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Abstract: This paper considers a trajectory-tracking control algorithm for underactuated marine
vehicles moving horizontally in which the current in the North-East-Down frame is constant. This
algorithm is a modification of a control scheme based on the input-output feedback linearization
method for which the application condition is that the vehicle is symmetric with respect to the left
and right sides. The proposed control scheme can be applied to a fully asymmetric model, and,
therefore, the geometric center can be different from the center of mass in both the longitudinal
and lateral directions. A velocity transformation to generalized vehicle equations of motion was
used to develop a suitable controller. Theoretical considerations were supported by simulation
tests performed for a model with 3 degrees of freedom, in which the performance of the proposed
algorithm was compared with that of the original algorithm and the selected control scheme based
on a combination of backstepping and integral sliding mode control approaches.

Keywords: underactuated underwater vehicle, nonlinear tracking control, inertia matrix decomposition;
simulation

1. Introduction

Non-holonomic systems, such as autonomous underwater vehicles (AUVs) among
others, are difficult to control because of their underactuated nature. In general, underwater
vehicle models are strongly nonlinear, contain mechanical couplings, and are described
by 6 DOF (degrees of freedom), and the equations of motion depend on many factors,
as shown in, for example, [1,2]. Moreover, as is known from the literature, many control
algorithms have been developed for fully actuated marine vehicles. One of the important
issues for control is tracking a desired trajectory.

In the case of underactuated marine vehicles, building a tracking controller is a signifi-
cant challenge. Although there are algorithms for models with 6 DOF, for example, [3,4],
there are many controllers for models that are simplified from a mechanical point of view.
One possible simplification is to use a diagonal inertia matrix as in [5,6]. Another increas-
ingly common simplification is to design the controller for a 5 DOF model with a diagonal
inertia matrix, as in [7–9].

One of the significant problems that make it difficult to control a marine vehicle is
its asymmetry. This occurs when the center of mass does not coincide with the geometric
center. This results in additional inertial forces that must be reduced during the controller
operation. This problem becomes even more important when the vehicle is underactuated
because not all control signals are then available. For this reason, the control algorithm
should include additional components to reduce unwanted effects due to the presence of
asymmetry. This means that, in the simplest model, when the inertia matrix is diagonal,
the control algorithm must guarantee tracking of the desired trajectory with imprecise
knowledge of the model parameters.

Because this work addresses the issue of tracking control for underactuated 3 DOF
underwater vehicles moving in the horizontal plane, it is worth reviewing publications on
this type of object.
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Designing controllers for underactuated vehicles is a complex process when the
dynamics model is complicated, hence the need to simplify the model. There are many
trajectory-tracking strategies described in the literature where the inertia matrix is diagonal.
They concern either underwater vehicles in planar motion or surface vehicles. Some
control schemes use the Lyapunov theory, as shown in [10,11]. Another solution to the
trajectory-tracking problem is to use sliding mode control (SMC) methods [12,13]. In
addition, the prescribed performance method has been applied as a control strategy [14,15].
Other important solutions to the trajectory-tracking problem are control schemes based
on neural networks (NN), e.g., in [16], or fuzzy logic [17]. There are also many other
algorithms for trajectory tracking, such as terminal sliding mode control (TSMC) [18],
output feedback control [19] and the linear algebra approach [20]. In order to achieve good
performance of control algorithms, combinations of different methods are often proposed,
e.g., the backstepping and Lyapunov methods [21], backstepping and SMC (plus Lyapunov
stability theory) [22,23], NN and SMC [24,25], NN and SMC plus backstepping [26,27]),
backstepping and neural network plus low-frequency techniques [28], event-triggered
tracking control with prescribed performance using radial basis function NN (RBFNN) [29],
and strategy based on virtual control points and RBFNN [30]. A control scheme which is a
combination of an extended state observer (ESO) and a super-twisting second-order sliding
mode controller was proposed in [31]. Mu et al. [32] developed a tracking control scheme
based on a combination of prescribed performance and the Lyapunov logarithmic barrier
function. Event-triggered composite learning using an NN controller was considered in [33].
Taking into account the inertia matrix, it can be seen that most control methods are designed
for a vehicle described by a simplified model with a diagonal matrix. This approach results
in the algorithms being less complicated from a mathematical point of view and easier to
implement. However, information on vehicle dynamics is often less accurate because the
algorithm should overcome any model inaccuracies in the control process. Of course, the
approach based on the assumption of negligible couplings makes sense if the vehicle is
indeed exactly balanced or if it is justified that the couplings have small (negligible) values.
However, such conditions are not always met and then the simplified control algorithm
may not be effective enough or its performance will be worse.

If the asymmetry of the vehicle is so significant that it cannot be ignored, then control
strategies are usually proposed using a model with a symmetric inertia matrix but assuming
symmetry with respect to the right and left sides. Control schemes designed for such
asymmetric underactuated marine vehicles moving horizontally are less common than
control algorithms with a diagonal inertia matrix. Various control algorithms are available
for the model in which the vehicle is symmetric in its longitudinal plane. For example,
an integral backstepping algorithm was proposed in [34] for tracking the trajectory in
the presence of ocean current disturbance. The combination of a backstepping technique,
cascade analysis, and the Lypunov approach for full state regulation of surface vehicles can
be found in [35], and the combination of the Lyapunov direct method with backstepping
control in [36,37]. In [38], a control scheme based on the input-output feedback linearization
method and usage of the position point of the hand was presented. A trajectory-tracking
algorithm for planar under-actuated vehicles that utilize sliding mode control was described
in [39]. The design of an improved line of sight (LOS) using an adaptive terminal sliding
mode controller was addressed in [40]. In [41], an FUO (finite-time uncertainty observer)
was developed in order to enable the separation principle in the algorithm and synthesis of
the observer’s perspective, making it possible to accurately control the trajectory tracking.

Controlling trajectory tracking by developing an accurate control method in a newly
defined polar coordinate system moving along a path (PMPCS) was proposed in [42]. The
application of neural networks in control strategies was reported, for example, in [43,44].
An adaptive control algorithm with prescribed performance for underactuated surface
vehicle trajectory tracking was developed in [45], while, in [46], this method was supported
by neural networks. An approach to the tracking control problem based on the prescribed
performance function and quantized feedback signals was described in [47]. For a fully
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asymmetric vehicle, an algorithm based on a combination of backstepping and integral SMC
was proposed in [48]. A brief overview of methods to solve the trajectory-tracking problem
for vehicle model asymmetry and disturbances is given in Table 1. In the table, the sign
+ indicates a positive answer, while − indicates a negative answer. It may be noted that,
in the case of a diagonal inertia matrix (symmetric vehicle), variable disturbance models
are used, which should reduce the effect of the environment and modeling inaccuracies
on the performance of the controller. However, even when partial asymmetry is assumed,
functions representing disturbances are usually introduced in addition.

This paper is concerned with using one of the algorithms (in modified form after
velocity transformation) to track a desired trajectory of a 3 DOF vehicle model. In order to
perform the trajectory-tracking task, a controller expressed in terms of some quasi-velocities
(QV) was used. The proposed scheme uses the idea discussed in [38]. This study does not
use a combination of different approaches that can make it difficult to use QV, so it was
thought appropriate for the considered control task.

However, the difference between the proposed controller and those mentioned above
is that here it is assumed that the vehicle is not symmetrical about the axes of longitudinal
and lateral motion. Moreover, introducing a description of the vehicle dynamics with the
use of quasi-velocities is necessary to carry out the task of trajectory tracking because it
enables first-order differential equations to be obtained. Such a description causes the
inertia matrix to be diagonal and the obtained quasi-accelerations to be independent. The
QV adapted here are referred to in [49] as generalized velocity components (GVC), and
were applied for mechanical systems. In the past, they were also used to control fully
actuated underwater vehicles [50,51]. Unfortunately, a drawback of the proposed approach
to the control task is a failure to show the stability of the entire system. Instead, we show
how the dynamics equations used can be transformed to the form considered in the cited
work. Selected simulations on 3 DOF models of two vehicles moving horizontally with
three trajectories demonstrated the effectiveness of the application. However, in the tests, it
turned out that the idea of control is practical for various models of underwater vehicles
with different desired trajectories.

The contributions of this work can be summarized as follows:

(1) Decomposition of the inertia matrix enabling description of the use of velocity trans-
formation for an underactuated underwater vehicle moving in the horizontal plane,
obtaining diagonal equations of motion, and testing of the modified control algorithm.

(2) Showing some of the information available from the trajectory-tracking controller
when a dynamic description containing quasi-velocities (QV) is used.

(3) Proposal of an algorithm for trajectory tracking in horizontal motion when the center
of mass lies outside both axes of symmetry of the vehicle. This controller is generalized
in the sense that the previously known controllers from [38,52] are special cases of it
and apply only when the center of mass is shifted in the longitudinal direction. In
contrast, this scheme also considers shift in the center of mass in the lateral direction.
A simulation test of the modified control algorithm was performed for two models
of different vehicles and three desired trajectories based on intuitive selection of
controller parameters.

Compared to [52], this paper is different in the following ways:

(1) First, the algorithm presented is applicable to vehicles whose center of mass lies
outside the coordinate axes and is not symmetrical on the longitudinal axis.

(2) Second, the theoretical contribution is that the vehicle dynamics model is more realistic
and this has been taken into account in the control algorithm.

(3) Third, the controller contains more dynamic couplings due to the more complex
dynamic model. Therefore, it is possible to assess their influence on the movement of
the vehicle along the selected desired trajectory.

(4) Fourth, a motion analysis for the cycloid–like trajectory is included in the simulation
study, which provides a deeper understanding of the vehicle dynamics using the
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proposed controller. Instead of a sine trajectory, a sine-cosine trajectory was applied.
In addition, quantities that are crucial for coupling evaluation are added.

Table 1. Examples of tracking controls solutions.

Source Asymmetry Disturbances

No y Axis x y Axis

Behal et al. [10] + − − none
Zhang et al. [13] + − − variable
Sun et al. [22] + − − variable
Xu et al. [23] + − − variable
Zhang et al. [25] + − − variable
Zhou et al. [27] + − − variable
Deng et al. [29] + − − variable
Liu et al. [31] + − − variable
Mu et al. [32] + − − variable
Pan et al. [33] + − − variable
Dong et al. [34] + + − variable
Paliotta et al. [38] + + − constant
Ashrafiuon et al. [39] + + − variable
Wang et al. [41] + + − variable
Park [43] + + − none
Chen et al. [44] + + − variable
Dai et al. [46] + + − variable
Park and Yoo [47] + + − variable
Herman [48] + + + variable

Section 2 describes the marine vehicle model and the transformed equations of motion
in terms of the quasi-velocities. Section 3 describes the modified tracking controller. In
Section 4, simulations are shown for two different underwater vehicles and three desired
trajectories. In Section 5, the conclusions are presented.

2. Marine Vehicle Model

A model of the considered planar vehicle in the North-East-Down (NED) frame is
shown in Figure 1.
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Figure 1. Model of underwater vehicle in horizontal motion.

In this frame, the position and the orientation of the vehicle are represented by the
vector η = [x, y, ψ]T . The velocities in the body frame are ν = [u, v, r]T (the surge velocity,
the sway velocity, and the yaw rate, respectively). Moreover, the vector V = [Vx, Vy, 0]T

describes the ocean current in the NED frame. In the body frame, the ocean current vector
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is expressed as νc = RT(ψ)V. The model of motion of an AUV moving horizontally is
given as [1,2]:

η̇ = R(ψ)νr + V, (1)

Mν̇r + C(νr)νr + Dνr = τ, (2)

where νr = [ur, vr, r]T = ν − νc is the vector of relative velocities in the body frame, D
means the linear damping coefficients matrix, and τ is the control vector containing the
applied force along the surge motion and the applied torque around the z axis. The matrices
in the above equations are:

R(ψ) =

 cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

, M =

 m11 0 m13
0 m22 m23

m13 m23 m33

,
C(νr) =

 0 0 c13
0 0 c23
−c13 −c23 0

, D =

 d11 0 d13
0 d22 d23

d31 d32 d33

, τ =

 τu
0
τr

. (3)

The elements of the matrices are as follows: m11 = m− Xu̇, m22 = m− Yv̇, m13 =
m31 = −myg − Xṙ, m23 = m32 = mxg − Yṙ, m33 = Jz − Nṙ, c13 = −m22vr −m23r, c23 =
m11ur − m13r, and d11, d22, d23, d32, and d33 are constant hydrodynamic damping coeffi-
cients. The equation replacing (1) can be written in the following form: ẋ

ẏ
ψ̇

 =

 ur cos ψ− vr sin ψ + Vx
ur sin ψ + vr cos ψ + Vy

r

. (4)

2.1. Transformed Equations of Motion

If the inertia matrix M is symmetric, then it is possible to decompose it, e.g., using
the method given in [49]. This approach was successfully applied for marine vehicles, for
example, in [50,51]. The decomposition leads to M = Υ−T NΥ−1 and a diagonal matrix
N = ΥT MΥ is obtained. As a result, instead of (2), one has:

η̇ = R(ψ)νr + V, νr = Υζ, (5)

ζ̇ + N−1ΥTC(νr)νr + N−1ΥT Dνr = N−1ΥTτ, (6)

where ζ = [ζ1, ζ2, ζ3]
T , with:

Υ =

 1 0 Υ13
0 1 Υ23
0 0 1

, N = diag{N1, N2, N3}, (7)

where N1 = m11, N2 = m22 N3 = m33 − (m2
13/m11) − (m2

23/m22), Υ13 = −(m13/m11),
Υ23 = −(m23/m22), ζ1 = ur − Υ13r, ζ2 = vr − Υ23r, ζ3 = r which means that vr 6= ζ2
because ur = ζ1 + Υ13ζ3 and vr = ζ2 + Υ23ζ3. Moreover, N−1B f = [τu, 0, τr + Υ13τu]T =
[τξu, 0, τξr]

T .

Remark 1. The QV ζ1, ζ2, and ζ3 have a physical sense. They can be understood as a speed
disturbance due to dynamic couplings in the vehicle, namely, ζ1 = ur + ∆ur, ζ2 = vr + ∆vr,
ζ3 = r.
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The equations replacing (1) and (2) are as follows:

ẋ = (ζ1 + Υ13ζ3) cos ψ− (ζ2 + Υ23ζ3) sin ψ + Vx, (8)

ẏ = (ζ1 + Υ13ζ3) sin ψ + (ζ2 + Υ23ζ3) cos ψ + Vy, (9)

ψ̇ = ζ3, (10)

ζ̇1 = F1(ζ) + τξu, (11)

ζ̇2 = F2(ζ) (12)

ζ̇3 = F3(ζ) + τξr, (13)

where:

F1(ζ) = −N−1
1

(
c13(ζ) ζ3 + d11(ζ1 + Υ13ζ3) + d13ζ3

)
, (14)

F2(ζ) = −N−1
2

(
c23(ζ)ζ3 + d22(ζ2 + Υ23ζ3) + d23ζ3

)
, (15)

F3(ζ) = N−1
3

(
c13(ζ)(ζ1 + Υ13ζ3) + c23(ζ)(ζ2 + Υ23ζ3)− c33(ζ)ζ3

−(Υ13d11 + d31)(ζ1 + Υ13ζ3)− (Υ23d22 + d32)(ζ2 + Υ23ζ3)

−(Υ13d13 + Υ23d23 + d33)ζ3

)
, (16)

and c13(ζ) = −(m22(ζ2 + Υ23ζ3) + m23ζ3), c23(ζ) = m11(ζ1 + Υ13ζ3) − m13ζ3, c33(ζ) =
Υ13c13(ζ) + Υ23c23(ζ).

The change in coordinates after using the velocity transformation is applied. Therefore,
in terms of the QV, one gets:

z1 = ψ, (17)

z2 = ζ3, (18)

ξ1 = x + l cos ψ, (19)

ξ2 = y + l sin ψ, (20)

ξ3 = (ζ1 + Υ13ζ3) cos ψ− (ζ3 + Υ23ζ3) sin ψ− ζ3 l sin ψ, (21)

ξ4 = (ζ1 + Υ13ζ3) sin ψ + (ζ3 + Υ23ζ3) cos ψ + ζ3 l cos ψ. (22)

Moreover,

ż1 = z2, (23)

ż2 = F3(ζ) + τ∗ξr, (24)[
ξ̇1
ξ̇2

]
=

[
ξ1
ξ2

]
+

[
Vx
Vy

]
, (25)[

ξ̇3
ξ̇4

]
=

[
Fξ3(z1, ξ3, ξ4)
Fξ4(z1, ξ3, ξ4)

]
+

[
cos z1 −(l + Υ23) sin z1
sin z1 (l + Υ23) cos z1

][
τ∗u
τ∗r

]
, (26)

where:[
Fξ3(·)
Fξ4(·)

]
=

[
cos ψ − sin ψ
sin ψ cos ψ

][
F1(ζ)− ζ2ζ3 − (l + Υ23)ζ

2
3 + Υ13F3(ζ)

F2(ζ) + (ζ1 + Υ13ζ3)ζ3 + (l + Υ23)F3(ζ)

]
. (27)

Comment—Relationships with source description. The change in coordinates was defined
in [38] as follows: z1, z2, ξ1, ξ2 by (17)–(20), whereas the other is defined as:

ξ3 = ur cos ψ− vr sin ψ− r l sin ψ, (28)

ξ4 = ur sin ψ + vr cos ψ + r l cos ψ. (29)
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The Equations (17)–(22) represent the above variables in terms of QV.

2.2. Additional Information Obtained by Using QV

If QV is employed, then additional ones can be obtained that are not available in the
classical equations of motion. The set of quantities and indexes was presented for fully
actuated 6 DOF underwater vehicles, e.g., in [50,51]. However, in this paper, they are used
to study the dynamics of a 3 DOF underactuated vehicle and at relative velocities. The
following measures were adopted to evaluate the performance of the algorithm:

(1) Norm of the matrix
∥∥Υ−1

∥∥ representing the normalized value of the couplings in the
dynamic vehicle model. The matrix Υ is calculated from the symmetric matrix M and
depends on the dynamic and geometric parameters.

(2) The kinetic energy dissipated by each vector variable ζ (and its sum concerning the
whole vehicle) following the formula: K= 1

2 νT
r Mνr=

1
2 ζT Nζ= 1

2 ∑3
i=1 Niζ

2
i =∑3

i=1 Ki.
(3) The mean value of kinetic energy related to each variable and the sum of the mean

kinetic energy: Km = mean (K) = ∑3
i=1 mean (Ki).

(4) The distortion of each velocity due to couplings resulting from the formula:
∆ζi = ζi − νri. The QV ζi includes couplings between itself and the other veloc-
ities because ζi = Υ−1

ii νri + ∑3
j=i+1 Υ−1

ij νrj.

2.3. Relationship to Original Description of Dynamics

In order to compare the original description of the dynamics in [38] (where m13 = 0,
d13 = 0, and d31 = 0) and that presented here using the Equations (1)–(3), it is sufficient to
perform a partial diagonalization of the inertia matrix, namely, by calculating:

Υ1 =

 1 0 Υ13
0 1 0
0 0 1

, P = ΥT
1 MΥ1. (30)

As a result, the equation of motion dynamics is as follows:

Pκ̇r + C∗(νr)νr + D∗νr = B∗ f , (31)

where κr = [ur − Υ13r, vr, r]T , which results from the relationship between the variables (cf.
Appendix A). The matrices are of the form:

P =

 m11 0 0
0 m22 m23
0 m23 p33

, C∗(νr) =

 0 0 c13
0 0 c23
−c13 −c23 Υ13c13

,
D∗ =

 d11 0 d13
0 d22 d23

Υ13d11 + d31 d32 Υ13d13 + d33

, B∗ =

 b11 0
0 b22
0 b32

. (32)

The new parameter used is: p33 = m33 − (m2
13/m11). Recalling again the source

reference [38] and Υ13 from Equation (7) (also applied in (30)), it may be observed that the
only difference is due to the presence of Υ13. The equations of motion, such as those in the
cited publication, will occur in the case where it is assumed that Υ13 = 0, that is, in the
absence of the element m13.

3. Controller in Terms of Quasi-Velocities
3.1. Differences Compared to the Original Trajectory-Tracking Algorithm

The proposed algorithm is based on the control idea developed in [38]. However,
since the QV controller does not meet some of the conditions of the original controller, it is
necessary to refer to assumptions 1–8, i.e., (A1)–(A8) given in the reference work.
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Assumptions (A1), (A3), (A4), (A7), (A8) remain unchanged. (A1) says that only surge,
sway, and yaw are taken into account. In (A3), only the hydrodynamic damping is assumed
to be linear. According to (A4), the ocean current in the inertial frame V = [Vx, Vy]T is
non-rotational, constant, and bounded (∃Vmax > 0 under condition (V2

x + V2
y )

1/2 ≤ Vmax).
The desired trajectory, defined as Γ(t) = {(ξ1d(t), ξ2d(t), ξ3d(t), ξ4d(t))|t ∈ R+} with

ξ̇1d = ξ3d , ξ̇2d = ξ4d , is considered. (A7) says that there are constant values for signal limitation
(m-minimum value, M-maximum value), such that ξ3d(t) ∈

〈
ξm

3 , ξM
3
〉
, ξ4d(t) ∈

〈
ξm

4 , ξM
4
〉
,

ξ̇3d(t) ∈
〈

ξ̇m
3 , ξ̇M

3d

〉
, ξ̇4d(t) ∈

〈
ξ̇m

4d
, ξ̇M

4d

〉
. According to (A8), the following total relative velocity

is chosen Ud = (ξ2
r3d

+ ξ2
r4d

)1/2 > 0, where ξr3d = ξ3d −Vx and ξr4d = ξ4d −Vy. In addition,
to overcome disturbances from ocean currents, the vehicle’s propulsion motors must provide
sufficient power. Assumptions (A2), (A5), and (A6) have been modified.

Assumption (A2) of symmetry on the port and starboard sides is extended because, in
the proposed approach, the vehicle may be asymmetric about two axes. The relationship
between the model considered in [38] and in this work was discussed in Section 2.3. (A5)
The body-fixed coordinate frame b is at a point (x∗P, 0) (the distance xP is defined from
the center of gravity along the vehicle center line). The point (x∗P, 0) is understood as
the pivot point, that is, such that M−1B f = [τu, 0, τr]T . However, Equation (2) is slightly
different from that in [38] due to the different location of the center of mass. According
to the modification (A6), conditions Y1 > 0 and Y2 > 0 are satisfied (these quantities are
calculated in Appendix A), which applies to the situation of unstable sway dynamics.
Formally, the control objective is as follows:

lim
t→∞

(ξ1 − ξ1d(t)) = 0, lim
t→∞

(ξ2 − ξ2d(t)) = 0,

lim
t→∞

(ξ3 − ξr3d(t)) = 0, lim
t→∞

(ξ4 − ξr4d(t)) = 0. (33)

Proposed quasi-velocity controller (QVC). To maintain the same idea of changing
variables as in [38], it was assumed that ur = ξ3 cos z1 + ξ4 sin z1, vr = −ξ3 sin z1 +
ξ4 cos z1 − z2l, and r = z2. The change in input to linearize the external dynamics can be
written as follows:[

τ∗u
τ∗r

]
=

[
cos ψ −(l + Υ23) sin ψ
sin ψ (l + Υ23) cos ψ

]−1[ −Fξ3(z1, ξ3, ξ4) + µ1
−Fξ4(z1, ξ3, ξ4) + µ∗2

]
. (34)

The control input vector µ = [µ1, µ∗2 ]
T solves the problem under consideration, that is,

tracking the desired trajectory Γ(t).
Define ∆ξ3 = ξ3 − ξ3d , ∆ξ1 = ξ1 − ξ1d , ∆ξ1I = ξ1I − ξ1dI , ∆ξ4 = ξ4 − ξ4d , ∆ξ2 =

ξ2 − ξ2d , ∆ξ2I = ξ2I − ξ2dI , where ξiI =
∫ t

0 ξi(σ)dσ, where i ∈ {1, 2, 1d, 2d} are the integrals
of signals ξiI . Then, in the controller (34), there are two inputs µ1 and µ∗2 , namely:

µ1 = −kvx ∆ξ3 − kpx ∆ξ1 − kIx ∆ξ1I + ξ̇3d , (35)

µ∗2 = −kvy(l + Υ23)∆ξ4 − kpy ∆ξ2 − kIy ∆ξ2I + ξ̇4d , (36)

where kvx , kvy , kpx , kpy , kIx , and kIy , which are positive real constant gains, are used. The
first signal (35) is the same as in [38], but the second is different, which is key to completing
the control task.

This algorithm guarantees the achievement of the control objectives (33). However,
from the decomposition method used, it follows that τ∗u = (N−1

1 + N−1
3 Υ2

13)τu + N−1
3 Υ13τr

and τ∗r = N−1
3 Υ13τu + N−1

3 τr. This relationship can be used for the input signals normal-
ization and is given in the following form:[

τu
τr

]
= s f

[
N1 −N1Υ13

−N1Υ13 N3 + N1Υ2
13

][
µ1
µ∗2

]
, (37)



Appl. Sci. 2023, 13, 7242 9 of 27

where s f means a scaling factor (a constant value). In addition, the following relationships
arise from τu = s f N1 (µ1 − Υ13µ∗2) and τr = s f

(
N3µ∗2 − N1Υ13(µ1 − Υ13µ∗2)

)
. If the values

N1 and N3 are too large or too small, the control signal becomes ineffective.
The benefit of such normalization is that the action of the control algorithm will be

directly related to the dynamics of the vehicle. Note that, in [38], the control gains are
selected without reference to the vehicle dynamics.

Comment. Theorem 1 of [38] is only partially satisfied for the control algorithm in terms
of QV due to the different equations of motion. To relate this to the results of the original
work, a revised theorem was proposed based on a vehicle model analogy. In the reference,
the desired total relative velocity Ud is defined. This quantity and its time derivative are
limited, that is, Ud ∈

〈
Umin

d , Umax
d
〉
, and U̇d ∈

〈
U̇min

d , U̇max
d
〉
.

Modified theorem. An underactuated marine vehicle is described by the model
(A4)–(A6) and (A12)–(A17) (cf. Appendix A). The point of position of the hand is
h = [ξ1, ξ2]

T =[x + l cos ψ, y + l sin ψ]T (where [x, y]T is the position of the pivot point
of the vehicle, l is a positive constant, and ψ is the yaw angle of the vehicle). Then, the
velocity Ud = ((ξ2

r3d
+ ξ2

r4d
)2)1/2 > 0 and φ1 = arctan(ξ2

r4d
/ξ2

r3d
), the crab angle (the angle

between the vehicle track and the longitudinal axis of the vehicle), are defined. Provided
that assumptions 1-8 (including their modifications) are met, and if:

0 < Umax
d < Y2/Y1, (38)

kvx , kvy , kpx , kpy , kIx , kIy > 0, (39)

l > max{m22/m23,−X2/Y2}, (40)

U̇max
d ≤ 2min{a(d− c), b}

Y1Umax
d

l + 2
(
Y1 − X1−1

l
) , b = Y2 +

X2

l
, (41)

then, the controller described by Equation (34), where Υ23 = 0, and with new input
signals (35) and (36), is guaranteed to achieve the control objectives (33). In the particular
case, the relative velocities (ξ1, ξ2, ξ3, ξ4) tend globally exponentially to the corresponding
set velocities (ξ1d , ξ2d , ξ3d , ξ4d ), while (z1, z2) are only globally ultimately bounded. In
addition, the steady-state values V̂x, V̂x of the integral variables provide estimates of the
ocean current.

Comment. Condition Υ23 = 0 is necessary due to the fact that only partial diagonaliza-
tion is needed to take advantage of the similarity to the original method. The quantities
X1, X2, Y1, Y2 are determined from (A21). Moreover, the positive constants a, c, d are defined
in [38].

Sketch of proof. Consider the relationships shown in Section 2.3 and the results
shown in Appendix A, in particular the revised values of X1, X2, Y1, Y2. Using the similarity
to the results shown in [38], the proof of the modified theorem would be analogous.

3.2. Advantages and Limitation of Using the Proposed Tracking Controller

The benefits of using the QV obtained from the decomposition of the inertia matrix for
control purposes can be summarized in a few points:

• It can be used to control fully asymmetric vehicles, making the dynamics model more
realistic than a model with a diagonal inertia matrix. Simplifying the dynamics model
still allows the algorithm to work, but loses some information about the effects of
dynamic coupling.

• The resulting equations employed in the algorithm are decoupled because of the
diagonalization of the inertia matrix instead of calculating the inverse inertia matrix.
The equations of motion are in diagonal form. From the dynamics equations, it can
be determined which values of mass correspond to the quasi-accelerations when
couplings are included.

• Insights into vehicle dynamics with the controller are available.
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• Each quasi-velocity is controlled separately. The time history provides information
about the deformation of the velocity during vehicle movement.

• Control signals are related to the vehicle dynamics because they are scaled by s f and
the set of parameters is included in the algorithm.

• Compared to other algorithms, additional information hidden in the inertia matrix
can be obtained after the velocity transformation from the modified controller.

Comment. In terms of the scope of applicability, control algorithms can be divided
as follows:

• suitable for fully asymmetrical vehicle models (about both axes of symmetry), e.g., the
proposed QV controller;

• suitable for vehicle models with partial asymmetry (about one axis), e.g., [38,39,41,43,45,46];
• suitable for fully symmetrical vehicle models (with diagonal inertia matrix),

e.g., [14,17,18,21–24,40].

Much more commonly, asymmetry is understood as a shift of the center of mass in
the x direction). For such a simplified model, the proposed algorithm is also suitable for
trajectory tracking and the effect of coupling during motion will be detectable. Thus, both
functions of the algorithm (trajectory tracking and detection of coupling effects) are still
satisfied. Many control schemes deal with tracking the desired trajectory only when the
inertia matrix is diagonal. In this extreme case, the algorithm containing QV will only
fulfill the task of control without detecting the effect of couplings on the movement of the
vehicle since the inertia matrix is diagonal. At the same time, this form will be simplified
compared to the general form. Control methods developed for a dynamics model with a
diagonal inertia matrix cannot be compared with the proposed algorithm since it is suitable
for estimating the effect of dynamic couplings. By assuming a diagonal inertia matrix, the
control algorithm will compensate for any inaccuracies due to inertia forces. The QV-based
control scheme allows tracking the desired trajectory under the full asymmetry of the
vehicle model while studying the effect of dynamic coupling (i.e., assuming the center of
mass is located outside the x- and y-axes). The symmetric inertia matrix plays a key role in
the proposed approach.

Remark 2. The proposed method is limited to horizontal vehicle movement only. With the current
state of knowledge, it cannot be extended to a three-dimensional space. The difficulty is that it is
not clear how, in the case of the considered algorithm, to extend the definition of the hand point
to the three-dimensional system in such a way as to also preserve the idea of control by means of
transformation of variables. In addition, the proposed approach is based on the strategy described
in [38], which, in turn, requires restrictive assumptions (e.g., planar motion of the vehicle, linear
damping coefficients, only the constant ocean current is taken into account and other disturbances
are ignored). For this reason, more complex disturbances are also neglected in the proposed method.
Disturbances of a more complicated form would change the equation of kinematics (1) so much that
the principle of the method would not be maintained. However, under certain conditions, the method
can be useful because in [38] the results of the sea trial test are shown.

4. Numerical Simulations

The purpose of this section is to test the control algorithm for two selected underwater
vehicle models and for three trajectories. Verification of the method was limited to simula-
tion studies. The simulation investigations were limited to the conditions mentioned in
Remark 2. The original control scheme from [38] included experimental results obtained
through a torpedo-like vehicle test at sea. Therefore, it can be expected that a modified
method, i.e., taking into account the asymmetries of the vehicle, could also be verified
by experiment.

4.1. Vehicles and Test Conditions

In order to show the performance of the controller, vehicle models with different
dynamics were selected.
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The vehicle Kambara was described in [53,54]. The vehicle has length Lv = 1.2 m,
width Wv = 1.5 m, and height Hv = 0.9 m. For Kambara, the matrix M is taken to
be a diagonal one. In order to consider the matrix M with off-diagonal elements, it is
assumed that m13 = myg = 10 kg m, which corresponds to a center of gravity shift of
0.09 m, m23 = mxg = −35 kg m, which corresponds to a center of gravity shift of 0.3 m.
The set of parameters is shown in Table 2. This set of parameters enables calculation of the
elements of the diagonal matrix N, i.e., N1 = 175.4 kg, and N2 = 140.8 kg, N3 = 6.80 kg m2.

The XX AUV model of the second vehicle was taken from [34,55]. It has a torpedo–like
shape (length approximately 1.2 m). The parameters used for the simulations are presented
in Table 2. Due to the matrix symmetry M m13 = m31, m23 = m32, it was assumed also that
m23 = mxg = 3.0 kg m, which corresponds to a center of gravity shift of about 0.07 m (in
the cited references, this quantity is absent, but it is needed for this test).

From this set of parameters, the calculated elements of the diagonal matrix N are
N1 = 47.5 kg, N2 = 94.1 kg, and N3 = 13.1 kg m2. Simulations using Matlab/Simulink
(time step ∆t = 0.05, and using the ODE3 Bogacki-Shampine method) were carried out
under additional assumptions:

(1) The starting points were selected taking into account the dynamics of each vehicle model.
(2) The simulation time t = 200 s was chosen to show the effects of the use of the controller.
(3) The disturbances were assumed to be close to [38], i.e., Vx = 0.05 m/s, Vy = −0.10 m/s.

The forces and torques were limited to reduce their initial values, that is, |τu| ≤ 15 N
and |τr| ≤ 15 Nm.

(4) The test was performed based on the software referred to in [56], modified to obtain
results using the equations expressed in QV.

Table 2. Parameters for Kambara and XX AUV model.

Kambara XX AUV

Parameter Value Value Unit

m11 175.4 47.5 kg
m13 10 3.0 kg m
m22 140.8 94.1 kg
m23 −35 5.2 kg m
m33 16.07 13.6 kg m2

d11 120 13.5 kg/s
d13 10 10.0 kg/s
d22 90 50.2 kg/s
d23 10 41.4 kg m/s
d31 10 10.0 kg m/s
d32 10 17.3 kg m/s
d33 18 27.2 kg m2/s

For the point h value l = 1.2, m was chosen for Kambara and l = 0.7 m for XX AUV.
Due to the dynamics of each vehicle s f = 10−2, s f N1 = 1.754, and s f N3 = 0.068 were
assumed for Kambara, whereas s f = 10−1, s f N1 = 4.75, and s f N3 = 1.33 were assumed
for XX AUV.

The norm of the matrix
∥∥Υ−1

∥∥ depends on the vehicle parameter set and is determined
for each vehicle. Some information about the proposed couplings which can be deduced
from this norm is given in Table 3. For Kambara, one gets

∥∥Υ−1
∥∥ = 1.136, which means

more than 14% couplings (1.000 is equivalent to 0%, whereas 1.932 to 100%). This value
means that the couplings are weak. For XX AUV, one obtains

∥∥Υ−1
∥∥ = 1.043, which means

almost 5% couplings. This value means that the couplings are very weak, but almost weak.
Of course, it is possible to take the values of the parameters so that the couplings in the
system are larger, but, for practical reasons, this seems unrealistic.
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Table 3. Couplings evaluation using
∥∥Υ−1

∥∥.

Vehicle Kambara XX AUV∥∥Υ−1
∥∥ 1.000 <1.047 <1.186 <1.326 <1.466 ≤1.932

Couplings no very weak weak average strong very strong
0 % <5 % <20 % <35 % <50 % ≥50 %

4.1.1. Results for QV Control Algorithm

Linear trajectory described by pd = [0.5 t, 0.3 t]T, and with the start point p0 = [−2 5]T

for Kambara and XX AUV, was tested. The gains for the controller, to ensure acceptable errors
convergence, were selected as follows:

Kambara kvx = kvy = 12, kpx = kpy = 3, kIx = kIy = 0.3, (42)

XX AUV kvx = kvy = 5, kpx = kpy = 1, kIx = kIy = 0.2. (43)

As can be seen in Figure 2a, the desired trajectory is correctly tracked. Observing
Figure 2b,c, it may be noted that, after about 50 s, the position and velocity error states
are close to zero. The applied force τu and torque τr given in Figure 2d are highest at the
beginning of vehicle movement. However, the dominant value is τu. Figure 2e shows that
the largest part of the kinetic energy is consumed by a variable ζ1 that refers to the lateral
movement of the vehicle. The mean values of kinetic energy are: Km = 29.767 J (where
Km1 = 18.938 J, Km2 = 10.825 J, Km3 = 0.004 J). Moreover, from Figure 2f, it can be observed
that the velocity disturbance values are larger for ∆ζ2 (about 0.06 m/s), whereas for ∆ζ2,
they are much smaller. Thus, the couplings are mainly concerned with lateral velocity.
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Figure 2. Numerical test for Kambara, QV controller and linear trajectory: (a) desired and realized
trajectory; (b) position error states; (c) velocity error states; (d) applied force and torque; (e) kinetic
energy time history; (f) errors ∆ζ1, ∆ζ2.

For the same linear trajectory and the XX AUV vehicle, the results of the test are
shown in Figure 3. From Figure 3a, it is observed that the vehicle converges to the reference
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trajectory. The position and velocity error states tend to zero, as seen in Figure 3b,c after
about 40 s. The applied force and torque history is presented in Figure 3d. However, in the
beginning, both the force and moment contribute to the movement of the vehicle and reach
large values. Figure 3e shows that the kinetic energy is mainly dissipated due to the lateral
movement of the vehicle but the longitudinal movement is also significant. The mean
values of kinetic energy are: Km = 13.195 J (and Km1 = 5.165 J, Km2 = 7.952 J, Km3 = 0.078 J).
From Figure 3f, it is noted that the dynamical couplings represented by the velocity errors
∆ζ1, ∆ζ2 are comparable, which indicates that the velocity couplings are comparable in
both directions (x and y). Their values are even higher than those of Kambara.
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Figure 3. Numerical test for XX AUV, QV controller and linear trajectory: (a) desired and realized
trajectory; (b) position error states; (c) velocity error states; (d) applied force and torque; (e) kinetic
energy time history; (f) errors ∆ζ1, ∆ζ2.

A sine-cosine trajectory described by pd = [0.5 t, 10 sin 0.02 t + 5 cos 0.01 t]T , with
the starting point p0 = [−2 5]T for Kambara and XX AUV, was selected for the second test.
The same gain sets as previously, i.e., (42), (43), respectively, were assumed.

From Figure 4a, it is found that, for Kambara, the algorithm works correctly. The
position and velocity error states are close to zero after about 40 s (Figure 4b,c). The applied
force and torque values are similar to the linear trajectory, as depicted in Figure 4d. Figure 4e
shows that the kinetic energy is reduced first by longitudinal motion of the vehicle. The
mean kinetic energy values obtained are: Km = 20.693 J (and Km1 = 18.902 J, Km2 = 1.790 J,
Km3 = 0.001 J). However, the speed deformation, represented by variables ∆ζ1, ∆ζ2, is
smaller than for the linear trajectory and varies during the motion, as shown in Figure 4f.

In Figure 5, the results for the XX AUV model are given. From Figure 5a, it can be
noted that the control algorithm works correctly. This fact is confirmed in Figure 5b,c, where
the position and velocity error states are shown. Although the applied force and torque are
small (Figure 5d), they change as the vehicle moves along the trajectory. From the kinetic
energy time history, depicted in Figure 5e, it can be seen that the longitudinal movement of
the vehicle causes the greatest consumption of kinetic energy. In this case, the mean kinetic
energy values are: Km = 6.365 J (and Km1 = 5.133 J, Km2 = 1.225 J, Km3 = 0.006 J).
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A slightly greater deformation of the velocity (errors ∆ζ1, ∆ζ2) occurs than for the
linear trajectory, as shown in Figure 5f. The couplings in both directions of horizontal
motion are very close to each other.
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Figure 4. Numerical test for Kambara, QV controller and sine-cosine trajectory (a–f), and cycloid-like
trajectory (g–l): (a,g) desired and realized trajectory; (b,h) position error states; (c,i) velocity error
states; (d,j) applied force and torque; (e,k) kinetic energy time history; (f,l) errors ∆ζ1, ∆ζ2.
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Figure 5. Numerical test for XX AUV, QV controller and sine-cosine trajectory (a–f), and cycloid-like
trajectory (g–l): (a,g) desired and realized trajectory; (b,h) position error states; (c,i) velocity error
states; (d,j) applied force and torque; (e,k) kinetic energy time history; (f,l) errors ∆ζ1, ∆ζ2.

A cycloid-like trajectory described by pd = [0.7 t− 4 cos 0.05 t, 20− 4 sin 0.05 t]T ,
with the start point p0 = [−3 18]T for Kambara and XX AUV, was assumed.
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The gains set was slightly changed in order to obtain better performance of the
controller, namely:

Kambara kvx = kvy = 12, kpx = kpy = 4, kIx = kIy = 0.4, (44)

XX AUV kvx = kvy = 5, kpx = kpy = 1, kIx = kIy = 0.3. (45)

The used test trajectory is different from the previous two because of its much smaller
curvature. In Figure 4g–l, the results for Kambara are depicted. From Figure 4g, it is
observed that the task is performed quickly and correctly. However, when tracking the
curvature, the error values are larger. The position and velocity error states tend to zero
after about 40 s, as shown in Figure 4h,i. The time history of the applied force and torque
given in Figure 4j is similar to the history of the sine-cosine trajectory. Figure 4k shows that
most of the kinetic energy is absorbed by the forward motion of the vehicle, similarly to the
sine-cosine trajectory. However, the shape of the kinetic energy history is different because
the change occurs as the shape of the trajectory tracked changes. The mean values of the
kinetic energy are: Km = 44.763 J (and Km1 = 42.524 J, Km2 = 2.238 J, Km3 = 0.001 J).

The maximum values of the velocity deformation (∆ζ1, ∆ζ2 errors) caused by the
couplings are smaller than for the previous two trajectories, but the deformation fluctuates
with the evolution of the shape of the trajectory, as shown in Figure 4l.

The corresponding results obtained for the vehicle XX AUV are depicted in Figure 5g–l.
From Figure 5g, it can be seen that the trajectory is tracked correctly. Similar conclusions
can be drawn based on the graph presented in Figure 5h,i, where the positions and velocity
error states are given. The applied forces and torque shown in Figure 5j have small values,
with the exception of the first phase of the vehicle’s motion, and reflect changes in the
trajectory shape. In Figure 5k, it can be found that most of the kinetic energy is reduced
by longitudinal motion. Due to the shape of the change in this energy, the same effect
is found for the Kambara vehicle for the same trajectory. The mean values of the kinetic
energy are: Km = 13.144 J (and Km1 = 11.512 J, Km2 = 1.611 J, Km3 = 0.021 J). The velocity
deformations caused by the couplings at the beginning of the vehicle movement have large
values, but, at all times, they are comparable for the longitudinal and lateral movements,
as evidenced by the variables ∆ζ1, ∆ζ2 shown in Figure 5l.

Analysis of results based on indexes. To estimate the qualitative results obtained in
the QV driver test, an analysis was performed based on the selected indexes.

1. mean of the elements (mean), i.e., mean(∑ ∆ξ12), where ∑ ∆ξ12 = |∆ξ1| + |∆ξ2|;
mean(∑ ∆ξ34), where ∑ ∆ξ34 = |∆ξ3|+ |∆ξ4|; mean(∑ ∆pxy), where ∑ ∆pxy = |∆px|+
|∆py|;

2. the standard deviation of the elements (std), i.e., std(∑ ∆ξ12), std(∑ ∆ξ34), std(∑ ∆pxy);

3. root mean square of the tracking error, i.e., RMS =

√
1

t f−t0

∫ t f
t0
‖e(t)‖2dt,

with ‖e(t)‖ =
√

∆p2
x + ∆p2

y (∆px, ∆py—the position errors in the reference frame);

4. mean integrated absolute control, i.e., MIAC = 1
t f−t0

∫ t f
t0
|A(t)|dt, where A = τu, τr.

The index values are summarized in Table 4.
The mean error values are mostly smaller for the XX AUV than for the Kambara. There

are also smaller values of the thrust force of the vehicle τu. These values are related to
the mass of the vehicle. For the position and velocity state errors, this is not necessarily
the case. It follows that these states are not crucial for the actual errors but indicate how
well the algorithm is working. In contrast, the RMS and mean(∑ ∆pxy) show this explicitly.
Another observation is that the control tracking accuracy depends on the realized trajectory.
For both vehicles, better tracking accuracy was obtained for curvilinear trajectories than
for linear trajectories. This may suggest that tracking the latter is more difficult for the
QV-based algorithm.
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Table 4. Performance indexes for QV controller (L-linear, SC-sine-cosine, C-cycloid-like).

Kambara XX AUV

Trajectory L SC C L SC C

mean(∑ ∆ξ12) 0.2343 0.0992 0.1056 0.1652 0.0794 0.0704
std(∑ ∆ξ12) 0.6691 0.2615 0.3077 0.6071 0.2359 0.2489
mean(∑ ∆ξ34) 0.0472 0.0188 0.0198 0.0525 0.0210 0.0233
std(∑ ∆ξ34) 0.1776 0.0728 0.0644 0.2403 0.0795 0.1018
mean(∑ ∆pxy) 0.5564 0.3556 0.2863 0.3472 0.2207 0.1921
std(∑ ∆pxy) 0.7640 0.2460 0.3462 0.6740 0.0795 0.3003
RMS(||e||) 0.7466 0.3436 0.3591 0.5674 0.2747 0.2647
MIAC(τu) 0.4029 0.3220 0.4669 0.1674 0.1203 0.1776
MIAC(τr) 0.2913 0.2278 0.3380 0.4865 0.3386 0.4870

4.1.2. Comparison with Classic Controller

Analogous tests, that is, for the same vehicles, trajectories and initial conditions, as
well as the same operating conditions, were carried out using the control scheme of [38]
(referred to here as the classic controller).

The parameters of the classical regulator, which guaranteed acceptable error conver-
gence, were chosen as follows:

Kambara kvx = kvy = 25, kpx = kpy = 5, kIx = kIy = 0.5, (46)

XX AUV kvx = kvy = 30, kpx = kpy = 5, kIx = kIy = 0.5. (47)

Attempting to change these values did not yield better results than those presented in
this section of the article.

Linear trajectory. The results obtained for Kambara are given in Figure 6. They are
similar to those presented in Figure 2. As can be seen from Figure 6a–d, the controller is
working properly. However, the velocity error states, as shown in Figure 6c, have larger
values at the beginning and are more disturbed.

Acceptable results were also obtained for the XX AUV, as shown in Figure 7a–d. The
velocity error states (Figure 7c) do not change as quickly as for Kambara.

Sine-cosine trajectory. For this trajectory, the simulation results are presented for
the Kambara vehicle only in Figure 6a–d. The controller works properly, but, again, the
errors ∆ξ3, ∆ξ4 (Figure 6g) significantly change their values when the vehicle starts moving,
which is not noticeable when an algorithm containing QV is used (Figure 4c).

Cycloid-like trajectory. Figure 7e–h present the results for the XX AUV only. As can
be easily seen, the algorithm works correctly and the desired trajectory is tracked. The
effects are similar to those shown in Figure 5g–j. However, the changes in the error states
here are not as fast as for the QV controller (cf. Figures 5h,i and 7f,g).

Analysis of results based on indexes. The performance of the classic controller is
given in Table 5. Slightly better results were obtained for the XX AUV than for the Kambara
for the actual errors, although this was not always consistent with the error values of the
position and velocity states. In addition, there is a greater reduction in the tracking accuracy
for the linear trajectories than for the curvilinear trajectories. The mean thrust values τu
are much larger than the mean torque values τr, leading to the conclusion that the linear
motion of the vehicle dominates.

4.1.3. Comparison with Algorithm Based on Velocity Transformations

To compare the results obtained with the proposed control algorithm, simulation tests
were performed for analogous operating conditions using the control scheme developed
in [48]. The algorithm chosen is a combination of backstepping, control of the integral
sliding mode, and velocity transformation. Thus, its working idea is different from that
of the proposed controller. In addition, it is also suitable for a fully asymmetric model
like the modified controller considered in this paper. This controller is denoted here as VT
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(based on velocity transformation). Due to a different control idea, limitations on force and
torque were taken in |τu| ≤ 120 N and |τr| ≤ 37 Nm, respectively. These values can be
obtained considering the engines installed in the Kambara vehicle. Constant disturbances
were adopted to keep the direction and nature of the operation consistent with previously
assumed disturbances, that is, 5 N along the x-axis and −10 Nm along the y-axis. Tests
were performed for a Kambara vehicle that realized a linear and sine-cosine trajectory.
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Figure 6. Numerical test for Kambara, CL controller and linear trajectory (a–d), and sine-cosine
trajectory (e–h): (a,e) desired and realized trajectory; (b,f) position error states; (c,g) velocity error
states; (d,h) applied force and torque.
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Table 5. Performance indexes for CL controller (L-linear, SC-sine-cosine, C-cycloid-like).

Kambara XX AUV

L SC C L SC C

mean(∑ ∆ξ12) 0.2342 0.1131 0.1227 0.2808 0.1266 0.1345
std(∑ ∆ξ12) 0.6366 0.2799 0.2993 0.7391 0.2945 0.3528
mean(∑ ∆ξ34) 0.0495 0.0294 0.0261 0.0514 0.0204 0.0197
std(∑ ∆ξ34) 0.1955 0.1084 0.0625 0.1752 0.0657 0.0575
mean(∑ ∆pxy) 0.5491 0.3600 0.2910 0.4617 0.2613 0.2251
std(∑ ∆pxy) 0.7363 0.2612 0.3527 0.8204 0.3006 0.3820
RMS(||e||) 0.7120 0.3551 0.3588 0.7225 0.3183 0.3360
MIAC(τu) 0.4236 0.3365 0.4858 0.1784 0.1414 0.2083
MIAC(τr) 0.0679 0.0439 0.0396 0.0548 0.0347 0.0600
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Figure 7. Numerical test for XX AUV, CL controller and linear trajectory (a–d), and cycloid-like
trajectory (e–h): (a,e) desired and realized trajectory; (b,f) position error states; (c,g) velocity error
states; (d,h) applied force and torque.
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Linear trajectory. The set of control parameters in the algorithm proposed in [48]

Kambara k1 = k2 = 0.20, k3 = 10; k4 = 1, k5 = 5, (48)

was selected in order to guarantee fast response and acceptable tracking errors. The
mean values of the calculated kinetic energy were: Km = 61.319 J (and Km1 = 58.586 J,
Km2 = 2.510 J, Km3 = 0.223 J). The energy values are higher than those with the algorithm
proposed in this paper. Thus, the controller described in [48] consumes energy.

The results of the simulation are shown in Figure 8.
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Figure 8. Numerical test for Kambara, VT controller and linear trajectory: (a) desired and realized
trajectory; (b) position errors; (c) kinetic energy time history; (d) applied force and torque.

From Figure 8a,b, it can be seen that the tracking of the desired trajectory is imple-
mented correctly; however, there is deformation when the vehicle begins to move. During
this time, there is a large increase in the kinetic energy (Figure 8c) and also in the force and
torque (Figure 8d).

Sine-cosine trajectory. For this desired trajectory, the set of parameters was slightly
changed to improve the control performance. It was as follows:

Kambara k1 = k2 = 0.30, k3 = 10; k4 = 1, k5 = 5. (49)

The algorithm worked correctly, and for this trajectory only index values were given.
The performance indexes for the VT control algorithm are presented in Table 6.

Table 6. Performance indexes for VT controller (L-linear, SC-sine-cosine).

Kambara

L SC

mean(∑ ∆pxy) 0.5750 0.2750
std(∑ ∆pxy) 0.9292 0.3243
RMS(||e||) 0.8065 0.3726
MIAC(τu) 75.174 68.921
MIAC(τr) 3.7864 3.9702

A comparison of the proposed QV controller with the VT controller can be made based
on the results shown in Tables 4 and 6. As can be seen from the data, in the tables, the VT
controller had larger mean values mean(∑ ∆pxy) and standard deviation (except for the
mean error for the SC trajectory) for the tracking error. Even if corrected, the results for the
VT controller (assuming a different set of parameters) would be comparable, but there could
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be undesirable oscillations. Therefore, it can be concluded that, for the assumed operating
conditions, the proposed control algorithm is more efficient than the VT algorithm. The
advantage of the QV controller is also evidenced by the fact that the values of the input
signals are much smaller than those of the VT controller.

4.2. Discussion of Results

Models of two vehicles with different dynamics and three types of desired trajectories
were investigated. The test results of the QV-based control scheme can be summarized
as follows.

(1) It was found that the performance of the control algorithm is affected by both vehicle
dynamics and the selection of the desired trajectory.

(2) The curvature of the trajectory (smaller radius of curvature) causes more interference
at the beginning of the vehicle movement, and this, in turn, forces the controller to
increase the control signals. The result can be a reduction in the trajectory-tracking
accuracy unless the value of the coefficient l is reduced.

(3) Not only are the gains of the controllers kvx , kvy , kpx , kpy , kIx , kIy important for tracking
the desired trajectory, but the value of the l parameter is also essential. If l has a large
value (l > 1), then, in the case of trajectories with small curvature (which should be
determined after performing a simulation to check the accuracy of trajectory tracking),
tracking occurs after a short time, but is inaccurate during movement (tracking errors
in the x-y plane increase). The value of the coefficient s f depends on the weight of
the vehicle, and, more specifically, on its dynamic parameters.

(4) It turned out that the algorithm is somehow robust to changes in the appropriately
selected set of control gains. This means that the same set of gains can be applied to
different trajectories and only slightly modified to track trajectories with sufficiently
small curvature.

(5) Investigating the distribution of kinetic energy consumption across variables repre-
senting quasi-velocities and velocity deformations caused by dynamic couplings in
the vehicle provides additional insight into its dynamics. The time history of this
energy indicates for which QV the reduction is greatest (in which direction of motion),
and how the changes occur for different shapes of the desired trajectory.

(6) The variables ∆ζi also reflect the shape of the trajectory because they can change as
the vehicle moves.

Simulation tests performed under other operating conditions and also for another
vehicle indicate the suitability of the proposed algorithm, both for control purposes and for
study of the dynamics of marine vehicles.

Analysis of the results obtained from the QV-based controller and the classical one.

(1) Comparative observations of the figures show that both the QV and CL controllers
work correctly, although, in some cases, the error convergence time may be shorter for
the QV controller than for the CL controller. This may be due to the fact that coupling
in the lateral direction is included in the control equation.

(2) The proposed performance indexes provide more information. It can be seen that, for
both algorithms, their effectiveness depends on the parameters of the vehicle model
and the trajectory being tracked.

(3) Based on the values of the indexes in Tables 4–6, it can be observed that:

• After applying the CL algorithm, the smaller index values are not determined
by the dynamic parameters of the vehicle because some of the smaller index
values apply to the Kambara vehicle and some to XX AUV. Therefore, it is difficult
to identify the relationship between the performance and the vehicle dynamics.
Having applied the algorithm using QV, it is clear that smaller index values were
obtained more often for the XX AUV vehicle than for the Kambara. From this it can
be concluded that the effectiveness of the proposed controller depends, to some
extent, on the dynamic parameters of the vehicle, which is not seen for the CL one.
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• The calculated index values show that both algorithms track linear trajectories
with less accuracy than curvilinear trajectories.

• The base indexes (that is, without force and torque) are mostly lower for each
vehicle after using the QV controller when we compare them with the indexes
obtained from the CL algorithm. The advantage is more evident for the actual
errors (mean(∑ ∆pxy) and RMS(||e||)). It is worth noting that the errors in the
position and velocity states indicate whether the algorithm correctly performs
the tracking task, but the actual errors are larger, which is, however, in line
with the assumptions of both the original (CL controller) and the modified (QV
controller) methods. Since the QV-based control scheme takes into account both
the longitudinal and lateral asymmetry of the vehicle, while CL only takes into
account the longitudinal asymmetry, it would seem that it is the CL algorithm
that should be more effective in performing the task of trajectory tracking. The
fact that this is very often not the case can be explained by modifications to the
controller that use the dynamic parameters of the vehicle.

• Both controllers, i.e., QV and CL, primarily use the driving force, but smaller values
are provided by the QV algorithm. In contrast, the average torque is much lower
(close to zero) for the CL controller. The reason for this is the taking of vehicle
dynamics into account, as it is necessary to provide larger values of this torque.

• Compared to the other control scheme tested, here denoted VT, it turned out that,
for the assumed operating conditions and desired trajectories, the considered QV
algorithm gave slightly better performance with respect to the tracking errors
with significantly lower values of the control signals.

(4) It is worth noting that a properly selected set of control coefficients allows some
flexibility because it can be applied to different trajectories (at most with a slight
change in value).

(5) Using the QV controller, more information is obtained on the dynamics of the vehicle than
the CL controller. This is one of the essential differences between the two control schemes.

Limitations and disadvantages of the algorithm using QV can be summarized in
several points.

• According to the idea presented in [38] and used to design the QV-based controller,
only the convergence of the position and velocity state errors to zero is guaranteed.
This means that the real position errors (represented by the values of RMS(||e||) and
mean(∑ ∆pxy)) can tend to certain constant values. This is what would explain their
larger values than the values of the state errors.

• In addition to the controller parameters kvx , kvy , kpx , kpy , kIx , kIy and the l parameter, the
quality of the results is also affected by the value of the additional factor s f , so the total
number of parameters is one more than for a classic controller. However, the advantage
of s f is that it is adopted according to the dynamic parameters of the vehicle and can be
tuned even if the algorithm does not work properly with another set of gains.

• It takes quite a long time to reach the convergence values of the position and velocity
states, even with the correct choice of controller gains. This time can be reduced by
decreasing the values of kvx , kvy , but then oscillations and rapid changes in the error
values will occur. To avoid this phenomenon, the values of kvx , kvy can be increased,
but this will increase the convergence time of the state errors to zero. Therefore, a
compromise between all gain values is important.

5. Conclusions

In this work, an algorithm in terms of quasi-velocities is considered for fully asym-
metric vehicle models. It is based on the idea of trajectory-tracking control proposed by
Paliotta et al. [38]. The main difference between the two algorithms is that the dynamic pa-
rameters of the marine vehicle are taken into account in the proposed controller differently
than for the original algorithm. In contrast to the description provided in the source work, the
velocity transformation method is applied here to obtain the first-order differential equations.
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Furthermore, the extension of the method consists in the fact that, in this work, dynamic cou-
plings are present in the x- and y-directions, whereas, in the original work, only couplings in
the x-direction were assumed. As a result of changing the description of the vehicle dynamics,
it is possible to extend the function of the control algorithm to the estimation of couplings in
the vehicle model. The aim of the work was to show the possibilities offered by the modified
algorithm in the case of the presence of couplings in both directions of vehicle movement,
i.e., one that allowed tracking the desired trajectory when the vehicle is asymmetric in two
planes. Simulation tests were carried out for two vehicle models with different dynamics and
three desired trajectories to show the relationship between the vehicle model and the realized
trajectory. Based on numerical simulations, it has been shown that it is possible not only to
track a desired trajectory, but also to gain some insight into vehicle dynamics. Comparing
the performance of the algorithms, the proposed QV, the classic CL [38] and another one
that was taken for the study [48], it turned out that the former was more efficient than the
others given the assumptions made and the operational conditions. Therefore, the proposed
modified algorithm can be used not only to control underwater vehicles, but also to test the
model of their dynamics. Future research should explore other control methods suitable for
vehicles with full asymmetry because such algorithms, in reduced form, are also suitable for
partially symmetric or fully symmetric vehicles.
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Appendix A

The dynamic equation of a vehicle, instead of (2), may be expressed in the form:

Mν̇r + C(νr)νr + Dνr = B f , (A1)

where:

B =

 b11 0
0 b22

−Υ13b11 b32

, (A2)

is the actuator configuration matrix and f = [Tu, Tr]T , where Tu is the thruster force and Tr
is the rudder angle. The vector B f can also represent the force and moment resulting from
the configuration of the motors. Taking into account the velocity transformation and its
time derivative:

νr = Υ1κr, κr = Υ−1
1 νr, κr = [ur − Υ13r, vr, r]T , κ̇r = Υ−1

1 ν̇r. (A3)

Instead of (4), the kinematic Equations (ur = κ1r + Υ13r) have the form:

ẋ = (κ1r + Υ13r) cos ψ− vr sin ψ + Vx, (A4)

ẏ = (κ1r + Υ13r) sin ψ + vr cos ψ + Vy, (A5)

ψ̇ = r. (A6)
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Inserting Υ1 from (30) into (A1), and multiplying by ΥT
1 , as a result, the equation of

motion dynamics is as follows:

Mν̇r + C(νr)νr + Dνr = B f , (A7)

ΥT
1 MΥ1κ̇r + ΥT

1 C(νr)νr + ΥT
1 Dνr = ΥT

1 B f , (A8)

Pκ̇r + ΥT
1 C(νr)νr + ΥT

1 Dνr = ΥT
1 B f . (A9)

Denoting B∗ = ΥT
1 B, it can be written:

κ̇r = −P−1H + P−1B∗ f , (A10)

where H = ΥT
1 C(νr)νr + ΥT

1 Dνr and:

P−1 =

 p̄11 0 0
0 p̄22 p̄23
0 p̄23 p̄33

, P−1B∗ f =

 p̄11b11Tu
( p̄22b22 + p̄23b32)Tr
( p̄23b22 + p̄33b32)Tr

. (A11)

The symbols used have the following meanings: p̄11 = m−1
11 , p̄22 = p33/∆,

p̄23 = −m23/∆, p̄33 = m22/∆, ∆ = m22 p33 − m2
23. In [38], the pivot point is selected

to ensure that M−1B f = [τu, 0, τr]T is not −Υ13b11 without the element −Υ13b11 in the
matrix B (A2). Here, due to lateral asymmetry, it must be taken into account. There-
fore, the position of the pivot point is calculated from p̄22b22 + p̄23b32 = 0 to ensure
that the element of the second row is null. Thus, the above condition can be written as
(m33 − (m2

13/m11))b22 −m23b32 = 0.
Consequently, the matrix-vector equation can be written in the form of:

κ̇1r = − p̄11H1 + τu, (A12)

v̇r = − p̄22H2 − p̄23H3, (A13)

ṙ = − p̄23H2 − p̄33H3 + τr, (A14)

where:
H1 = c13r + d11κ1r + (d13 + d11Υ13)r, (A15)

H2 = (m11κ1r − 2m13r)r + d22vr + d23r, (A16)

H3 = −c13κ1r − (m11κ1r − 2m13r)vr + (d31 + Υ13d11)κ1r

+d32vr +
(
d33 + Υ13(d13 + d31 + Υ13d11)

)
r, (A17)

denoting κ1r = ur − Υ13r. Introducing the symbols: d311 = d31 + Υ13d11,
d312 = d33 + Υ13(d13 + d31 + Υ13d11), one has:

v̇r =
(
− ( p̄22m11 + p̄23m23)κ1r − ( p̄22d23 + p̄23d312)

)
r

+
(
− ( p̄23m22 − p̄23m11)κ1r − ( p̄22d22 + p̄23d32)

)
vr

+2p̄22m13r2 − 2p̄23m13rvr − p̄23d311κ1r. (A18)

The residual components W = 2p̄22m13r2 − 2p̄23m13rvr − p̄23d311κ1r can be analyzed
for inclusion in the other two components. It is assumed that δ1max = |2p̄22m13rmax|
(rmax means the maximum value of r), δ2max = |2p̄23m13rmax| (rmax means the maximum
value of r), and δ3max = | p̄23d311κ1r max| (κ1r max means the maximum value of κ1r). For the
component W to be non-negative, the condition must be met:

δ1maxr + δ2maxvr ≥ δ3max, (A19)

and then it is assumed W = δ1maxr + δ2maxvr. In other cases, i.e., if:

δ1maxr + δ2maxvr < δ3max, (A20)
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it should be assumed W = a1δ3maxr + a1δ3maxvr, where a1 is a constant guaranteeing that
W ≥ δ3max. Taking into account the results obtained and denoting that
X1 = p̄22m11 + p̄23m23, Y1 = p̄23m22 − p̄23m11 as well as X2 = δ1max − p̄22d23 − p̄23d312
(or X2 = a1δ3max − p̄22d23 − p̄23d312), Y2 = p̄22d22 + p̄23d32 − δ2max (or Y2 = p̄22d22 + p̄23d32
−a1δ3max) Equation (A18) can be rewritten as:

v̇r = X(κ1r)r + Y(κ1r)vr, (A21)

where: X(κ1r) = −X1κ1r + X2 and Y(κ1r) = −Y1κ1r −Y2.
Equations (A12)–(A17) are analogous to the dynamic equations in [38], but include

the quasi-velocity κ1r resulting from the partial decomposition of the inertia matrix M. A
similar analog can be found in Equation (A21).
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