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Abstract: Imbalanced learning problems often occur in application scenarios and are additionally
an important research direction in the field of machine learning. Traditional classifiers are substan-
tially less effective for datasets with an imbalanced distribution, especially for high-dimensional
longitudinal data structures. In the medical field, the imbalance of data problem is more common,
and correctly identifying samples of the minority class can obtain important information. Moreover,
class imbalance in imbalanced AD (Alzheimer’s disease) data presents a significant challenge for
machine learning algorithms that assume the data are evenly distributed within the classes. In this
paper, we propose a random forest-based feature selection algorithm for imbalanced neuroimaging
data classification. The algorithm employs random forest to evaluate the value of each feature and
combines the correlation matrix to choose the optimal feature subset, which is applied to imbalanced
MRI (magnetic resonance imaging) AD data to identify AD, MCI (mild cognitive impairment), and
NC (normal individuals). In addition, we extract multiple features from AD images that can rep-
resent 2D and 3D brain information. The effectiveness of the proposed method is verified by the
experimental evaluation using the public ADNI (Alzheimer’s neuroimaging initiative) dataset, and
results demonstrate that the proposed method has a higher prediction accuracy and AUC (area under
the receiver operating characteristic curve) value in NC-AD, MCI-AD, and NC-MCI group data, with
the highest accuracy and AUC value for the NC-AD group data.

Keywords: magnetic resonance imaging (MRI); random forest; feature extraction; Alzheimer’s
disease; imbalanced learning

1. Introduction

AD (Alzheimer’s disease) is a chronic neurodegenerative disease and has become
the most common form of dementia in the elderly. In clinical diagnoses, AD patients are
characterized by a significant decline in memory, loss of language ability, cognitive function
decline, and gradual decline in self-care ability, etc., accompanied by the emergence of
dementia, such as mental disorders, which seriously threatens the quality of life and life
health of the elderly [1]. According to statistics, there are currently more than 50 million
AD patients in the world. With the increasing aging of the global population, the number
of elderly people has increased significantly. It is estimated that the number of AD patients
in the world will increase to 152 million by 2050 [2]. MCI (mild cognitive impairment)
is generally considered to be the early stage of AD. Based on relevant research reports,
10–15% of MCI patients develop into AD each year; however, only 2% of the normal
population (normal people) develop into AD each year. Thus, MCI patients are highly
susceptible to developing AD [3,4]. This makes the MCI stage an ideal target for early
prediction, as research suggests that early diagnosis is the key to potentially delaying
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the overall progression of AD. However, currently, there is no effective method of curing
AD; thus, early diagnosis and treatment for patients have a great significance in delaying
the development of AD. With the rapid development of machine learning technology,
various computer technologies are used to process and analyze brain images to extract
their essential features and combine machine learning methods to design a method that
can automatically and accurately diagnose MCI, AD, and NC, which aids in the rapid and
accurate diagnosis of the disease so that AD patients can be treated at an early stage to
delay or prevent a further progression of the disease process.

By analyzing the changes in the brain neuroimaging structure and function of AD
patients, many researchers have attempted to identify biomarkers that can contribute to the
clinical diagnosis of AD and offer value for early diagnosis. MRI (magnetic resonance imag-
ing) is widely used in the early diagnosis of AD, due to its advantages of non-invasiveness
and high popularity [5]. The framework of a brain imaging-based classification model
consists primarily of three parts: image preprocessing, image feature extraction, and data
processing. Among them, image feature extraction plays a crucial role, which is commonly
used in natural images including color features, texture features, or shape features. Most of
the different types of images collected by the existing medical imaging equipment are non-
color images. Therefore, compared with color features, texture features or shape features
are more important for medical images.

Since subtle changes in brain histopathology may cause significant changes in the
function of brain regions, the analysis of morphological features in medical images has
gradually received attention in recent years. It utilizes non-invasive morphological MRI
techniques to study changes in brain tissue structure [6], such as the VBM (voxel-based
morphometry) method [7] and the manually marked ROI (regions of interest) method [8].
Compared with the ROI method, the VBM method is a hypothetical, efficient, and unbiased
method that can measure and analyze differences between brain tissues, such as gray and
white matter in the whole brain [7]. Therefore, VBM is widely used to assess morphological
changes [9], which has been successfully applied to study the gray matter changes of
AD [10,11]. Texture analysis defines the quantification of the grayscale pattern of the image,
which embodies the surface structure and organization properties of the object surface of
periodic changes. It can help identify the surface phenomenon of the image that exhibits
different changes. Existing texture feature extraction methods can be summarized into
statistical analysis methods (including the gray-level co-occurrence matrix, run length
matrix, and local binary mode, etc.), structural analysis methods (including syntactic
texture description methods, mathematical morphology methods, etc.), model analysis
methods (including the Markov model, fractal model, etc.), and spectral analysis methods
(including the Gabor filter method, Fourier transform method, etc.) [12].

Among them, the structural analysis method is appropriate for texture feature extrac-
tion from artificial texture images with regular textures, whereas it is challenging to extract
effective features from texture images that cannot extract primitives or texture images with
extremely complex arrangement rules. The model analysis method mainly uses model
coefficients to identify texture features; however, its solution process is difficult. Thus, for
complex brain images with irregular lesion areas, the application of structural analysis
and model analysis is very limited. In contrast, statistical analysis methods, such as the
gray-level co-occurrence matrix and spectral analysis methods are widely used to extract
texture features from brain images [13,14]. As a result, the gray-level co-occurrence matrix
and gray-gradient co-occurrence matrix are used to extract the texture features of medical
images of the brain in this paper. Texture features are used to depict the details of lesions
more finely in AD images to help classify and identify MRI images of AD. Subsequently, the
texture feature and morphological feature are fused to form feature data that can represent
image information, laying the foundation of establishing a classification model.

In many disease screening and early diagnosis studies, imbalanced classification is the
most common challenge when a severely skewed class distribution in the data is attributed
to the rarity of the disease. Traditional classification methods that generally assume a



Appl. Sci. 2023, 13, 7253 3 of 19

balanced class distribution often perform poorly and misclassify subjects from the minority
class (i.e., disease) as ones from the majority (i.e., health), resulting in a high false negative
rate [15]. In the study of AD, the imbalanced data distribution problem is often encountered.
Imbalanced datasets are very unfavorable in the establishment of classification models
because the entire establishment process will be biased towards the majority class, resulting
in a higher misclassification rate for the minority class [16]. However, in some special
cases, the minority class samples are the ones we care most about. For instance, the cost of
misdiagnosing a cancer patient as disease-free is far greater than the cost of misdiagnosing
a disease-free patient as having cancer in a medical diagnosis [17–19].

To solve the problem of medical image data with imbalanced data distribution ob-
tained in practical applications, this paper proposes a classification model for AD medical
images based on class imbalance learning technology. The experimental data are from the
American public data database ADNI (Alzheimer’s neuroimaging initiative), which has
an obvious class imbalance problem. The research idea is as follows: Firstly, preprocess
the brain MRI medical images, determine the ROI, and extract the morphological features
and texture features. Secondly, a feature selection algorithm for imbalanced data based
on random forests is proposed to solve the class imbalance problem. Finally, extensive
experiments are carried out on the ADNI dataset to verify the effectiveness of the proposed
method. In this paper, by integrating these methods to study the class imbalance AD brain
medical image classification problem, a novel way of AD diagnosis is explored.

The major contributions of this paper are summarized as follows:
(1) To address the medical image data with the class imbalance problem, multiple

types of features are extracted that can represent 2D and 3D brain information, including
morphological features and texture features, and these are fused to form a feature matrix
that can represent the image’s essential information;

(2) Furthermore, to cope with the high dimensional complexity of AD data, feature
selection is carried out on the extracted features. In the process of feature selection, a new
feature selection method RF–AUC–Cor suitable for class imbalance data is proposed based
on the random forest algorithm, AUC evaluation standard, and the covariance matrix,
which can effectively reduce redundant features;

(3) Extensive experiments verify that the proposed method is effective in dealing
with medical image data with imbalanced class distribution and has certain research and
promotion values.

The remainder of this paper is organized as follows: Section 2 describes the related
work. Section 3 presents the proposed imbalanced AD medical image data analysis ap-
proach in detail, and the random forest-based feature selection method is additionally
described in this section. Section 4 reports the experimental results. Finally, Section 5 draws
conclusions and discusses future work.

2. Related Work

At present, various methods have been used to analyze AD medical image data.
Zhe et al. [20] proposed the SVM–RFE with covariance feature selection method by ex-
tracting morphological features, gray-level co-occurrence matrix features, and Gabor filter
features for the classification and prediction of AD. Shankar et al. [21] proposed a novel,
mutual relationship-based feature selection model with high-altitude acute response-like
features for the brain, predefined feature areas using magnetic resonance, and then im-
proved the SVM classification algorithm for the analysis of AD. Baskar et al. [22] proposed
an automated reliable system for the accurate detection of AD-affected patients with brain
images from sMRI where, in the feature extraction stage, important texture and shape
features are extracted from the HC and PCC involved in 3 brain planes; 19 highly relevant
AD-related features are selected through a multiple-criterion feature selection method.
Richhariya et al. [23] proposed a novel feature selection technique to incorporate prior
information about data distribution in the recursive feature elimination process, named
universum support vector machine-based recursive feature elimination. The proposed
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method provides global information about data in the RFE process, as compared to the
local approach of feature selection in SVM–RFE. Feng et al. [24] proposed an ROI-based
contourlet subband energy feature to represent the sMRI (structural magnetic resonance
imaging) image in the frequency domain for AD classification. Extracting which features
and how to combine multiple features to improve the performance of MCI classification
have always been challenging problems. To address these problems, Liu et al. [25] proposed
a new method to enhance the feature representation of multi-modal MRI data by combining
multi-view information to improve the performance of MCI classification. Lao et al. [26]
proposed a method to identify AD by extracting equal-distant ring shape context features
from the saliency map of sMRI. Ansingkar et al. [27] presented an innovative methodology
for Alzheimer’s detection in brain images, in which a hybrid equilibrium optimizer with a
capsule auto-encoder framework is utilized for the detection of Alzheimer’s and normal
and mild cognitive impairment images.

There are many methods based on DL (deep learning) that have additionally been
proposed for feature extraction and the analysis of medical images [28–30], including AD
medical image data [31]. Li et al. [32] constructed a DenseNet to learn the patch features
for each cluster, and the features learned from the discriminative clusters of each region
are ensembled for classification. Afterwards, the classification results from different local
regions are combined to enhance the final image classification. Spasov et al. [33] presented
a novel DL architecture, which is multi-tasking in the sense that it learns to simultaneously
predict both MCI to AD conversion as well as AD vs. healthy controls classification,
which facilitates relevant feature extraction for AD prognostication. In the research of
Bi et al. [34], to tackle the problem of the automatic prediction of AD based on MRI images,
the unsupervised convolutional neural networks for feature extraction are implemented,
and then the unsupervised predictor is utilized to achieve the final diagnosis. In [35],
image features are generated from 3D input images using an ensemble of pre-trained
autoencoder-based feature extraction modules, and then convolutional neural networks are
used to diagnose AD. In [36], a DL is a proposed model for all-level feature extraction and
a fuzzy hyperplane-based least square twin support vector machine for the classification of
the extracted features for early diagnosis of AD using extracted sagittal plane slices from
3D MRI images.

It can be found that their experimental results have demonstrated that they have
better performances in AD classification and prediction, owing to the multi-feature fu-
sion/selection strategies. However, since the above work did not consider the character-
istics of imbalanced data distribution, their performance of prediction still has room for
further improvement.

According to a survey of the related literature, it was shown that there exist few
studies on imbalanced MRI AD, and most AD-related machine learning work is based on
the hypothesis of balanced data distribution. However, the number of people with AD is
usually less than the normal number. In [37], due to the imbalance in the number of subjects
in NC and MCI groups, they achieved a much lower sensitivity than specificity. In addition,
it is commonly agreed that imbalanced datasets adversely impact the performance of the
classifier as the learned model is biased towards the majority class to minimize the overall
error rate [38,39]. In the view of the above analysis, two issues must be considered for the
imbalanced AD dataset. One is the feature extraction for images, and the other is how
to deal with data distribution imbalance. Since our work in this paper is to address the
problem of data imbalance by improving the existing methods, that is why we follow the
idea of [20], a multi-feature fusion during feature extraction. In feature extraction, VBM can
effectively distinguish gray matter changes in the brain region [10] and is often widely used
in the study of AD [7,40,41]. Moreover, considering the complexity of AD and to extract
more feature information, we extract the morphological features and texture features
to analyze the imbalanced AD image data. However, there are often some redundant,
irrelevant, and less effective features among morphological features and texture features.



Appl. Sci. 2023, 13, 7253 5 of 19

To deal with AD imbalance learning problems, there are many researchers devoted
to this area and who have conducted comprehensive investigations, which are mainly
divided into internal solutions and external solutions [42]. Internal methods solve the
imbalance problem by designing new algorithms or improving existing algorithms [43].
Because of the complexity of high dimensional imbalanced data, it is very difficult to
find a classifier that can directly classify and meet users’ requirements. For instance,
different penalties are assigned to different class labels in the support vector machine-based
classifiers [44]. The external method reduces the impact of imbalance on the classification by
pre-processing the data [45–47]. This method directly changes the imbalanced distribution
of the data by employing a sampling technique; for example, Tsai et al. [48] introduced a
novel undersampling approach called cluster-based instance selection (CBIS) that combines
clustering analysis and instance selection; Murugan et al. [49] used the SMOTE technique to
address the class imbalance problem in the dataset, by randomly duplicating the minority
class of images in the dataset to minimize the overfitting problem; Velazquez et al. [50]
focused on providing an individualized MCI to AD conversion prediction using a balanced
random forest model, and the oversampling is performed to balance the initially imbalanced
classes before training the model with 1000 estimators; and Afzal et al. [51] employed a
transfer learning-based technique using data augmentation for 3D MRI views to avoid the
class imbalance problem. Because some samples will be replicated in the oversampling
dataset, the trained model will be subject to a certain degree of overfitting. In contrast,
undersampling will lead to the loss of some data in the final training set, resulting in the
model acquiring only a portion of the overall pattern. To address the pre-processing of
high-dimensional imbalanced data, it is necessary to propose a novel solution.

As mentioned above, an important goal of AD research is to identify key biometric
signatures. Biometric discovery is accomplished through feature selection, which is defined
as the process of finding a subset of relevant features (biomarkers) to develop efficient and
robust learning models. Simultaneously, referring to the ensemble feature selection ideas
of the literature [20,52], we propose a new imbalanced feature selection algorithm based
on random forest (namely, the RF–AUC–Cor algorithm) in this paper. Random forest is
an ensemble learning algorithm, and it can alleviate the problem of imbalanced sample
distribution in imbalanced datasets in the learning process [53]. AUC is widely used to
evaluate the performance of imbalanced classification problems. In our work, we combine
them to address the issue of imbalanced learning.

3. Design of Imbalanced AD Medical Data Analysis Approach

In this section, the proposed method will be described in detail. The overview of the
proposed classification framework for imbalanced brain MRI image data is illustrated in
Figure 1. The process is as follows: Firstly, collect MRI images from the ADNI database
and conduct initial pre-processing such as gradient correction, non-uniformity correction,
intensity unevenness correction, and scaling correction. Secondly, perform multi-type
feature extraction and fusion. Thirdly, propose a new feature selection algorithm based on
the random forest to obtain the optimal feature subset. Finally, classify images from the
ADNI database by using classifiers.

In research on the current brain medical image feature extraction technologies, it can
be found that the feature fusion method can retain more details of the image; therefore, this
paper employs the feature fusion method to fuse the morphological features and texture
features of the MRI images.

3.1. The Feature Extraction
3.1.1. Morphological Feature Extraction

The VBM method is a voxel-based morphological measurement method that represents
the morphological changes in brain tissue. Since it can estimate the density change of a
certain voxel unit volume, it was employed to represent local brain features and brain
tissue components. Baron et al. [54] used the VBM method to find that the total brain
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gray matter of people with AD was significantly reduced when compared with the normal
elderly, which was consistent with the results obtained by the manual drawing method
of [55] and the pathological results. Therefore, in this paper, ROI analysis of the MRI
data was carried out using SPM8 software (http://www.fil.ion.ucl.ac.uk/spm, accessed on
10 September 2021) and the VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm, accessed
on 10 September 2021). Furthermore, the gray matter volume of the lesion area was
calculated as a morphological feature. Figure 2 illustrates the processing framework of
morphological feature extraction.
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Step 1: Space standardization. Images are processed by using the VBM–DARTEL algo-
rithm, which not only improves the segmentation accuracy however additionally preserves
the original volume information and ensures the accuracy of spatial standardization.

The VBM algorithm pre-segments the brain tissue, according to the prior probability
information. In addition, it saves the volume of the medical image through modulation
and uses the Jacobian determinant to store the volume change information of each pixel in
the image, as shown in Formula (1):

J =

j11 j12 j13
j21 j22 j23
j31 j32 j33

 =


∂x′
∂x

∂x′
∂y

∂x′
∂z

∂y′
∂x

∂y′
∂y

∂y′
∂z

∂z′
∂x

∂z′
∂y

∂z′
∂z

 (1)

In Formula (1), (x, y, z) and (x′, y′, z′) represent the pixels before and after image
registration, respectively. During the modulation process of the image, the volume infor-
mation of the pixel is restored by multiplying the grayscale value of the pixel after image
segmentation by the Jacobian matrix determinant of that pixel.

The DARTEL algorithm introduces a Lie algebra and flow field theory into the process
of VBM space standardization and uses them to carry out nonlinear image registration,
which compensates for the defects in the VBM algorithm registration process and improves
the accuracy of registration. The principle of the DARTEL algorithm is as follows:

Firstly, assuming a constant flow field u; a differential equation describing the defor-
mation field changing with time can be obtained through u, as shown in Formula (2):

dΦ(x)
dt

= u
(

Φ(t)(x)
)

(2)

A deformation field can be obtained by using Formula (2), where x is the position
coordinate, representing the unit transformation, and the initial value of the time point
Φ(x) = x. Formula (3) can be obtained by integrating over Φ(t)(x):

Φ(1)(x) =
∫ 1

t=0
u
(

Φ(t)(x)
)

dt (3)

Further, use the Euler equation to transform Formula (2) and obtain Formula (4):

Φ(t+h) = Φ(t) + hu
(
Φt) (4)

In Formula (4), h represents the time step, and different deformation fields Φ can be
obtained by setting different time steps. The DARTEL algorithm obtains the corresponding
deformation field by exponentiating the flow field, which ensures that the determinant of
the Jacobian matrix is always positive while obtaining the deformation field so that the
registration result is diffeomorphic;

Step 2: Brain tissue segmentation. After the processing of spatial normalization,
the images are segmented into gray matter (GM), white matter (WM), and cerebrospinal
fluid (CSF);

Step 3: Spatial smoothing. Spatial smoothing is a filtering process, based on images
of the different tissue in segments. In this process, a Gaussian kernel function is used to
convolve image data in the standard space. The purpose of the smoothing is to eliminate
subtle matching errors and improve the signal-to-noise ratio;

Step 4: Defining ROI binary image. At present, VBM statistical analysis is based
on a generalized linear model. It performs a two-sample t-test on the hypothesis to
detect whether there is a significant difference in the density of certain regions of the gray
matter images between the two groups. The gray matter density regions with significant
differences are identified as an area of interest.
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The two-sample t-test was used to analyze whether there are significant differences
between the brain medical image data of normal people and those with AD lesions and to
identify the brain regions with more serious differences. The process is as follows:

Original hypothesis H0: assume that the population means values of the 2 samples
are equal.

Alternative Hypothesis H1: assume that the population means values of the 2 samples
are not equal.

The t-value is calculated in the 2-sample statistical test as shown in Formula (5):

t =
X1 − X2

SX1−X2

(5)

In Formula (5), X1 and X2 represent the population means values of the 2 independent
samples, respectively. The solution of SX1−X2

is shown in Formula (6):

SX1−X2
=

√
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2

(
1
n1

+
1
n2

)
(6)

In Formula (6), S2
1 and S2

2 represent their sample variances, respectively, and their
calculation methods are shown in Formulas (7) and (8).

S2
1 =

1
n1

n1

∑
i=1

(
X1i − X1

)2 (7)

S2
2 =

1
n2

n2

∑
i=1

(
X2i − X2

)2 (8)

where n1 and n2 represent the total numbers of sample 1 and sample 2, respectively.
In the case of a certain significance level, according to the t critical value table, if t

is greater than the critical threshold, then the result is to reject H0 and accept H1, which
proves that there is a significant difference between the 2 sample populations.

A two-sample t-test was performed on different groups of AD brain medical image
data by VBM to detect the regions where they have significant differences;

Step 5: Gray matter volume calculation. After VBM analysis, the ROI of the le-
sion area was obtained. The ROI binary masks were made by using the WFU_PickAtlas
(https://www.nitrc.org/projects/wfu_pickatls, accessed on 10 September 2021). Because
the two MRI images for dot product calculation must have the same dimension, the ROI
binary masks additionally needed to be resampled to have the same dimensions as the
gray matter image. Then the resampled ROI binary mask and the gray matter image were
implemented in the dot product calculation to obtain a gray matter volume.

3.1.2. Texture Feature Extraction

We extracted various texture features, based on the Gray-Level Co-occurrence Matrix
and Gray-Gradient Co-occurrence Matrix techniques. The specific steps for texture feature
extraction are as follows:

Step 1: Gray-level co-occurrence matrix. The gray-level co-occurrence matrix reflects
the comprehensive information on the gray level of the image concerning direction, adjacent
spacing, and variation amplitude. It is the basis of analyzing the local patterns of images
and their permutation rules. Therefore, we can extract a series of features to describe
the image. The texture feature extraction method was proposed by [12,56,57], which
provides us with a calculation and theoretical basis. In this paper, the selected spatial
distance is from 1 to 6 pixels, and the directions are 0◦, 45◦, 90◦, and 135◦. A total of
24 gray-level co-occurrence matrices were constructed, and 12 features were employed,
including angular second moment, variance, inverse difference moment, sum averages,

https://www.nitrc.org/projects/wfu_pickatls
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sum variances, contrast, entropy, correlation, difference averages, sum entropy, difference
entropies, and difference variance;

Step 2: Gray-gradient co-occurrence matrix. The gray-gradient co-occurrence matrix
reflects the relationship between the gray level and the gradient (or edge) of the pixel in the
image [58]. The gray level of each image point is the basis of the image, and the gradient is
the element that constitutes the edge contour of the image. The main information of the
image is provided by the edge contour. In this paper, 15 features were employed, including
small gradient advantage, large gradient advantage, gray distribution inhomogeneity,
gradient distribution inhomogeneity, energy, gray average, gradient average, gray mean
square variance, gradient mean square variance, correlation, gray entropy, gradient entropy,
mixed entropy, inertia, and inverse difference moment.

3.2. The Proposed RF–AUC–Cor Algorithm

After the feature extraction, the extracted morphological features and texture features
were combined linearly to obtain feature data. Unfortunately, there are some redundant,
irrelevant, and less effective features among them, which will impact the effect of classifi-
cation prediction. Moreover, the data we studied are imbalanced. Therefore, traditional
feature selection algorithms are usually limited by the classification target of the highest
accuracy, such that the final selected features tend to classify the minority class into the
majority class. However, the minority class is what we most want to identify. Therefore,
we propose a random forest-based feature selection algorithm, called RF–AUC–Cor, for
high dimensional imbalanced data. The algorithm can alleviate the problem of imbalanced
distribution, while performing feature selection and treating the features of the majority
class and minority class fairly. The specific description of the RF–AUC–Cor algorithm is
as follows:

(1) Random Forest. The random forest is a decision tree integration algorithm proposed
by [59]. For a given x vector, each decision tree has the right to vote and finally
summarizes the voting results. The class of x is determined, based on the principle of
the minority obeying the majority.

The structure of the random forest algorithm is shown in Figure 3.
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In Figure 3, the random forest obtains a combination of base classifiers, including
{h1(k), h2(k), · · · , hn(k)} after k training, and an ensemble classifier is formed by the base
classifier. The base classifier generates the final predicted result by voting. Afterward, the
random forest algorithm summarizes the voting results of all base classifiers, and the result
with the highest score is used as the final prediction result. The voting calculation method
is shown in Formula (9):

H(x) = argmax
y ∑

k
I(hk(x) = y) (9)

where H(x) is the combination classification model, hk is a decision tree model, y represents
the decision tree classification result, and I(·) is an indicator function.

To sum up, the random forest obtains the decision tree model based on training
samples, then uses the branch nodes of the decision tree to compare the eigenvalues of
the test set, and finally completes the class judgment at the leaf nodes. Compared to other
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classifiers, random forests have a superior effect on both accuracy and AUC. Therefore, we
choose the random forest to evaluate each feature;

(2) AUC evaluation criteria. For the problem of data imbalance, accuracy is not a good
criterion for classification performance. For example, if the ratio of majority class to
minority class of the imbalanced data is 9:1, then even if all the minority classes are
misclassified into the majority class the final accuracy can reach 90%; however, the cost
of this misclassification is very high. Therefore, researchers introduced several new
performance criteria for imbalanced data problems. The most widely used criterion is
the AUC. Because the AUC can treat the majority class and minority class fairly and
our goal is to improve the AUC of diagnosis and prediction by feature selection, we
use AUC as the evaluation criteria for the feature selection of the AD data;

(3) Correlation analysis. The correlation matrix provides the correlation analysis be-
tween two sets of observed variables. Taking 2 random variables X and Y as examples,
and allowing n to be the number of 2 variables, then the correlation is calculated
as follows:

corr(x, y) =
n∑n

i=1 xiyi−∑n
i xi∑n

i yi√
n∑n

i=1 x2
i − (∑n

i=1 xi)
2 ×

√
n∑n

i=1 y2
i − (∑n

i=1 yi)
2

(10)

The correlation matrix reflects the correlation between two observation variables. The
elements of the ith row and the jth column of the correlation matrix are the correlation
coefficients of the ith column and the jth column of the original matrix, which corresponds
to the degree of redundancy between the corresponding variables;

(4) RF–AUC–Cor algorithm. To optimize the process of feature selection, the RF–AUC–
Cor algorithm is proposed in this paper, as shown in Figure 4. The procedure of
the RF–AUC–Cor algorithm is divided into two steps. In the first step, the random
forest is used to classify samples when evaluating the features. The AUC of each
feature is calculated, and the features are sorted in descending order based on their
AUC values. In the second step, the correlation between all features is calculated.
Moreover, according to the correlation matrix and the sorted features, the feature
subsets are generated by feature selection. Finally, the random forest is used to verify
the feature subset.
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The specific process of the RF–AUC–Cor algorithm is as follows:
Step 1: Utilize random forest to classify samples, calculate the AUC value of each

feature, sort the features by AUC value as the score, and obtain a new sorted feature set;
Step 2: For the sorted feature set, calculate the correlation between the features and

obtain the correlation matrix;
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Step 3: The initial state of the subset is empty, and in the process of selecting the feature
subset, one feature is selected to add to the existing feature subset each time. The selected
feature is the feature with the highest score in the feature ranked set, or the feature which
has the minimal redundancy with the highest score feature that was selected last time;

Step 4: Based on the above analysis, in the feature selection process it is necessary to
determine whether to continuously select the K highest ranked features, or the consecutive
K features that have the minimum redundancy with the highest score feature that was
selected last time;

Step 5: Each selection obtains a new feature subset, and the random forest is employed
to classify the samples. The feature subset with the highest AUC value is the optimal feature
subset to be selected.

4. Results and Analysis
4.1. Experimental Dataset

The data used in our experiments come from the large ADNI public database of the
United States. The sample image is a weighted MRI, with a magnetic flux of 1.5. The
number of samples is 602, including 50 AD cases, 332 NC cases, and 220 MCI cases. The
description of the data information is shown in Table 1, which lists the numbers, ages,
simple mental state table (MMSE), and clinical dementia rating (CDR) of AD, NC, and
MCI, respectively. The total score of MMSE is 30 points. It evaluates scores according
to the educational level. If the score is below the cut-off value, it is a functional defect,
and a score above the cut-off value is normal: illiterate (uneducated) is 17 points, primary
school (education years ≤ 6 years) is 20 points, and secondary school or above (education
years ≥ 6 years) is 24 points. CDR is used to assess the severity of dementia: healthy
(CDR = 0), suspected dementia (CDR = 0.5), mild dementia (CDR = 1), moderate dementia
(CDR = 2), and severe dementia (CDR = 3).

Table 1. Basic information of the ADNI dataset.

Name Number Age
(Mean ± Variance)

MMSE
(Mean ± Variance)

CDR
(Mean ± Variance)

NC 332 72.2 ± 7.4 28.4 ± 1.0 0
MCI 220 75.5 ± 6.6 25.1 ± 2.0 0.5
AD 50 74.4 ± 7.5 22.8 ± 2.2 ≥0.5

The information on features is shown in Table 2. For the NC–AD group data, the total
number of features is 312, including 303 texture features and 9 morphological features. For
the NC–MCI group data, the total number of features is 314, including 303 texture features
and 11 morphological features. For the MCI–AD group data, the total number of features
is 316, including 303 texture features and 13 morphological features. This paper mainly
studies the binary classification problem. In the actual diagnosis process, it is not only
necessary to identify the patients from normal people however additionally to consider the
degree of disease. After all, MCI in the later stage is easily confused with AD. Therefore,
we additionally need to consider the distinction between MCI and AD.

Table 2. Information of features.

Name Number Features Minority Class Majority Class

NC-AD- 382 312 13% 87%
NC-MCI 552 314 40% 60%
MCI-AD 270 316 19% 81%

4.2. Experimental Setup

The experiments performed in this study aimed to minimize bias with the use of
randomness and generate a classification model with relative stability. Subsequently, the
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preprocessed data were divided into majority and minority sub-datasets. Further, 10-fold
cross-validation was used to evaluate the classification model. The training and testing sets
from each class were combined to generate a training dataset and a testing dataset. The
dataset was divided into 10 parts: 9 parts were randomly selected as training samples to
build a classification model, and the other part was used as a test set to test the model’s
performance. After each training model, the training and testing accuracy rates were
obtained and repeated 5 times, and the average of the 5 training and testing results were
taken as the final classification accuracy rate of the model. Given the imbalance of data
distribution, in addition to classification accuracy, AUC is additionally considered an
evaluation criterion of classifier performance.

The calculation method of classification accuracy is shown in Formula (11):

Accuracy =
TP + TN

TP + FN + FP + TN
(11)

where TP (true positives) represents the number of correctly identified positive cases in the
classification results; FP (false positives) represents the number of cases that are incorrectly
identified as positive cases in the classification results; FN (false negatives) represents the
number of cases that are incorrectly identified as negative in the classification results; and
TN (true negatives) represents the number of correctly identified negative cases in the
classification results.

Since AUC is the area enclosed by the ROC curve and the coordinate axis, the AUC
value can be obtained by calculating the points on the ROC curve, so it can reflect the
changing trend of the ROC curve.

(1) Calculate the area directly from the ROC curve. Assuming that there are m points
on the ROC curve, which are formed by the classification results obtained by classifier
training, where x1, x2,. . . , xm represent the abscissas of these points and y1, y2,. . . , ym
represent the ordinates, then the AUC value can be calculated using Formula (12):

AUC =
m−1

∑
i=0

(yi + yi+1)× (xi+1 − xi)

2
(12)

(2) Calculate the equivalent of AUC using the error rate, supposing that X is the
sample dataset to be predicted, which consists of m majority class samples and n minority
class samples. After training the classifier samples, all prediction results are given. In
the statistical prediction results, the number of misclassified minority class samples into
majority class samples is x, and the number of majority class samples misclassified into
minority class samples is y. Calculating the AUC value of the classifier is shown in
Formula (13):

AUC = 1−
x
n + y

m
2

(13)

4.3. Experimental Results and Evaluation

In this section, three experiments are conducted to compare and analyze the perfor-
mance of the algorithm. The first step is to verify the effect of the parameter K (see the
proposed RF–AUC–Cor algorithm in Section 3.1.2) on the proposed algorithm. The second
is to evaluate alternative feature selection algorithms. The third is to compare the distinct
classification models.

4.3.1. The Effect of the Parameter K on the Proposed Algorithm

To prove the validity of the proposed feature selection algorithm, we applied it to the
data of NC–AD, NC–MCI, and MCI–AD, respectively. In the feature selection process, it
is necessary to determine whether to continuously select the K with the highest ranked
features, or the consecutive K features that have the minimum redundancy with the highest
score feature that was selected last time. For each dataset, the influence of different
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parameters K on the classification effect is analyzed. For the classification problem of
imbalanced data, the accuracy cannot evaluate the effect of the classifier well, and the AUC
is the more important evaluation criterion. Thus, we evaluate the effect of the algorithm by
considering the AUC value. Figures 5–7 depict the change of the AUC by using the random
forest classification prediction under a different K.
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K represents the number of features that need to be selected in the feature selection
process and have the minimum redundancy with the previous highest-ranked feature.
When K equals 0, the redundancy among features is not considered. Features are sorted
by the AUC and added to the feature subset each time, and the top K features are finally
selected as the feature subset. When the value of K becomes larger and affected by the
redundancy between features, the classification performance will be affected. For the
NC–AD group data, when K equals 1, the classification performance is maximized, and
the maximum value is 93.7%. In the case of the NC–MCI group data, when K equals 2,
the classification performance is maximized, and the maximum value is 87.6%. For the
MCI–AD group data, when K equals 1, the classification performance is maximized, and
the maximum value is 85.7%. For these three datasets, when we observe the results at the
overall level, it can be seen clearly that when K becomes larger and reaches a certain value,
the classification performance will decrease. This is because as K increases, the redundancy
between features is over-considered, and the importance of the features themselves may
be ignored.

4.3.2. Compared with Other Feature Selection Algorithms

Based on the above experimental results, we can find that when K equals 1, the NC–AD
and the MCI–AD groups’ data obtain the optimal feature subset. While K equals 2, the
NC–MCI group data obtain the optimal feature subset. To prove the effectiveness of the RF–
AUC–Cor algorithm proposed in this paper, we evaluated with two other strategies. One is
the classification schema without feature selection, and the other is the classification schema
using the PCA (principal components analysis) dimensionality reduction technology. PCA
is one of the most widely used dimension reduction algorithms, and its performance
has been proven in many of the literatures. The experimental results are the average
classification results of 10-fold cross-validation, which are presented in Figures 8 and 9.
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Figure 8. The effect of the AUC under different feature selection algorithms.

From Figures 8 and 9, it can be found that the proposed method achieved a superior
AUC and accuracy than the PCA method, and the superiority is significantly relevant in
the NC–AD group data, which proves that the random forest base RF–AUC–Cor feature se-
lection algorithm is effective in high dimensional imbalanced data scenarios. Consequently,
the algorithm proposed in this paper not only improves the recognition rate of the minority
class however additionally guarantees a higher accuracy rate.

4.3.3. Compared with Other Classification Models

In this section, we compare the performance of our model with state-of-the-art meth-
ods, including SVM [60,61], RNN [62], CNN [63], and KNN (RFE + PCA) [52]. In [61],
the importance-based feature selection was adopted, and an SVM-based AD classifica-
tion model was further established. Glozman et al. [61] developed shape descriptors to
capture and quantify these changes and test their efficacy as imaging biomarkers for the
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automatic classification of the following populations: MCI patients who progressed to AD,
AD patients, and normal controls (NC). Qasim et al. [52] proposed a KNN model, based
on RFE and PCA to identify AD, which used RFE and PCA for feature selection. Ghazi
et al. [62] and Rana et al. [63] utilized different deep neural works for AD classification. In
our study, the examination was conducted by splitting the data into 90–10 in the train-test
split approach, and the experimental results are shown in Table 3.
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Table 3. Classification performances of different models.

Author Method Subject Data Target Accuracy
(%)

AUC
(%) Train Time

Grassi et al. [60] SVM ADNI (550) Clinical MCI-AD 78.8 88.0 -

Glozman et al. [61] SVM
ADNI (299) Clinical NC-AD 80.54 - -

ADNI (213) Clinical MCI-AD 88.13 - -

Qasim et al. [52] KNN
(RFE + PCA) ADNI (382) Clinical NC-AD 92.3 91.5 -

Ghazi et al. [62] RNN ADNI (742) Clinical
NC-AD - 90.3 -

MCI-AD - 78.4 340 s

Rana et al. [63] CNN ADNI (559) Clinical/MRI MCI-AD 69.8 83.0 -

Proposed method
(this paper)

RF-AUC-Cor
Algorithm

ADNI (382) Clinical NC-AD 94.2 93.7 3.68 s

ADNI (270) Clinical MCI-AD 84.5 85.7 2.60 s

Table 3 presents the overall performance of the six methods. Since ADNI is an imbal-
anced dataset, from the experimental results and the data preprocessing method adopted, it
can be found that designing an appropriate feature selection strategy for the characteristics
of the dataset can effectively improve the performance of the model. For example, compar-
ing the first and second methods in Table 3, the second method designs a more scientific
feature selection algorithm, and therefore, its classification performance is better than
the first method. For the second and third methods, regarding the NC–AD classification
problem, the third method designs a more reasonable feature selection algorithm, in which
RFE is applied with PCA to reduce the number of features; therefore, its performance is
significantly better than the second method. Theoretically speaking, the fourth and fifth
methods should obtain higher classification accuracy and AUC values compared with
other methods; however, the experimental results are just the opposite. The main reason
for this is closely related to the imbalance of the dataset and the quality of the learned
features. The performance of the method proposed in this paper is significantly better than
other methods for the NC–AD classification problem; regarding the MCI–AD classification
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problem, its comprehensive performance (including classification accuracy, the AUC, and
training time) can be ranked first. In this study, morphological features and texture features
were extracted and fused, and feature selection was additionally applied to the dataset
as a preprocessing step. On the one hand, it can reduce the classification performance
degradation caused by data imbalance; on the other hand, it can additionally reduce the
time complexity of model training. Moreover, the classification performance results of
all the models were comprehensively discussed. Therefore, the proposed AD diagnostic
method can help medical practitioners efficiently identify patients with AD.

4.3.4. Discussion

Based on MRI, the early lesion features of NC and MCI can be detected, and many
studies have extracted brain features for the classification of NC, AD, and MCI. However,
in the classification process, the class imbalance problem seriously affects the classification
effect. Drawing on the existing solutions, this paper proposed a new feature extraction and
fusion method to solve this problem. Meanwhile, considering the redundancy between the
extracted features and further feature selection, only the key features that have a significant
impact on the disease are screened out. In this way, the dimension of input features can
be effectively reduced, the time cost of model training can be cut, and the classification
prediction effect is better. Furthermore, the main factors affecting diagnosis can be found,
and a reference for clinical practice can be provided.

In the experiments with the feature extraction, firstly, the effect of the parameter K
on the proposed algorithm was verified and then compared with other feature extraction
methods, including PCA (in Section 4.3.2) and RFE + PCA (in Section 4.3.3). The results in-
dicate that the proposed method can identify the minority class samples well and avoid the
unsatisfactory classification effect caused by the majority class. This is similar to integrating
oversampling technology and undersampling technology to preprocess samples. There-
fore, the method proposed in this paper can deal well with the problem of unsatisfactory
classification results caused by class imbalance.

In our study, we have demonstrated that the random forest model can take MRI
features and accurately predict NC–MCI, NC–AD, and MCI–AD problems. Our proposed
classifier showed a superior performance compared to the competing SVM, KNN, RNN,
and CNN. It is worth noting that this model has the highest accuracy and AUC value for
the NC–AD group data (94.2% and 93.7%) classification problem, followed by MCI–AD
(84.5% and 85.7%) and NC–MCI group data (83.8% and 87.6%) classification problems.
Moreover, the training time of our model is the shortest, which is far lower than other
models, of approximately 3.0 s only. Therefore, the proposed method can well predict the
progression of disease from NC to AD, from MCI to AD, and from NC to MCI, which is
critical to the study of why only certain NC and MCI patients develop AD, as well as to
understanding the disease and developing accurate prognostic indicators.

Furthermore, our original intention is to apply the proposed preprocessing method
for class-imbalanced datasets to the whole field of medical research. Since most medical
datasets contain a similar target class imbalance, our approach incorporates multi-type
features to balance the weight of the minority class in the model. Currently, the proposed
approach was only tested on binary classification problems; we plan to apply it to multi-
class classification problems as well.

One limitation of this study is that all patients were from the ADNI dataset. Although
we split the dataset into multiple instances to validate its accuracy and AUC, no participant
populations other than ADNI were tested. Taking other datasets as test objects for the
model will be more helpful to verify its effectiveness, which is the goal of our future work.

5. Conclusions and Future Work

In this paper, we proposed an effective classification framework to effectively identify
imbalanced Alzheimer’s disease (AD), mild cognitive impairment (MCI), and normal
control (NC). Firstly, we extracted the features of AD, MCI, and NC, and then extracted and
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linearly combined morphological features and texture features as feature data. Secondly,
based on the high dimensional imbalance characteristics of the data, we proposed the
feature selection approach RF–AUC–Cor, which not only evaluates the imbalance of data
however additionally estimates the redundancy between features. The experimental results
showed that the RF–AUC–Cor algorithm has some practical application value and can
effectively reduce the misclassification rate of minority data instances.

In future work, we intend to address the following aspects: First, we will continue
to increase the number of samples and the diversity of the samples, and then we will
investigate the algorithm’s performance on new datasets. Second, based on the characteris-
tics of the class-imbalanced datasets, we will examine additional pre-processing methods,
evaluate the performance indicators for each method, and then apply these methods to
actual projects. In addition, we will consolidate the study of the current project, annotate
the disease dataset, and create a knowledge graph for researchers to study collaboratively.
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