and Logparse [33] demonstrate the
ability to parse logs using a dictionary. Logram builds dictionaries from pre-existing
templates, and Logparse uses a classification method for the classification of the
logs. Logparse uses the characteristics of variable words before the construction of
each word.

(5) Based on deep learning: These techniques, on the other hand, require significantly
more resources to run than other log parsers. NuLog [34] suggested a neural-network-
based log parser model, and the parsing job was formulated as masked language
modeling (MLM). In contrast, a number of studies have identified trust-based connec-
tion in distributed and centralized Internet of things [35–38]. A survey [39] presented
on Blockchain technologies also highlights open issues and future direction.

Anomaly Detection. Numerous existing anomaly-detection methods concentrate on
identifying sequential log abnormalities, which can be difficult to detect due to the large
volumes of data involved. To effectively detect these anomalies, it is frequently necessary
to analyze data from multiple sources and to employ techniques that can manage large
amounts of data.

Data-mining-based techniques encompass both supervised and unsupervised learn-
ing methods.

Supervised: Supervised approaches (e.g., decision tree [40], support vector machines [41],
regression-based methodology [42]) may learn the fixed pattern of distinct labeled logs
by training on labeled log data. As a result, they consistently outperform unsupervised
approaches. However, labeling a huge volume of historical data for training takes time.
Furthermore, they are unable of detecting a black swan, which may be present in previous data.
Unsupervised: Unsupervised algorithms train on unlabeled historical data, rather than
label it, in the same way that supervised approaches train on log data. This approach
often creates an anomalous space and a non-anomalous space for the anomalous and
non-anomalous sequences, respectively [3,4].

With the popularity of deep learning, deep-learning-based anomaly-detection models
are frequently investigated [6,8,9,43]. DL approaches include log parser, training, and
prediction of the model.

(1) Key value method: A study demonstrates that LSTM is more accurate than a log-key-
based model at predicting the structure of anomalous and non-anomalous sessions [6,43].
This is because log statements are processed into templates prior to being assigned
log keys. When the source codes for a new version of the model are updated, they are
treated as new templates, resulting in performance degradation.

(2) Context-based method: Log-based data provide a plethora of semantic informa-
tion about system states. Meng et al. [8] used Long Short-Term Memory via word
vectors to analyze synonyms and antonyms. However, they utilize the counting
vectors, which are not resistant to varying the log-based data. To detect abnormali-
ties, Zhang et al. [9] used Att-Bi-LSTM. In contrast, Word2Vec and TF-IDF disregard
contextual information in sentences. In this study, BERT is utilized to determine the
contextual semantic meaning of utterances.
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Anomaly Localization. A prevalent area of investigation is the utilization of statistics
and machine learning for the purpose of anomaly detection. If you only rely on methods for
detecting anomalies, you will end up with a significant number of false positives because
anomalies tend to spread quickly through distributed and interdependent systems. The
authors in [8] provide a taxonomy of anomaly-detection methods based on categorization,
statistics, information theory, and clustering. Using system traces and supervised model
training, the authors of [9] present a method for defect localization. In contrast to this
investigation, their methodology requires the manual selection of characteristics. This
procedure’s disadvantage is its complexity, and its authors advocate combining a route
condition time series method with an adapted random walk algorithm [10]. This enables
not only the recording of sequential links in time series data, but also the incorporation
of information regarding causal links, temporal order, and monitoring data priority. We
learn the characteristics of anomalies, whereas their method relies on root cause metrics
criteria, which frequently require specialized knowledge to establish properly. This research
simplifies feature extraction by only considering temporal correlations within relevant time
series slices. The authors of [5] conduct an individual analysis for every system component
in addition to an ensemble analysis that only considers global predictions and disregards
the underlying network structure of system relationships.

MonitorRank [11] is a real-time metric collection system intended for use in service-
oriented architectures to conduct root cause analysis (RCA) when abnormalities are re-
ported. It uses an unsupervised and heuristic (clustering) technique to generate a sorted
list of potential root causes that monitoring teams can use as a guide. MonitorRank fo-
cuses on diagnosis after an abnormality has been reported, as opposed to the detection of
abnormalities themselves. This means that it is not intended to identify abnormalities in
real time, but rather to assist teams in determining the root cause of previously identified
abnormalities. Table 1 also displays research gaps for the related study.

Table 1. Documents concerning anomaly detection and localization.

Ref. Model Dataset Online Mode Log-Parser Anomaly Identifier Anomaly Localizer Explainable AI

[3] PCA Logs Stream 7 3 3 7 7

[5] Custom Distributed DB 7 7 7 7 7

[8] LSTM HDFS, BGL 7 3 3 7 7

[9] BiLSTM HDFS 7 3 7 7 7

[10] Att. GRU HDFS, BGL 7 3 7 7 7

[11] NB, HMM - 7 7 3 7 7

[12] RF, Cox Custom 7 3 7 7 7

[13] Fail-Stutter - 7 7 3 3 7

ADAL-NN Att. BiLSTM HDFS, Custom 3 3 3 3 3

In distributed systems, several systems use causality graphs to perform end-to-end
anomaly identification and root cause investigation. LOUD is an example of a system
that creates a model based on accurate executions and employs graph centrality methods
to locate faulty cloud system resources. However, LOUD [3] relies on positive training
and may not be able to recognize specific abnormalities. eBay’s GRANO [12] is another
example of an enterprise-level software framework that includes a detection layer, anomaly
graph layer, and application layer to aid fault-resolution teams. GRANO is customized for
cloud-native distributed data platforms. By providing a comprehensive and integrated
approach to these tasks, these types of systems can enhance the efficiency and effectiveness
of anomaly detection and root cause analysis. Additionally, GRANO employs numerous
techniques for identifying and localizing aberrant behavior. On the other hand, RCA advo-
cates [7] deducing the underlying causes of performance issues by comparing application
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performance issues with related system resource use. BIRCH is used to identify anomalies,
and root cause analysis (RCA) is performed by employing a graph that represents anomaly
transmission across systems. Additionally, there is recent research in this field as discussed
in [44–53].

3. Methodology

There are two primary techniques that constitute the ADAL-NN proposed methodol-
ogy as described in Figure 2. Logs are parsed, converted into sentence-level embedding,
and then a model is trained on the embedded logs using an Att-BiLSTM neural network in
the offline mode. In online mode, we take a new log and tweak the relation graph, parse
the log using a previously trained model, detect anomalies in real time, and pinpoint their
location using the relation graph.

Figure 2. Anomaly detection and localization architecture diagram. The offline phase involves four
steps: constructing R graph, log parsing, sentence embedding, and Att-based Bi-LSTM. The online
phase involves five steps: grouping by IDs, constructing Ri graph, log parsing, anomaly detection,
and anomaly localization.

We begin with an overview of this research, which is shown in Figure 2. This research
is separated into offline processing and online processing sections. A description of the
steps involved in detecting and localizing anomalies in log data in greater detail is as
follows:

1. Constructing R graph (offline): During the offline phase, we construct an ID relation
graph (R graph) using historical log data. This involves analyzing the log data to
identify relationships between various log messages and system components. By
mapping the dependencies and correlations between log messages and components,
the R graph provides a representation of the system’s behavior and structure.

2. Log parsing (offline): In this step, we tokenize and dictionarize the historical log data.
The log data are divided into individual words or tokens and are then grouped based
on common word sets present in the dictionarized data. This process allows us to
extract numerous log templates that capture the natural utterances within the log
data, as opposed to relying solely on event IDs.

3. Sentence embedding (offline): The sequence of bundled logs obtained from the log
parsing step is further processed to encode semantic and temporal information. We
employ the BERT (bidirectional encoder representations from transformers) encoder
to capture the semantic information present in the log data. This transforms the
log information into a high-dimensional embedding called Econtext. Additionally,



Appl. Sci. 2023, 13, 7297 8 of 21

the temporal information, which represents the order and timing of log events, is
projected onto a separate high-dimensional embedding referred to as Etime.

4. Att-based Bi-LSTM (offline): The semantic embedding (Econtext) and the temporal
embedding (Etime) obtained from the previous steps are concatenated and input into
an Attention-based Bidirectional Long Short-Term Memory (Att-based Bi-LSTM)
network. This network is trained to learn the characteristics of normal, abnormal, and
performance-anomalous log sequences. By capturing temporal dependencies and
semantic patterns, the Att-based Bi-LSTM model can effectively identify anomalies
within log sequences.

5. Grouping by IDs (online): During the online phase, when a new log message is
received in real time, it is correlated with existing log messages that share the same
IDs. This step aims to understand the relationships and dependencies between the
incoming log message and the previous log messages associated with the same IDs.
By considering the contextual information within the log data, we can gain insights
into the behavior of system components.

6. Constructing Ri graph (online): Based on the correlated log messages, a new instance-
specific R graph, denoted as Ri graph, is instantiated. The Ri graph represents the
current state of the system and captures any changes or deviations from the normal
behavior observed during runtime. This graph can be leveraged to identify and
analyze anomalies that occur in real time.

7. Log parsing (online): The Ri graph obtained from the previous step is passed through
the log parsing stage, similar to the offline phase. This allows us to extract and encode
the relevant semantic and temporal information specific to the current instance of
the system.

8. Anomaly detection (online): In this step, the encoded log information is fed into the
trained model to detect anomalies. By comparing the log sequences to the learned
patterns and characteristics from the offline training, the model can identify devia-
tions that indicate the presence of anomalies. If an anomaly is detected, an alarm is
generated to alert the monitoring team about the issue.

9. Anomaly localization (online): Upon detecting an anomaly, the research team proceeds
to localize the anomaly by examining the malfunctioning instance. The team focuses
on investigating the specific instance associated with the anomaly and reports the
instance ID related to it. This information is crucial for identifying the root cause of
the anomaly and for taking appropriate corrective actions.

The steps involved in the entire procedure are listed above. As our proposed method
employs a deep learning architecture that leverages the power of BERT and attention-based
BiLSTM networks, it is important to discuss the network structure, which can be described
as follows:

1. Input layer: The input layer receives the log data as input, which are typically represented
as a sequence of log events. Each log event is encoded using sentence embeddings.

2. Embedding layer: The embedding layer transforms the sentence-embedded log events
into continuous vector representations, capturing the semantic information of the log
events. We utilize pre-trained BERT embeddings to capture the contextual information
and semantic relationships between log events.

3. LSTM layer: The LSTM layer processes the log event sequence in a recurrent manner,
capturing the temporal dependencies and patterns within the logs. It consists of
multiple LSTM units that maintain and update the hidden state based on the current
input and the previous hidden state.

4. Attention layer: The attention layer enhances the model’s ability to focus on rele-
vant log events by assigning different weights to different parts of the log sequence.
It dynamically learns the importance of each log event based on its relevance to
anomaly detection.

5. Output layer: The output layer is responsible for predicting whether a given log event
or log sequence is anomalous or normal. It produces the anomaly score for each log
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event, indicating its deviation from normal behavior. We employ suitable functions
such as Softmax as an activation function and Categorical Cross-Entropy Loss as a
loss function to train the model effectively.

This research project’s design includes multiple phases for detecting and localizing
anomalies in log data. The procedure begins with relation creation, which entails con-
structing a graph that depicts the relationships and dependencies among the system’s
various components. The next step is log parsing, which entails extracting the pertinent
information from the log data and encoding it in a format that can be used for analysis.
The encoded log data are then fed into a deep learning model that has been trained to
recognize anomalies using techniques such as self-attention or masked language modeling.
If an anomaly is detected, the system can utilize the relation graph and other contextual
data to localize the anomaly and to determine its root cause. This may entail examining the
malfunctioning instance and its dependencies in the relation graph, as well as employing
heuristics or other techniques to determine the source of the anomaly.

3.1. Log Parsing

We preprocess a stream of log data by removing any unnecessary characters or for-
matting. By separating the preprocessed log data into individual words, we tokenize
it. We dictionarize the tokens by creating a dictionary with words as the keys and the
frequency of each word as the values. The word sets in the dictionarized data are used to
cluster the log data into groups. Using the Longest Common Subsequence (LCS) algorithm,
we hide any variable data in the clusters. Using a prefix tree, we combine the masked
clusters into a single list of dictionaries. As output, we return the merged logs as a list of
dictionaries representing parsed and processed log entries. The algorithm used to parse
logs for anomaly detection is detailed in Algorithm 1. The worst log parser complexity is
O(n ∗ logd + logc), where n is the number of log entries, d is the size of the dictionary, and
c is the total numbe of groups.

Algorithm 1: Log parsing algorithm for anomaly detection
Data: logData = []
Result: templates = []

1 f ilteredData← preprocess(logData)
2 tokenizedData, dictionary← tokenize( f ilteredData)
3 clusteredData← groupByWordset(tokenizedData, dictionary)
4 maskedData← maskVariables(clusteredData)
5 mergedData← mergeLogs(maskedData)
6 templates← extractTemplates(mergedData)
7 return templates

3.2. Anomaly Detection

We create an already trained Att-Bi-LSTM method for offline anomaly identification
via historical log-based data as our data source. Log parsing and sentence embedding are
processes that are carried out whenever a new batch of log messages is received. After that,
the vectors that were generated are used to train a model that has already been constructed.
In conclusion, the Att-Bi-LSTM has the capability of identifying anomalies. Take this into
consideration whenever this method is going to make assumptions by using the session of
log-based data that are connected by a similar identifier, such as a block identifier. Because
of this, an unusual occurrence can be reliably reported until the end of the session. In other
words, this approach, similar to LogRobot [9], operates in a fast mode. Algorithm 2 is used
for anomaly detection using BERT embedding and LSTM-based neural network. Our log
parser has the worst complexity, O(n2), where n is the length of the input sequence.
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Algorithm 2: The BERT and LSTM approaches to anomaly detection
Data: inputSequence = []
Result: anomalies = []

8 embeddings← BERT(inputSequence, modelBERT)
9 outputSequence← LSTM(embeddings, modelLSTM)

10 anomalyScores← computeAnomalyScores(inputSequence, outputSequence)
11 anomalyThreshold← computeAnomalyThreshold(anomalyScores)
12 for i← 1 to length(inputSequence) do
13 if anomalyScoresi > anomalyThreshold then
14 anomalies← anomalies ∪ {i}

15 return anomalies

3.3. Anomaly Localization

Identified instance IDs are labeled as anomalous during detection. Using an instan-
tiated directed acyclic R graph (DAG) representation of the system, we now employ a
heuristic technique for localizing anomalies in a distributed system. Beginning with a set
of anomalous instances, the ADAL-NN heuristic technique follows the edges of the DAG
R graph to determine the root cause of the anomalies.

The procedure begins with the collection of anomalous instances, denoted by the letter
“A”. The algorithm then examines each of these IDs to determine if they are leaf nodes
(i.e., nodes with zero out-degree). If an ID is a leaf node, the search is terminated and the ID
is returned as the anomaly’s cause. If an ID is not a leaf node, the algorithm examines the
ID’s child nodes to determine if any are anomalous. If any of the child nodes are atypical,
the corresponding ID is removed from the set “A”. If none of the child nodes are anomalous,
the search proceeds to the children of the children. This procedure is repeated until the
anomaly’s root cause is identified. This method yields a collection of anomalous instances,
completing the instance-level localization of anomalies as discussed in Algorithm 3.

Algorithm 3: Anomaly localization through the use of relation graphs
Data: graph = [], anomalousInstances = []
Result: rootCauses = []

16 rootCauses← ∅
17 for instance ∈ anomalousInstances do
18 if degreeout(instance) = 0 then
19 rootCauses← rootCauses ∪ {instance}
20 else
21 children← getChildren(graph, instance)
22 anomalousChildren← anomalyLocalization(graph, children)
23 if anomalousChildren = ∅ then
24 rootCauses← rootCauses ∪ {instance}

25 return rootCauses

The anomaly localization algorithm has a time complexity of O(n), where n is the
number of nodes in the relation graph. This is due to the fact that the algorithm loops
through all of the anomalous instances and checks their graph children but does not traverse
the entire graph. The algorithm’s time complexity could potentially be reduced to O(k),
where k is the number of root causes, by adding a break statement after the root cause is
identified; however, this would increase the algorithm’s complexity.
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4. Implementation
4.1. Datasets

Public Datasets. Logpai [54] is a log parser benchmark that uses 16 real-world log
datasets from distributed systems, supercomputers, operating systems, mobile systems,
and server applications, as well as standalone software such as HDFS, Hadoop, Spark,
Zookeeper, BGL, HPC, Thunderbird, Windows, Linux, Android, HealthApp, Apache,
Proxifier, OpenSSH, OpenStack, and Mac. LogHub [55] provides the above log datasets.
Each dataset comprises 2000 log samples, each of which has been tagged by a rule-based log
parser. In addition to sampling datasets, we chose datasets from two exemplary systems to
assess the proposed ADAL-NN technique. Table 2 displays the specifics.

Table 2. Log datasets.

Log Type No of Messages No of Templates Seq Perf

HDFS 11,176,738 31 3 7

BGL 4,747,963 377 3 7

Papertrail 2,949,569 109 3 3

The HDFS log collection was obtained from a cluster of 203 nodes on the Amazon EC2
platform [3], and it contains 11,176,738 raw log messages. The aberrant HDFS actions were
categorized manually by researching HDFS code and by talking with Hadoop professionals,
including sequential-order anomalies such as “Replica quickly removed” and certain
exception logs such as “Receive block error”. More information may be found in the
original publication [3].

Lawrence Livermore National Labs (LLNL) gathered the BGL dataset, which is a
supercomputing system log dataset [56]. BGL’s abnormalities are manually identified by its
system administrators. The log messages in these anomalies most likely contain exception
descriptions. “ciod: Error generating node map from file [. . . ]” is an example of a log
message. More information may be found in the original publication [56].

We also gathered real Papertrail log data, which we used for anomaly detection and
localization following log parsing. We utilized Papertrail’s search and filtering capabilities
to identify the instances or components that may be causing the anomaly. We used the
information obtained from the process of anomaly detection and localization to identify
and fix the problem’s root cause.

4.2. Experiments

We performed the following steps for the experiments of anomaly detection
and localization:

1. Datasets: We utilized three different datasets for our experiments: Hadoop Distributed
File System (HDFS), Big-Log (BGL), and Papertrail. These datasets are widely used
in anomaly-detection research and provide a diverse range of log data for evalua-
tion purposes.

2. Preprocessing: Before conducting the experiments, we preprocessed the datasets
to prepare them for anomaly detection. This involved cleaning the data, removing
irrelevant characters, and transforming the log messages into a structured format
for analysis.

3. Feature extraction: In order to extract meaningful features from the log data, we
applied various techniques such as tokenization, dictionary-based grouping, and
embedding. These techniques allowed us to represent the log data in a structured and
informative manner.

4. Experimental steps:

(a) Splitting the data: We partitioned the preprocessed datasets into training,
validation, and testing sets via 8:1:1. The training set was used to train the
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models, the validation set was used for hyperparameter tuning, while the
testing set was employed to evaluate the performance of the trained models in
detecting anomalies.

(b) Model selection: We selected a range of anomaly-detection models to com-
pare with our proposed NN model. These models included Support Vector
Machines (SVM), Isolation Forest (IM), Principal Component Analysis (PCA),
Neural Networks (NN), Autoencoders (AE), Variational Autoencoders (VAE),
and Recurrent Neural Networks (RNN). Each model was chosen based on its
popularity and effectiveness in anomaly-detection tasks.

(c) Model training: For each selected model, we performed training using the
training set of the respective dataset. The models were trained to learn the
normal behavior of the log data, capturing patterns and structures that charac-
terize normal system operations.

(d) Parameter tuning: We conducted parameter tuning for each model to optimize
its performance. This involved adjusting the model-specific parameters, such
as the number of hidden layers, learning rate, and regularization parameters
to achieve the best possible anomaly-detection results.

(e) Model evaluation: After training the models, we evaluated their performance
using the testing set. We calculated various evaluation metrics, such as preci-
sion, recall, and F1 score, to assess the effectiveness of each model in detecting
anomalies. We considered the weighted average F1 score as the main metric
for the evaluation part.

5. Experimental environment:

(a) Hardware: The experiments were conducted on a high-performance comput-
ing cluster comprising multiple computing nodes. Each node was equipped
with sufficient computational resources, including multi-core processors and
a substantial amount of memory, to handle the processing requirements of
the experiments.

(b) Software: We used open-source machine learning libraries and frameworks,
such as scikit-learn for machine learning, and Pytorch for deep learning, to im-
plement and train the different models. These libraries provided the necessary
tools and functions for data preprocessing, model training, and evaluation.

(c) Programming environment: The experiments were conducted using Python
programming language. Python offers a wide range of libraries for machine
learning and data analysis, making it suitable for implementing and evaluating
anomaly-detection models.

4.3. Results

It is essential to evaluate the performance of a log parser and anomaly-detection
system in order to determine how effectively they achieve their objectives. Several different
metrics, including parsing accuracy, precision, recall, and F1 score, can be used to evaluate
the performance of a log parsing algorithm. Accuracy, the receiver operating characteristic
(ROC) curve, and the area under the curve are additional metrics that may be useful for
evaluating the performance of a log parsing algorithm (AUC). If the objective was to
identify anomalies as precisely as possible, precision may be the most crucial metric to
consider. Alternatively, if the objective was to identify as many anomalous instances as
possible, recall could be the most important metric. However, we evaluated the log parser
based on parsing precision because our current objective is to evaluate the parsing results
of the log parser.

The results of log parsing are depicted in Figure 3. The results obtained clearly
demonstrate the effectiveness of our log parser. It is now time to implement sentence
embedding and train the neural network. These results are superior to the logram parser,
which achieves an accuracy of 80.9% on HDFS and 58.7% on BGL. It is remarkable that
our log parser achieved a parsing accuracy of 98%. This indicates that it can correctly
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parse the vast majority of log messages, which could be advantageous for extracting useful
information and insights from log data.

Figure 3. Result of log parsing indicating parsing accuracy for various datasets, such as HDFS
and BGL.

There are a few factors that contributed to the high parsing accuracy of our log parser:

1. Robust log parsing algorithm: The log parsing algorithm used by our log parser is
robust and able to accurately parse a wide variety of log messages, even if they contain
errors or deviations from the expected format.

2. High-quality training data: The log parser was trained on a large and diverse dataset of
log messages, which improved its ability to accurately parse new log messages.

3. Efficient error handling: The log parser has effective mechanisms for handling and
correcting errors in the log messages, which contribute to its high parsing accuracy.

For model training, an attention-based BiLSTM neural network was utilized. In
total, 30 epochs were used to train the neural network. Figure 4 depicts the remarkable
results we achieved after training the neural network. Common performance metrics for
anomaly-detection systems include detection accuracy, false positive rate, false negative
rate, precision, recall, and F1 score. By carefully examining these metrics, the weighted F1
score is the best metric for identifying data anomalies. Table 3 displays the classification
report for the anomaly-detection section.

Figure 4. Training in focus-based BiLSTM neural network with 30 epochs of sentence embedding of
parsed logs.

The classification report is displayed in Table 3 after the model was updated with the
new data. In this research, 88% was the weighted average F1 score attained by the anomaly-
detection algorithm. We utilized a weighted average F1 score instead of other commonly
used metrics such as precision, recall, and accuracy because there are few samples with
anomalous characteristics. The weighted average F1 score accounts for the imbalance
between classes in the dataset. In this instance, the F1 score is the average of the F1 scores
for each class, with the number of instances in each class serving as the weights.
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Table 3. Classification report of anomaly detection.

Classes Precision Recall F1 Score

0 0.92 1.00 0.96

1 0.00 0.00 0.00

2 0.00 0.00 0.00

Accuracy - - 0.92
Macro Average 0.31 0.33 0.32

Weighted Average 0.85 0.92 0.88

Anomaly detection is an inherently imbalanced problem, where the number of normal
instances significantly outweighs the number of anomalies. In such cases, accuracy can
be misleading, as it can be driven by the high accuracy achieved in normal instances
while failing to capture the true performance on anomalies. Similarly, precision and recall
focus on correctly classifying anomalies, but they may not adequately capture the trade-off
between false positives and false negatives, which is crucial in anomaly detection. On the
other hand, the F1 score provides a balanced measure that combines precision and recall,
making it well suited for imbalanced classification problems. Therefore, in the context
of anomaly detection, the weighted average F1 score emerges as a more informative and
suitable evaluation metric than accuracy, precision, or recall alone.

We also compared our results with the other methods in the literature. Table 4 shows
the effectiveness of our proposed method.

Table 4. Comparison of F1 scores, precision, and recall for selected studies.

Reference Precision Recall F1 Score

[3] 82 71 77

[8] 86 77 82

[13] 76 66 71

ADAL-NN 85 92 88

In the context of anomaly detection and localization, XAI systems can provide ex-
planations for why an anomaly was detected and for its system location. Using XAI for
anomaly detection and localization offers a number of advantages:

1. Improved trust: By providing explanations for their decisions and actions, XAI sys-
tems can help to build trust with users and stakeholders who may be skeptical of the
capabilities of AI.

2. Enhanced accountability: XAI systems can help to improve accountability by provid-
ing a clear record of the steps that were taken to detect and locate an anomaly, which
can be useful for audit and compliance purposes.

3. Better understandability: XAI systems can help to make the results of anomaly detec-
tion and localization more understandable to humans, which can help to improve the
effectiveness of the process.

There are several approaches to developing XAI systems for anomaly detection and
localization, including:

1. Rule-based systems: Rule-based systems provide explanations by presenting the
specific rules or heuristics that were used to make a decision.

2. Model-based systems: Model-based systems provide explanations by presenting the
underlying model or algorithms that were used to make a decision.

3. Example-based systems: Example-based systems provide explanations by presenting
examples of similar cases that were used to make a decision.
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Here, we examine two significant limitations of this study:

First, this study is only capable of identifying anomalies in log data. On the one hand, this
study cannot detect abnormalities (such as excessive CPU utilization) revealed by KPI data
as opposed to log data. This study employs log time interval change to identify as many
potential performance issues as possible, but not all, because not all performance problems
are linked to logs.
Second, the scope of this study is limited to log statements whose core meanings are stable
despite their constant flux. If the updated logging statement has a different meaning than
the previous ones, or if the incoming log message is significantly different from the previous
ones, the pre-trained model may not capture the meaning, leading to incorrect results.

4.4. Discussion

The comparative results of different models are given in Figure 5. These include
deep-learning-based models i.e., Principle Component Analysis (PCA), Initial Margin
(IM), Support Vector Machine (SVM), and Neural Network (NN) on HDFS illustrated
in Figure 5a, BGL illustrated in Figure 5b, and Papertrail illustrated in Figure 5c data.
These illustrated data were actually weighted average F1 scores of different models as we
considered them for evaluation purposes.

(a) (b) (c)

Figure 5. Evaluation of a model based on a comparison of multiple models using distinct datasets.
(a) HDFS anomaly-detection evaluation. PCA, IM, SVM, and NN F1 scores are 0.68, 0.85, 0.83, 0.90,
respectively. (b) BGL anomaly-detection evaluation. PCA, IM, SVM, and NN F1 scores are 0.46, 0.86,
0.87, 0.90, respectively. (c) PT anomaly-detection evaluation. PCA, IM, SVM, and NN F1 scores are
0.66, 0.67, 0.82, 0.88, respectively.

We also examine the offline training time and online inference time of the anomaly-
detection model on the HDFS dataset. This investigation’s execution time is measured in
milliseconds per sequence (ms/seq).

In Table 5, we compare the runtime of the anomaly-detection component of deep-
learning-based models and models that do not use deep learning. Training time corresponds
to offline training cost, while real or inference time corresponds to online detection time.
These times were carried out by using a Python library “timeit”, which is used to calculate
the execution time of the algorithm. Due to the fact that a deep-learning-based model must
be trained over multiple epochs, only the runtime of one epoch is presented here. Due
to the immense complexity of deep-learning-based models and the limited resources of
this research’s experimental contexts, it is evident that deep-learning-based models are
significantly slower than models that do not utilize deep learning. The ADAL-NN requires
four times as much training as alternatives. This is acceptable, as the overhead incurred
during offline training has no bearing on the online runtime of anomaly detection. The
online inference time of the ADAL-NN is roughly double that of LogRobust. Given that
this model is a three-classification problem and LogRobust is a two-classification task, it
may take longer to learn and predict an additional class.
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Table 5. Offline and online time on HDFS data utilizing distinct models for offline and online time.

Model Training Time Real Time

NN 41.58 10.75

SVM 6.77 2.07

IM 14.76 2.0

PCA 8.55 8.1

A large-scale system may generate over 60 GB of logs per hour, or 120 million log
lines [2] (i.e., 6 million log sequences assuming each sequence comprises 20 log lines).
According to Table 3, due to the limited processing power and device memory of a single
Z-book system, it takes approximately one thousand minutes. We have also run the ADAL-
NN in parallel on an eight-core CPU, which has a significant impact on the online detection
time. The results indicate that it takes approximately 50 min to process such a large volume
of log data.

The proposed method presents a notable advancement in terms of efficiency, robust-
ness, and generalization compared to existing approaches. Firstly, in terms of efficiency, the
method incorporates various optimizations and techniques that enable faster processing
and analysis of log data. By constructing the ID relation graph during the offline phase and
leveraging log parsing and sentence embedding techniques, the method efficiently extracts
and encodes the relevant semantic and temporal information from log sequences. This
streamlined process reduces computational overhead and improves the overall efficiency
of anomaly detection and localization.

Secondly, the method exhibits enhanced robustness compared to previous approaches.
By employing an attention-based Bi-LSTM, the model effectively captures the intricate
patterns and dependencies within log sequences, enabling accurate detection and local-
ization of anomalies. The use of deep learning techniques enhances the model’s ability to
handle complex and diverse log data, making it more robust in detecting anomalies across
different scenarios and system environments. Additionally, the method’s integration of
anomaly identification and localization components further strengthens its robustness by
providing a comprehensive understanding of the detected anomalies.

Lastly, the proposed method demonstrates superior generalization capabilities. Through
the utilization of large-scale datasets such as HDFS, BGL, and Custom, the model is trained
on diverse log data, enabling it to learn and generalize patterns across different domains
and applications. This generalization capability allows the method to effectively adapt to
new and unseen log data, making it highly applicable in real-world scenarios where log
data patterns may vary. The incorporation of explainable AI techniques further enhances
the model’s generalization by providing transparent and interpretable explanations for
anomaly detection and localization, ensuring its applicability across various domains and
facilitating decision-making processes.

In summary, the proposed method offers significant advancements in terms of effi-
ciency, robustness, and generalization. By leveraging optimized techniques, deep learning
models, and explainable AI components, the method achieves faster processing, accu-
rate anomaly detection, comprehensive localization, and adaptability to diverse log data,
making it a highly promising approach in the field of anomaly detection and localization.

This research provides a case study of a real-world system, Hadoop, to further illustrate
the identification and localization of anomalies. The R graph of a Hadoop cluster is
illustrated in Figure 6. Hadoop consists of six distinct types. The relationship between
types is represented by arrow lines, with the 1:1 relationship indicated by a red dashed line
and the 1:n relationship indicated by a black line. For instance, if an application creates
multiple blocks, their relationship is 1:n. In our research, the 1:1 correlation is eliminated.

Following that, we provide a real-world anomalous instance. To begin, a series of
incoming logs progressively launches the R graph as the Ri graph. In reality, application 01
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generates a total of 14 blocks and 16 containers. In Figure 7, we only display the simplified
Ri graph with three blocks, three containers, one app attempt, one attempt r, and one
attempt m due to space constraints.

This research first identifies anomalies in log data organized by block ID and labels
blk 01 as an anomalous block. Following that, an exception is detected in block 03; conse-
quently, the ADAL-NN identifies block 03 as aberrant as well. Ultimately, the ADAL-NN
method detects a killing signal in container 02, which is labeled as flawed. In Figure 7, all
of the incorrect instances in A are colored red. The graph Ri is then subjected to heuristic
searching. The ADAL-NN reports the anomalous instances blk 01, blk 03, and container
02 because they are leaf nodes in the Ri graph. Consequently, we can identify anomalies
in Hadoop at the instance level (blk and container in this example). Such information can
greatly aid developers in identifying the source of the issue. We can see, for instance, that
not all blocks and containers are affected by these anomalies. In slave clusters, we can
assume that a node failure is possible. The associated logs of blk 01, blk 03, and container
02 indicate that slave 2 is experiencing a network issue. Therefore, when we encounter
anomalies, this research can aid us in swiftly identifying and analyzing root causes.

Figure 6. Original relation graph of Hadoop.

Figure 7. Simple relation graph of Hadoop.

4.5. Comparison with Deep Learning Models

To further demonstrate the effectiveness of our proposed method, we conducted addi-
tional experiments comparing it with state-of-the-art deep learning models commonly used
for anomaly detection. By including these comparisons, we aim to showcase the superiority
of our approach over both traditional and modern anomaly-detection techniques.

We selected the three widely used deep learning models in the task of anomaly
detection, which are Autoencoders (AE), Variational Autoencoders (VAE), and Recurrent
Neural Networks (RNN). These models were chosen based on their popularity and proven
performance in anomaly-detection tasks. For each deep learning model, we implemented
the necessary architecture and trained it using the same dataset and evaluation metrics as
our proposed method. We ensured that the hyperparameters and training settings were
appropriately tuned for each model. We then compared the performance of our proposed
method with these deep learning models using the F1 score metrics.
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In the HDFS anomaly-detection evaluation, the F1 scores for the NN, AE, VAE, and
RNN models were 0.90, 0.87, 0.88, and 0.88, respectively. Similarly, in the BGL anomaly-
detection evaluation, the F1 scores for the NN, AE, VAE, and RNN models were 0.90, 0.89,
0.90, and 0.89, respectively. Furthermore, in the PT anomaly-detection evaluation, the F1
scores for the NN, AE, VAE, and RNN models were 0.88, 0.86, 0.87, and 0.87, respectively.
For better demonstration, we added these results into Table 6. These scores highlight the
capability of the models to identify anomalies in the HDFS, BGL, and PT datasets.

Table 6. F1-scores of anomaly detection via deep learning models.

Dataset NN AE VAE RNN

HDFS 0.90 0.87 0.88 0.88

BGL 0.90 0.89 0.90 0.89

PT 0.88 0.86 0.87 0.87

The results were obtained through rigorous cross-validation and statistical analysis
to ensure reliable comparisons. By including comparisons with deep learning models, we
demonstrate the effectiveness and superiority of our proposed method in detecting and
localizing anomalies in unstructured logs.

4.6. Future Work

Future research and development in the field of anomaly detection and localization
could be conducted in the following areas.

Researchers can continue to improve the accuracy and robustness of existing anomaly-
detection algorithms by developing more effective feature extraction techniques, incorporat-
ing additional context and background knowledge, and addressing class imbalance issues.

Developing new approaches for anomaly detection: There is a need for the devel-
opment of new anomaly-detection methods that can handle a variety of data types, such
as high-dimensional data or streaming data, and that can be applied to a wide variety of
use cases.

Including domain-specific expertise: Anomalies are frequently easier to detect and
localize when domain-specific knowledge is considered. For instance, in a manufacturing
environment, understanding the normal operation of a specific machine can help to more
precisely identify and locate anomalies.

Exploiting temporal dependencies: numerous anomalies exhibit temporal depen-
dencies, which means they tend to occur in a particular pattern over time. The accuracy
and effectiveness of anomaly-detection algorithms can be improved by incorporating
this information.

Creating robust and effective localization techniques: Anomaly localization is fre-
quently a difficult task, especially when the data are of high dimension or when the
anomalies are small or subtle. The development of robust and efficient localization meth-
ods that can precisely identify the location and extent of anomalies can be a significant area
of future research.

In many applications, the characteristics of the data and the types of anomalies that
can occur can change over time. Important research topics include the development of
anomaly-detection algorithms that can adapt to these changes and continue to detect and
localize anomalies effectively.

5. Conclusions

In this study, a robust and efficient tool for identifying and localizing anomalies in
interleaved, unstructured logs was presented. We sought to address the practical challenges
posed by complex log dependencies, changing events, and log time interval anomalies.
Our method can detect a wide variety of anomalies, including log sequential and log
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time interval anomalies, and localize them at the instance level. To assess the efficacy of
our methodology (ADAL-NN), we conducted extensive experiments on both real-world
and simulated datasets. The outcomes of these experiments indicate that our strategy
outperforms existing methods in terms of efficacy, efficiency, and longevity. In the future,
we intend to apply our ADAL-NN methodology to a wider variety of systems and to
develop a flexible incremental updating method to accommodate new log anomaly patterns.
Our work has the potential to significantly improve the reliability and performance of
distributed systems. In the future, we also intend to delve deeply into anomaly localization,
real-time anomaly detection, and model explanations.
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