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Abstract: This study introduces a systematic methodology whereby different technologies were
utilized to download, pre-process, and interactively compare the rainfall datasets from the Integrated
Multi-Satellite Retrievals for Global Precipitation Mission (IMERG) satellite and rain gauges. To
efficiently handle the large volume of data, we developed automated shell scripts for downloading
IMERG data and storing it, along with rain gauge data, in a relational database system. Hypertext
pre-processor (pHp) programs were built to visualize the result for better analysis. In this study,
the performance of IMERG estimations over the east coast of Peninsular Malaysia for the duration
of 10 years (2011–2020) against rain gauge observation data is evaluated. Moreover, this study
aimed to improve the daily IMERG estimations with long short-term memory (LSTM) developed
with Python. Findings show that the LSTM with Adaptive Moment Estimation (ADAM) optimizer
trained against the mean square error (MSE) loss enhances the accuracy of satellite estimations. At
the point-to-pixel scale, the correlation between satellite estimations and ground observations was
increased by about 15%. The bias was reduced by 81–118%, MAE was reduced by 18–59%, the
root-mean-square error (RMSE) was reduced by 1–66%, and the Kling–Gupta efficiency (KGE) was
increased by approximately 200%. The approach developed in this study establishes a comprehensive
and scalable data processing and analysis pipeline that can be applied to diverse datasets and regions
encountering similar domain-specific challenges.

Keywords: IMERG satellite rainfall; SQL relational database; LSTM; ADAM; Python; pHp

1. Introduction

Precipitation recycling contributes to hydrological processes in the atmospheric branch
of the water cycle [1]. Though the precipitation at the Earth’s surface is typically measured
with rain gauges [2], the coverage is surprisingly small [3]. Remote sensing applications
have recently emerged as one of the most important methods of acquiring information on
the Earth’s surfaces [4]. For example, satellite precipitation estimation (SPE) products have
played an important role in estimating the rainfall from the atmosphere [5–7]. Compared
to traditional ground-based rain gauges and weather radars, the SPEs have significant
advantages in terms of spatial coverage. Furthermore, SPEs are continuous and uniform,
avoiding the high costs of ground observation networks [8] and could potentially be used
for flood monitoring in rain gauge scarce areas [9,10].

Nowadays, many SPEs have been developed to satisfy various hydrometeorologi-
cal needs [11], including the Tropical Rainfall Measuring Mission (TRMM) of the Multi-
satellite Precipitation Analysis (TMPA) products [12], Climate Prediction Center Morphing
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(CMORPH) [13], the Precipitation Estimation from Remotely Sensed Information using
Artificial Neural Networks (PERSIANN) [14,15], the Global Satellite Mapping of Precipita-
tion (GSMaP) [16], Climate Hazards Group Infrared Precipitation with Station (CHIRPS)
data [17], and the Integrated Multi-Satellite Retrievals Global (IMERG) precipitation mis-
sion [18]. Many studies on assessing the performance and accuracy of these SPEs have
been made over the world [19–25]. Although these spatial-temporal datasets are now
freely available, employing them is a great challenge as they are too large and complex.
Although research has been performed to design data series management [26], researchers
and hydrologists are still facing great challenges such as computational requirements as
well as software and data storage issues when handling this huge amount of data, which is
hindering its accessibility [27]. It is challenging to deal with a bigger scale of data in satellite
and gauge precipitation research [28]. In addition, the acquisition, searching, transfer,
analysis, and visualization of the data in many areas, such as geoscience, remote sensing,
hydrology, and environmental research, are also challenging. Google Earth Engine’s cloud
computing platform has effectively addressed the challenges of big data analysis. However,
there are still several main limitations, such as privacy, tool restrictions, selected data
mining models limitations, features limitations, computational restrictions, third-party
software causing time-consuming processes, and others [29].

The accuracy and reliability of SPEs are also among the concerns of hydrologists [30].
The high spatial-temporal datasets can be biased depending on the target terrain, elevation,
and season. Therefore, many researchers have dedicated their efforts to exploring the
application of machine learning (ML) and deep learning (DL) in improving the accuracy and
reliability of SPEs [31–33]. Recurrent neural network (RNN) is a deep learning approach for
modeling sequential data and has been widely used in different types of applications such
as speech recognition, natural language processing, energy management, and time series
analysis [34–37]. Long short-term memory (LSTM), an RNN architecture used in the field of
DL [38,39], is one of the most popular methods to be applied to improving SPEs [40–43]. It
was proposed by Hochreiter and Schmidhuber in 1997 [43]. In a recent study conducted by
Moazam et al. (2023), various deep learning methodologies were examined to assess their
effectiveness in predicting the streamflow for the Muda River Basin which is located in the
northern part of Peninsular Malaysia. The findings indicate that LSTM outperformed other
approaches, demonstrating superior performance [44]. Our study attempts to improve the
SPEs by merging the satellite rainfall and gauge precipitation using the LSTM application
with the adaptive moment estimation (ADAM) optimizer. ADAM optimizer has shown
good results in deep learning modeling [45]. Research performed in China to test the
prediction capabilities of the weighted mean temperature, LSTM outperformed traditional
RNN [46]. Generally, LSTM utilizes certain types of artificial memory processes that can
help more effectively imitate human thought. LSTM works in the manner that, with
discrete time steps t = 0, 1, 2, 3, 4, 5, 6, . . ., units’ activation will be updated (forward
pass) followed by all weights’ error signals computation (backward pass) [47]. Previous
research has shown that LSTM is able to address the vanishing gradient problem when
learning long-term dependencies that arise in traditional RNNs [48]. It has been proven
that this method is better than the traditional RNN and is capable of learning long-term
dependencies much faster [40,43,49,50]. The LSTM used in our study is one of the variants
in LSTM architecture that adds “peephole connections” to let the gate layers look at the cell
state to learn the precise timing of the outputs [47].

Managing large volumes of data poses a significant challenge for researchers in various
fields. To address this issue, we propose a sequential program that aims to fill the gap
and provide an effective solution for handling massive amounts of data. In this paper, we
present the design and implementation of the program, along with its performance evalua-
tion, comparison, and enhancement of the SPE. A systematic methodology is introduced
to perform the data extraction and comparison of the satellite rainfall estimations with
rain gauge observations with a sequence of programs using different technologies, such as
Python for statistical analysis and modeling, pHp for the interactive visualizations of the
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results, MariaDB for relational database storage with SQL for data pre-processing, and Shell
Script for data extraction automation. According to a recent study conducted by Roh et al.
(2021) concerning the data collection survey for machine learning, the importance of data
cleaning due to the prevalent presence of data noise was highlighted [51]. It is essential to
identify and remove erroneous data points from both satellite rainfall estimations and rain
gauge observations [52,53] to enhance the quality of the data. SQL programs are used to
filter the erroneous dataset. Data visualization in the form of a scatter plot and time series
graph could help in effectively comparing the performance of the dataset [54]. In this paper,
we propose a novel approach to develop a comprehensive and scalable data processing
and analysis pipeline for the deep learning modeling of rainfall data that can be applicable
and adaptable to different datasets and regions. The proposed approach can be effectively
applied to various datasets and regions, as long as comparable resources such as satellite
rainfall and rain gauge data are accessible and the procedures outlined in this investigation
are followed. Additionally, the same approach can be applied to forecasting and modeling
in other fields of study.

Researchers have been using rain gauge as the reference to enhance the satellite rainfall
data using machine learning. A research was performed to improve the IMERG product
with ML over the Brahmaputra River Basin, which used rain gauge observations as a
reference [55]. Similarly, another study was performed to improve the satellite rainfall
estimation from MSG data in northern Algeria with machine learning using rain gauge
observation as reference [56]. The framework of this study was applied to the east coast
of Peninsular Malaysia for generating daily precipitation estimates based on the rain
gauge observations and IMERG satellite estimations, and the performance before and after
enhancement is evaluated. The details of this methodology are explained in the next section.
The findings are then discussed, and the final section concludes this research.

2. Materials and Methods
2.1. Study Site

The study site on the east coast of Peninsular Malaysia, comprised three states, namely
the Pahang, Terengganu, and Kelantan states, which were selected for the case study.
This study site is located on the eastern side of Peninsular Malaysia and is bordered by
the South China Sea to the east. It has a unique topography that influences the rainfall
pattern in the region. The land usage patterns for this study site vary across different
categories, including residential areas, agricultural land, natural reserves, industrial zones,
and commercial development. This region was mainly selected based on its great history
of flood and high rainfall variability due to the monsoon cycle, and is thus in need of flood
mitigation and water resource management. This study site experiences two monsoon
seasons, the northeast monsoon from November to March and the southwest monsoon from
May to September. During the northeast monsoon, the region might be experiencing heavy
rainfall, while the southwest monsoon brings drier conditions to the region. This study
showed that there were rainfall-related extreme events during the monsoon periods for
the east coast of Peninsular Malaysia [57–59]. Among all the rain gauge data downloaded
from DID, there are 184 rain gauge stations for the study site, encompassing the region
within 2°30′0′′–6°30′0′′ N and 101°–104° E being selected for this study. These rain gauge
stations are selected due to the data completeness and the uniformity of the location within
the study area. The rain gauge stations are shown in terrain view of Google Maps [60] as in
Figure 1. In their research, Hu et al. [61] sought to define and measure terrain information
from digital elevation model (DEM) to provide clear information for the various patterns
of the land surface. It is noticed that the rain gauge station located at the boundary of
Negeri Sembilan is included here due to the record as a rain gauge station in the state of
Pahang. The mountainous regions located in the central part of the study area, particularly
in the state of Pahang, have a lower density of rain gauge stations compared to the more
residential areas in the region. For the deep learning training process, a total of 131 IMERG
grids encompassing 184 rain gauge stations were utilized during the period 2011–2020.
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The 184 rain gauge stations are selected based on their location in the state of Pahang,
Terengganu, and Kelantan. With the longitude and latitude of the rain gauge stations,
the 184 rain gauge stations are mapped into the 131 IMERG grids. If there is more than
1 rain gauge station in the same grid, the rain gauge data will be averaged. The IMERG
data are then trained with the rain gauge data using the LSTM model developed in Python.

Figure 1. Peninsular Malaysia (PM) and the distribution of rain gauge observations on the east coast
of PM and a sample rain gauge photo.

2.2. Methodology

The present study used an open source relational database system running on Linux to
overcome the difficulty of handling a huge amount of data. Databases and tables are created
separately to store the spatial-temporal datasets and they are retrieved from the query
joins. The databases which were constructed using various technologies can be used in any
programming tool for further studies including but not limited to implementing machine
learning or deep learning models, as shown in Figure 2. It serves as a container to perform
modeling. These databases can be linked or exported with the use of database connectors
to facilitate their utilization in neural networks, machine learning, and deep learning
modeling. Alongside conventional tools such as Matlab, the Python programming language
has gained significant popularity in this domain due to its rich ecosystems and robustness,
encompassing valuable libraries and frameworks such as Pytorch, Keras, and TensorFlow.
The presence of these tools has greatly facilitated the process of AI modeling. Generally,
this study has been divided into six phases: data acquisition, data retrieval, data import
and storage, pre-processing, validation, and improvement. The details of each phase are
explained in the following subsections. Figure 3 presents the overall methodology used in
this study.
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Figure 2. Schematic diagram of the relational database constructed using various technologies in
connection with further research.

Figure 3. Methodology flow chart.

2.2.1. Phase 1: Data Acquisition

Rain gauge observations were acquired from the Department of Irrigation and Drainage
(DID), Malaysia. The data were used as a comparison and for training purposes for the



Appl. Sci. 2023, 13, 7237 6 of 24

satellite rainfall data. The distribution of rain gauge observations is presented in Figure 1.
Satellite rainfall data can be acquired from the respective agencies’ webpages. For example,
TRMM and IMERG satellite files can be acquired from the Goddard Earth Sciences Data
and Information Services Centre (GES DISC) (https://disc.gsfc.nasa.gov/ (accessed on 15
June 2021)), and PERSIANN satellite files can be obtained from the portal of the Center
for Hydrometeorology and Remote Sensing (CHRS) (https://chrsdata.eng.uci.edu/ (ac-
cessed on 30 September 2021)). Before the satellite files were downloaded, CentOS Linux
(https://www.centos.org/ (accessed on 10 June 2021)) was set up. CentOS is a freely avail-
able computing platform that serves as an ideal environment for executing command-line
utilities such as the Wget computer program, which enables the seamless retrieval of files
from the Internet. As it is open source, and community-supported, CentOS Linux is a rich
base platform that provides a consistent, manageable platform for various deployments.
Due to the vast number of files involved, we developed Shell Scripts incorporating the
Wget program to facilitate the retrieval of IMERG satellite files in a batch processing manner.
These IMERG satellite files are in Hierarchical Data Format version 5 (HDF5) format which
is the standard mechanism for storing large quantities of numerical data [62].

The current research focuses on the Integrated Multi-Satellite Retrievals for Global
(IMERG) precipitation measurement [18]. IMERG is an estimation that combines data from
the Global Precipitation Measurement (GPM) satellite constellation to predict precipita-
tion, which is particularly important over the majority of the Earth’s surface that lacks
precipitation-measuring instruments on the ground. Lately, with the IMERG Version 6,
the algorithm merged the TRMM satellite’s operation (2000–2015) with the GPM satellite
(2014–present). These products have improvements in terms of coverage (60° N–60° S) as
well as spatial (0.1°) and temporal (30 min) resolutions. In addition to the higher spatial-
temporal resolution, IMERG provides three runs which are IMERG Early (IMERG-E),
IMERG Late (IMERG-L), and IMERG Final (IMERG-F), to accommodate various consumer
requirements for latency and accuracy. For the present study, the IMERG-F 30 min interval
product at a spatial resolution of 0.1° was employed as it had been bias-corrected using the
Global Precipitation Climatology Centre (GPCC) precipitation gauges and is suitable for
scientific research.

2.2.2. Phase 2: Data Retrieval

Python Version 3.0 [63] is used to extract the data from IMERG. The satellite files
downloaded contain a huge matrix of data for the globe. To extract the data of this study
area we want, the boundary coordinate of the country or this study area has to be calculated
based on the coverage that the satellite captured and its spatial resolution. As the spatial
resolution of IMERG is 0.1 degree and has a spatial coverage of [−180, 180] for longitude
and [−90, 90] for latitude, the IMERG grid calculation for an area can be derived as follows:

Longitude : (X)Grid = (X + 179.95)/0.1 (1)

Latitude : (Y)Grid = (Y + 89.95)/0.1 (2)

Initially, the whole Peninsular Malaysia boundaries are marked as rectangle size and
defined with the longitude of 99.35 (X1) to 104.95 (X2) and the latitude of 1.05 (Y1) to
7.05 (Y2). With Equations (1) and (2), the IMERG grids are derived in matrix format as
“X1 grid”: “X2 grid”; “Y1 grid”: “Y2 grid”. Later, a Python program that makes use of
h5py library was prepared to extract all IMERG grids that match the matrix for the whole
of Peninsular Malaysia from the HDF5 data files. Due to the huge amount of data to be
extracted, an EXE program was compiled from Python and a batch job was created to run
continuously on the server. Hourly rain gauge observation records were obtained (in CSV
format) from ground gauging stations from the DID.

https://disc.gsfc.nasa.gov/
https://chrsdata.eng.uci.edu/
https://www.centos.org/
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2.2.3. Phase 3: Data Import and Storage

The extracted satellite data and the rain gauge data are imported into MariaDB.
MariaDB is one of the open source relational databases. Although this database originated
from the developers of MySQL, it has better performance in average import time [64].
The MariaDB Server code base is ensured to remain open for usage and contributions on
technical merits (https://mariadb.org/ (accessed on 12 June 2021)). The MariaDB is being
hosted in CentOS Linux. As compared with Microsoft Excel, MariaDB can handle a huge
amount of data and there is no limitation problem faced when pumping the data into it.
Indexing is performed for the tables for the fastest retrieval and the joining of the tables.
Research showed that MariaDB has improved compression performance for flash devices,
storage efficiency, and CPU utilization [65]. All the extracted IMERG data are transformed
from HDF5 files into datasets in the tables in the databases with Python program. CSV files
retrieved from DID are imported into tables using the data importing tool. The data can be
retrieved anytime by anyone with a proper connection setup.

2.2.4. Phase 4: Data Pre-Processing

Structured query language (SQL) is written to filter the missing data in the database.
SQL is a powerful tool for accessing and manipulating a relational database system [66].
The data pre-processing can be performed with Stored Procedures, which can be recalled for
new datasets or re-processing of the data. SQL scripting files can be saved and called in the
Linux terminal for a huge amount of data processing. The rain gauge data retrieved from
DID were massaged to match the satellite data according to the latitude and longitudeof
the study site.

If there is more than one rain gauge station in the same grid, the rain gauge values
will be averaged. A simple SQL selection statement will tell us which grids have more than
one rain gauge station. SQL is also used to determine which stations have complete data
for the study period. Rain gauge stations that do not have complete data or missing data
are excluded from the study. A preliminary examination of the rain gauge observation
data using SQL selection indicates the presence of erroneous entries containing special
characters such as # and ∗ in the rainfall column. These erroneous data were ignored by
removing them from the datasets using SQL execution. The same spatial-temporal IMERG
and rain gauge data were mapped using latitude and longitude values and stored in a table
for the ease of retrieval using SQL. These data were normalized to obtain daily IMERG
rainfall estimates by grid with rain gauge data for the study area for the period from 2011
to 2020.

2.2.5. Phase 5: Data Validation

The performance of the extracted satellite data was validated by comparing it with
the in situ ground observations (rain gauge) at the point-to-pixel scale. Five statistical
measures, including the coefficient of correlation (CC), mean absolute error (MAE), percent
bias (PBias), root-mean-square error (RMSE), and the Kling–Gupta efficiency (KGE), were
used in the validation. These metrics are commonly used in assessing the accuracy and
reliability of rainfall estimation models [67,68]. Equations (3)–(7) show the aforementioned
statistical measures, where S and G represent satellite/gridded and gauge precipitation,
respectively, and n is the total number of measurements, i is the index of data, S is the
average value of Si, and G is the average value of Gi.

CC (also known as Pearson’s correlation coefficient) is a measure used to assess the
strength of the association between two variables, indicating the degree of interconnect-
edness between them [69]. It ranges between −1 and 1, where −1 represents a perfect
negative correlation and 1 represents a perfect positive correlation. The sign of the CC
indicates the direction of the trend, while the absolute value indicates the extent to which
the relationship can be modeled linearly. A CC value of 0 implies no relationship between
the variables. A CC value of 1 signifies a perfect positive relationship, suggesting that a

https://mariadb.org/
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change in one variable leads to a corresponding change in the other variable in the same
direction and with the same magnitude.

The PBias (also known as relative bias), is a statistical measure that quantifies the direc-
tion and magnitude of the bias in an estimator or a model. This measure has been applied in
many data comparison studies [70,71]. It is calculated by comparing the average difference
between the estimated values and the true values to the true values themselves, expressed
as a percentage. If PBias = 0, the estimator or model is unbiased and has no systematic
deviation from the true values. A positive PBias indicates that the estimator or model tends
to overestimate the true values, while a negative PBias indicates underestimation.

MAE represents the average absolute deviation of the predictions from the true
value [72,73]. Smaller MAE values indicate a better predictive performance, with zero
representing a perfect prediction. On the other hand, RMSE is the standard deviation of
the prediction errors [74]. The RMSE compares the difference between the estimated and
observed values. The best approach computed the lowest value of the RMSE. Both the
MAE and RMSE can be used to diagnose the variation in the errors in a set of forecasts.
Usually, the computed RMSE is larger or equal to the MAE; the greater difference between
them, the greater the variance in the individual errors in the sample. If the RMSE = MAE,
then all the errors are of the same magnitude.

Kling–Gupta efficiency (KGE) is a multi-component performance metric. This
goodness-of-fit measure was developed by Gupta et al. [75] to provide a diagnostically
interesting decomposition of the Nash–Sutcliffe efficiency, which facilitates the analysis of
the relative importance of its different components (correlation, bias, and variability) in the
context of hydrological modeling. Later, Kling et al. [76] proposed a revised version of this
index, to ensure that the bias and variability ratios are not cross-correlated. Equation (7)
shows the formula of KGE, where r is the linear correlation coefficient, α is a measure of
relative variability in the estimated and observed rainfall values, and β is the ratio between
the mean estimated and mean observed rainfalls.

cc = ∑n
i=1(Gi − G)× (Si − S)√

∑n
i=1(Gi − G)2 ×

√
∑n

i=1(Si − S)2
(3)

PBias =
(

∑n
i=1 Si

∑n
i=1 Gi

− 1
)
× 100% (4)

MAE =
∑n

i=1 |Si − Gi|
n

(5)

RMSE =

√
∑n

i=1(Si − Gi)
2

n
(6)

KGE = 1−
√
(r− 1)2 + (α− 1)2 + (β− 1)2 (7)

2.2.6. Phase 6: Data Improvement

As the SPEs are prone to errors, it is crucial to enhance the estimations before they
are ready for any hydrological applications. Therefore, in the present study, the IMERG
satellite data are trained based on rain gauge data using the LSTM model. The standard
LSTM architecture has memory blocks in the recurrent hidden layer that contain gates to
control the information flow. The LSTM algorithm used in this research is the variant with
“peephole connections” that let the gate layers consider the cell state, as shown in Figure 4.
In the LSTM algorithm, there are three types of gates, which are the forgotten gate, input
gate, and output gate. These gates are the memory cells that remember the state in the
network. The flow of input and output activations will be controlled by the input gate
and the output gate, respectively [77]. Firstly, the forget gate will reset the cell states from
the beginning and scale the internal state of the cell before adding to the cell input. The
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sigmoid layer is used in the forget gate to make the decision. The next step contains the
sigmoid layer which is the input gate layer that decides what values to update and the tanh
layer that creates a vector of new candidate values. The new cell state was updated from
the old cell state by considering what to forget and what new information to store with
the time. The output will be based on the cell state by filtering with the sigmoid layer that
decides which part of the cell state to output, put the cell state through tanh, and multiply
it by the output of the sigmoid gate. Equations (8)–(13) were used to compute a mapping
from the input sequence x = (xi, . . . , xT) to the output sequence y = (yi, . . . , yT) iteratively
with time) t = 1 to T for the LSTM algorithm used.

it = σ(Wicct−1 + Wihht−1 + Wixxt + bi) (8)

ft = σ(W f cct−1 + W f hht−1 + W f xxt + b f ) (9)

ot = σ(Wocct + Wohht−1 + Woxxt + bo) (10)

ct = ft � ct−1 + it � tanh(Wchht−1 + Wcxxt + bc) (11)

ht = ot � tanh(ct) (12)

yt = Wyhht + by (13)

W is the matrix weight for the gates (i for input gate, f for forget gate, o for output
gate). c and h are, respectively, the cell activation vector and cell output activation vector. σ
is the sigmoid function, whereas � is the Hadamad product.

Figure 4. Proposed LSTM algorithm.

The proposed LSTM model was developed in Python that utilizes Pytorch to train
IMERG data based on observations of rain gauge data. For grids that contain complete
satellite and rain gauge data (10 years), the data are merged as per IMERG grids and
divided whereby 2/3 of the data were used for training and the remaining 1/3 were
used for validation purposes. IMERG and rain gauge data are loaded into tensors which
constitute the Numpy alike n-dimensional array. The tensors are commonly used in deep
learning modeling. In the single layer model, a sliding window approach is employed,
where a sequence length of four IMERG records is utilized to predict a single rainfall record.
The prediction is made with reference to the available rain gauge data. The daily IMERG
data were trained for each grid with an epoch of 20,000. The LSTM model built is trained
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with MSE loss (Equation (14) shows the MSE function). It creates a criterion whereby it
measures the squared error (squared L2 norm) between each element in the input x and
target y.

MSE =
∑n

i=1(xi − yi)
2

n
(14)

The uncertainty of parameters can be reduced with the use of robust optimization
algorithms [78]. Optimization is critical in LSTM training as it involves finding the optimal
set of parameters to minimize the loss function. One of the popular optimizers is the
adaptive moment estimation (ADAM) optimizer which combines the benefits of the both
momentum and adaptive learning rate methods. ADAM is a method for efficient stochastic
optimization as it only requires first-order gradients. The amount of memory required is
very little and it computes the individual adaptive learning rates for different parameters
from estimates of the first and second moments of the gradients. ADAM has been shown
to converge faster and achieve better performance than stochastic gradient descent (SGD)
and its variants [79]. In the LSTM model that we built, the ADAM optimizer with an initial
learning rate of 0.01 was applied.

A definite loop was implemented in Python to retrieve IMERG and rain gauge data
from MariaDB, which is then fed into the LSTM modeling framework developed with
Pytorch. We developed an automated program (refer to Section 2.3) to capture and record
CC, PBias, MAE, RMSE, and KGE both before and after training the data with LSTM.
These performance metrics were stored in a table in MariaDB.

2.3. Development of pHp Programs

In the present study, the pHp (recursive acronym for hypertext pre-processor) [80]
is used to retrieve the data from MariaDB and display the results and graph plotting.
The pHp is a widely used open source scripting language for web development and can
be embedded into HTML [81]. Compared to Microsoft Excel, pHp is more dynamic and
interactive. This study developed three pHp programs. The first pHp program generally
presents the comparison of daily satellite estimations and rain gauge observations at the
point-to-pixel scale. Figure 5 shows the interface of the program. To run the program,
the user is required to select the grid/rain gauge point, key in, or select the starting and
end dates for the program to query the result from the database. Once the criteria are
selected, the program will display the result responsively based on the user’s selected
criteria. The comparison of the two datasets will be visualized in the form of a scatter plot
and time series graph. The data points in both graphs represent the average rainfall in a
grid. The statistical performance will also display at the bottom of the map.

Simple and straightforward step simulations are important in data modeling [82].
Maps generated for spatio-temporal analysis provide a clearer picture of the regions that
required attention under current climate change [83]. The second pHp program to be
developed allows the user to visualize the satellite estimations and rain gauge observations
in the form of maps, as shown in Figure 6. In this program, the user will need to select the
study period, then the rainfall will be plotted according to the satellite grid size. The legend
will be dynamically generated. It makes the researcher easier to visualize the distribution
of rainfall data from both rain gauge the observation and satellite estimations of the
same period.

The last pHp program was developed to visualize the distribution of every statistic
that was used to evaluate the performance of SPEs before and after LSTM deep learning
improvement. This pHp program will be visualizing the performance metrics in the IMERG
grids in maps by connecting to MariaDB where the results are being stored. The results
from this program are presented in Section 3.
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Figure 5. First pHp program that compares the daily satellite estimations and rain gauge observations
at the point-to-pixel scale.

Figure 6. Second pHp program that shows the daily rainfall distribution of satellite estimations and
rain gauge observations.
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3. Results

By considering IMERG grids and time period selections in the first pHp program,
researchers gain a comprehensive understanding of the factors influencing the observed
results. From the terrain view, it is noticed that most of the rain gauges are positioned
outside the mountainous areas, as shown in Figure 7. The terrain map clearly illustrates
the spatial relationship between rain gauge locations and the mountainous terrain. This
finding suggests that the rainfall measurements may not adequately capture the variability
and intensity of the rainfall within the mountainous areas.

Figure 7. Selected IMERG grids that contain rain gauge stations.

Based on the regression result produced by the program, it is noted that the IMERG
satellite rainfall estimations overestimated the actual rainfall by about 100% and have a high
RMSE (15.25 mm/day). The analysis of the scatter plot reveals a noticeable relationship
between IMERG overestimation with reference to the rain gauge data. The linear equation
generated provides insights into the nature and magnitude of the overestimation. Referring
to the scatter plot (Figure 8), the data points become more scattered as the rainfall intensity
increases. In other words, the performance of the satellite estimations decreased as the
rainfall became heavier.
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Figure 8. Scatter plot that shows the comparison of the daily areal rainfall between IMERG estimations
and rain gauge observations for the period 2011–2020.

Referring to the time series graph generated (Figure 9), high peak rainfall was found
in the month of December every year, which is also part of the Northeast monsoon. This is
common as the prevailing north-easterly winds flow across the South China Sea, bringing
in more moisture to the land surface. Soo, Jaafar [67] conducted a test to evaluate the
capturing storm capabilities of satellites by increasing the rainfall threshold. They found
that, regardless of any SPEs, their accuracy decreased as the rainfall threshold increased,
which can be considered consistent with our present study.
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Figure 9. Time series graph for rain gauge observations and IMERG rainfall for the period 2011–2020.

From the second pHp program, it is noted that the hardest hit regions are along the
northeast part of Peninsular Malaysia, as shown in Figure 10. Overall, IMERG satellite
rainfall overestimates the actual rainfall for the whole study site.

The extracted rainfall estimations from the SPEs were then trained using the LSTM
model programmed in Python with the rain gauge observations as the reference data.
As a result, it was found that all of the statistics metrics improved after performing the
LSTM training, indicating that the proposed LSTM methodology has good adaptability in
enhancing the SPEs. The CC was raised by approximately 14.19%, PBias was reduced by
81–118%, MAE was reduced by 18–59%, RMSE was reduced by 1–66%, and the KGE was
raised by approximately 200%. Table 1 summarizes the highest and lowest value of each
metric for evaluating the performance of original and improved SPEs.
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Figure 10. Total rainfall for IMERG estimations and rain gauge observations over each IMERG grid
for the period 2011–2020.

Table 1. The highest and lowest performance of each statistic performance of SPEs for the period
2011–2020.

Statistic Metrics
Original SPEs (before

Performing LSTM)
Lowest

Original SPEs (before
Performing LSTM)

Highest

Enhanced SPEs (after
Performing LSTM)

Lowest

Enhanced SPEs (after
Performing LSTM)

Highest

CC 0.36 0.74 0.40 0.81
PBias (%) 38.05 229.50 −12.59 18.36

MAE 9.32 14.54 4.08 11.37
RMSE 19.40 33.85 8.11 33.51
KGE −1.68 0.42 −0.35 0.77

The last pHp program, as shown in Figures 11–15, presents the performance metrics of
all IMERG grids before and after LSTM training in the map format. Originally, the IMERG
is able to capture the rainfall along the coastal region in the northeast part of Kelantan and
Terengganu states with a CC ranging from 0.50 to 0.70, and poorer performance was found
for the central region of Peninsular Malaysia (Pahang state) with a CC less than 0.50.
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Figure 11. pHp program that shows the performance of CC before and after LSTM training for the
period 2011–2020.

Figure 12. pHp program that shows the performance of PBias (%) before and after LSTM training for
the period 2011–2020.
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Figure 13. pHp program that shows the performance of MAE (mm/day) before and after LSTM
training for the period 2011–2020.

Figure 14. pHp program that shows the performance of RMSE (mm/day) before and after LSTM
training for the period 2011–2020.
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Figure 15. pHp program that shows the performance of KGE before and after LSTM training for the
period 2011–2020.

4. Discussion

The management of satellite data poses significant challenges due to their voluminous
nature, necessitating the implementation of efficient step-by-step protocols. Proper data
storage is also crucial to accommodate large datasets. Streamlining data processing can
optimize researcher time and productivity. Furthermore, visualizing the results may the
enhance data analysis and facilitate informed decision making. In this study, we propose a
sequential approach for data storage and processing utilizing Python, pHp, and MariaDB.
Our methodology offers improved organization and structure to the data management
including data processing, comparing and enhancing the satellite data with rain gauge
observations. Apart from that, our results demonstrate the program’s effectiveness in
managing large datasets, thus providing a valuable tool for researchers dealing with
data-intensive applications. In their recent study, Guo, B. et al. [84] evaluated the eight
satellite precipitation products using similar performance metrics as those presented herein.
The utilization of the proposed pHp programs could significantly enhance the visualization
of the output.

The findings of this study highlight the potential of visualization to access the ac-
curacy of IMERG estimations. This provides a framework for correcting and adjusting
IMERG estimations based on the rain gauge measurements. Furthermore, the examina-
tion of different IMERG grid resolutions and time period provides a clearer picture of
the impact of spatial-temporal factors on the observed relationships. The absence of rain
gauges within mountainous areas may result in the misinterpretation of rainfall patterns.
The spatial distribution of rain gauges outside the mountainous areas could impact the
hydrological modeling, climate studies, and water resource management in mountainous
areas. The reasons behind the uneven distribution of rain gauges in mountainous areas
might be attributed to factors such as logistical challenges, the limitation of access, and
high cost for installation and maintenance.

Although the LSTM model was able to enhance the SPEs, it is noted that the overall
performance was not uniform. The non-uniform performance highlights the complexity of
satellite precipitation estimates. Additionally, this study did not consider other geographi-
cal data as input such as climatic data such as wind speed, humidity, etc. Future research
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should focus on identifying and addressing these factors to improve the uniformity of
the performance. In terms of CC and KGE, those rainfall grids along the coastal region
outperformed those in the central region. Conversely, the rainfall grids in the central
region showed better performances in terms of MAE and RMSE. Perhaps a different
model should be elaborated for those grids for these two regions with different training
parameters, otherwise further study is required for performing rule-based optimization.
Apart from that, the model for training the SPE data should introduce relevant auxiliary
factors such as altitude, brightness, temperature, humidity, etc., so that the model would
represent the exact condition of the study area, and a more accurate output can be obtained.

In the LSTM modeling program developed, the sliding windows derived from the
time series data are used to perform short-term prediction with a fixed length of sequence.
The power of LSTM lies in the recurrence of this process with the continuous sliding of
the data windows to reduce the errors and bias between IMERG satellite rainfall estimates
and rain-gauged observation data. With sufficient time series data (10 years of rainfall
data), LSTM modeling with the ADAM optimizer has shown the great correction of IMERG
satellite rainfall estimates that are trained with rain gauge observation data. Recent research
performed to correct the bias of daily satellite precipitation estimates along the Kelantan
River Basin using a deep learning approach managed to decrease the RMSE to a maximum
of 30.0% and MAE to a maximum of 23.2%, respectively [85]. Although our current
research area covers a much bigger area, we managed to reduce the RMSE and MAE to
maxima of 66% and 59%, respectively. Further investigation can be conducted by using
different optimizers to train the data with LSTM modeling. The machine learning algorithm
processing time is crucial when dealing with huge datasets [86]. With the automated shell
program developed, the model training job was scheduled and automatically run 24 by 7
and it has optimized the performance of the computing resource. Although the multiple
layer implementation of the LSTM model is proven to provide better results [87], it could
be challenging in making decisions regarding the model parameters during LSTM training.
An existing dataset is stored in a relational database system and this will facilitate further
research studies of extreme event forecasting with machine learning. Nevertheless, it is
worthwhile to consider the potential benefits of utilizing non-relational database systems,
such as MongoDB. The scalable data processing and analysis pipeline, especially wherein
data are visualized in the pHp program and accessible via a relational database, will more
effectively and efficiently facilitate the collaboration and data sharing among relevant
researchers and data analysts online. Cloud-based platforms offer flexibility for deep
learning architecture training [88]. By utilizing database connectors and the application
programming interface (API), AI analysis tools can establish connections and conduct
comprehensive analysis as well as forecasting modeling. The development of reliable flood
forecasting models can be very helpful in data-scarce regions [89].

5. Conclusions

This study created a sequential way of systematically and efficiently managing the
huge amount of data retrieved from SPEs and rain gauge observations. This study in-
vestigated the optimal way to effectively integrate the separate inputs and merge them
into a single dataset. This could potentially be changing the way researchers conduct
their conventional research. The motivation behind this method is to enable researchers
to quickly process and visualize large datasets to better analyze the dataset by using a
sequential of programs such as Python, pHp, SQL, etc. Rainfall prediction can be easily
explored and trained with these programs. In the present study, the LSTM is also proposed
in enhancing the accuracy of the SPEs. This model is a great neural network model that
has the advantage of processing data with time series elements. Based on the outputs,
the LSTM with the ADAM optimizer showed the capability of improving the accuracy of
SPEs. The variations observed across different grids and time periods provides valuable
ground for further investigation into the factors influencing the effectiveness of the model.
As the degree of improvement was not at the same level for the whole study area, it is
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recommended to perform a different model for those regions with a poorer performance
with the different auxiliary factors included. Deep learning model training for rainfall data
requires a systematic methodology as it is very time-consuming and could be experimen-
tally oriented. Different comparative data scales such as weekly and monthly precipitation
scores can be the consideration for future studies using different machine learning ap-
proaches. This comprehensive and scalable data processing and analysis pipeline used
for deep learning modeling can be applicable for other areas such as flood forecasting and
modeling, agricultural harvesting forecast, soil erosion, and land slide prediction in any
region that have such domain challenges. Future research should also consider the use
of LSTM regularization techniques with the identification of different penalty terms for
the loss function with optimized hyperparameter sets. Dropout and early stopping could
prevent overfitting and improve the generalization ability of LSTM models.
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