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Abstract: The accurate prediction of the remaining useful life (RUL) of aircraft engines is crucial
for improving engine safety and reducing maintenance costs. To tackle the complex issues of
nonlinearity, high dimensionality, and difficult-to-model degradation processes in aircraft engine
monitoring parameters, a new method for predicting the RUL of aircraft engines based on the random
forest algorithm and a Bayes-optimized multilayer perceptron (MLP) was proposed here. First, the
random forest algorithm was used to evaluate the importance of historical monitoring parameters of
the engine, selecting the key features that significantly impact the engine’s lifetime operation cycle.
Then, the single exponent smoothing (SES) algorithm was introduced for smoothing the extracted
features to reduce the interference of original noise. Next, an MLP-based RUL prediction model
was established using a neural network. The Bayes’ online parameter updating formula was used
to solve the objective function and return the optimal parameters of the MLP training model and
the minimum value of the evaluation index RMSE. Finally, the probability density function of the
predicted RUL value of the aircraft engine was calculated to obtain the RUL prediction results.The
effectiveness of the proposed method was verified and analyzed using the C-MAPSS dataset for
turbofan engines. Experimental results show that, compared with several other methods, the RMSE
of the proposed method in the FD001 test set decreases by 6.1%, demonstrating that the method can
effectively improve the accuracy of RUL prediction for aircraft engines.

Keywords: aeroengine; random forest; Bayesian parameter updating; MLP; probability density
function; remaining useful life

1. Introduction

Aircraft engines are essential components of aviation equipment and directly impact
flight conditions and the safety performance of aircraft [1]. To ensure an optimal engine
performance, prognostics and health management technology is widely used for engine
predictive maintenance. This method evaluates the health and remaining useful life (RUL)
of the equipment using historical data and provides maintenance predictions to enhance
equipment reliability and safety [2].

As one of the cores of the prognostics and health management (PHM) method, aero-
engine RUL prediction has been divided into three main approaches by other scholars:
physical-model-based methods [3], data-driven methods [4], and hybrid methods [5]. The
physical-model-based approach mainly relies on the engine’s internal structure to construct
a physical model, which has a high uncertainty and increases the prediction difficulty. The
data-driven approach uses machine learning tools to mine the implicit relationship between
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historical monitoring data and RUL to construct a prediction model. The hybrid approach
combines both methods, mixing their advantages and disadvantages. Thus, data-driven
approaches are currently a hot research topic.

While deep learning methods offer some advantages over traditional methods in
predicting the RUL of aerospace engines, additional research is needed to explore their
potential for fault maintenance and health assessment. Bingce et al. [6] estimated the RUL
prediction interval of an aeroengine using a multilayer perceptron (MLP) model based on
information granularity theory. Guoxing et al. [7] used the Euclidean distance method to
identify the initial lifetime. Qiyao et al. [8] fused the time-series of different equipment
sensors with MLP prediction models. Jun et al. [9] utilized deep learning techniques
to extract the sensor time-series signals between hidden dependencies and adapted the
DLSTM network structure and parameters with an adaptive moment estimation algorithm,
which showed a good performance compared to other neural network models.

The historical degradation data of aerospace engines are characterized by a high
dimensionality and massive scale. Given the size of the data, the current research focus is
on identifying the most valuable information. In terms of feature screening and extraction,
Wennian et al. [10] utilized a recurrent neural network to convert high-dimensional data
monitored by sensors into low-dimensional data, constructing a one-dimensional health
index (HI). Cunsong et al. [11] employed the k-means algorithm to extract degradation
features with monotonic trends and employed a deep forest classifier with LSTM to create
an RUL degradation trend prediction model. Zhang et al. [12] proposed a method for
predicting the remaining useful life of engines using a combination of convolutional and
recurrent neural networks (CNN-RNN), and the prediction accuracy was further improved
by processing and clustering the data.

RUL prediction for aero engines using similarity matching methods is a current hot
research topic. In their study, Lam et al. [13] evaluated the trajectory similarity prediction
(TSBP) method using similarity regression (SLR) based on Pearson correlation coefficients
with dynamic time warping (DTW) methods to determine the most similar degradation
model to the test data. They used the principle of weighted kernel density estimation
to quantify the RUL prediction. Cai et al. [14] used the kernel two-sample test (KTST)
similarity matching procedure by fitting a distribution to the RUL prediction results from
a historical database of sample data from operating cycles to failure to obtain confidence
intervals for RUL predictions. However, most of the similarity matching was performed
using a single time scale for the construction of health indicators, resulting in obtaining
degradation trajectories with inconsistent lengths. This inconsistency is not conducive to
the construction of historical engine degradation trajectories.

To address the complex problems of a high dimensionality, non-linearity, and difficulty
in establishing the historical decline process of aero-engine monitoring parameters, this
paper proposes an MLP aero-engine remaining useful life prediction method based on
random forest and Bayesian updating. The random forest algorithm was introduced to
analyze and evaluate the degree of influence of each monitoring feature on the remaining
life cycle of the engine and calculate the corresponding weights. This was carried out
to effectively solve problems such as the large number of engine monitoring parameter
features and the difficulty in extracting them, and to eliminate the features with the worst
weight score values. Extracted parameters were exponentially smoothed to reduce noise
interference. An RUL training model for MLP engines based on Bayesian parameter updat-
ing was then constructed, and the remaining service life probability density distribution of
the aeroengine was derived. The expectation and standard deviation of the RUL prediction
were obtained. The method proposed in this paper was validated using NASA’s C-MAPPS
dataset, and the RUL prediction results were evaluated using the RMSE and R2. The
results show that the accuracy of the engine RUL prediction can be effectively improved
compared with other methods. Our methodology has been shown to significantly enhance
the accuracy of RUL prediction for engines.
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2. RUL Prediction Methods
2.1. Random Forest Algorithm

There are many factors that affect the life cycle of an aeroengine, and the extent to
which each factor affects its life cycle varies. Therefore, it is necessary to explore and
analyze the degree of influence of each factor on the life cycle of an aeroengine. The
random forest algorithm has shown good performance in the parameter selection process,
making it suitable for high-dimensional data and effectively avoiding the problem of a weak
generalization ability in training models. Random forest is an integrated learning algorithm
with decision trees as the base learner, and solves the performance bottleneck problem of
decision trees [15]. Random forest uses a bootstrapping method for model construction.
It randomly selects a sample set of size m with a replacement from the original training
set and performs n iterations to generate n training sets, which can train n decision tree
models. The nodes are split at each iteration based on the Gini coefficient or information
gain to select the best features for splitting. The importance of the features is measured
by averaging the decline in the residuals of each feature over each decision tree. The Gini
index is used to obtain the importance of a feature’s contribution to the overall decision
tree node value. Assuming that there are J features, I decision trees, and C categories, the
Gini index for the ith tree node is calculated as follows:

GI(i)q = 1−
|C|

∑
c=1

(
p(i)qc

)2
, (1)

where pqc represents the proportion of category c in node q. The more the value of GI
decreases, the higher the relative importance of the feature. The change in Gini index before
and after the node splitting is:

Y(Gini)(i)
jq = GI(i)q − GI(i)I − GI(i)r , (2)

The importance score (Y) of xi in the ith tree is:

Y(Gini)
j =

I

∑
i=1

Y(Gini)(i)
i , (3)

The process of feature extraction in random forests is illustrated in Figure 1.

Figure 1. Random forest feature extraction model.
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2.2. Exponential Smoothing

Due to the significant noise in the monitoring features of the C-MPSS dataset, the
simple exponential smoothing (SES) algorithm is introduced to smooth the raw monitoring
features of the engine. This is carried out to enable the prediction algorithm model to better
capture the changing trend of the feature signal. The current actual value of the engine
sensor monitoring parameter is weighted averaged with the previous parameter value to
obtain the smoothing result [16]. The formula for the calculation is:{

yt = xt, t = 1
yt = αxt + (1− α)yt−1, t ≥ 2,

(4)

In the equation, xt represents the true value at time t and yt−1 represents the observed
value at time t− 1. α ∈ (0, 1) is the decay factor. The smoothing parameter α controls the
rate of the weight reduction of the exponential smoothing. When the value of α is closer to
1, the recent characteristic parameters have a greater influence on the prediction results;
when α is closer to 0, the data parameters are smoother.

2.3. Multilayer Perception Machine

A multilayer perceptron is a type of artificial neural network (ANN). The multilayer
perceptron consists of an input layer, an output layer, and multiple hidden layers [17,18].
The neural network structure with three layers of perception machines is displayed in
Figure 2, where each circle represents a neural node. The input layer receives raw input
signals from external sources, and the hidden and output layers process these signals to
produce the final output.

Figure 2. MLP structure diagram.

The input layer of the MLP is denoted by X ∈ Rm × n, with m samples and n features.
If the MLP has a single hidden layer, the weights of the hidden layer are represented by
Wh ∈ Rn × h and the bias parameters are denoted by bh ∈ R1× h. The output of the hidden
layer is calculated as follows:

H = σ(XWh + bh), (5)

If there are q label values in the output, the weight and bias parameters for the output
layer are denoted by Wo ∈ Rh × q and bh ∈ R1 × q, respectively. The formula for the output
layer is:

O = HWo + bo, (6)

2.4. Bayesian Parameter Update Algorithm

The Bayesian optimization algorithm builds a collection function based on the poste-
rior probability distribution model and utilizes previous evaluation information to select
the next optimal parameter evaluation point. As the degradation process of engine moni-
toring parameters is stochastic and variable, this paper employed the Gaussian process in
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the Bayesian algorithm with an acquisition function to optimize the stochastic problem of
the MLP in remaining life prediction.

Specifically, the Gaussian process (GP) models the probability distribution of the function.

f (~x) ∼ N(µ(x), k(x, x)), (7)

Here, x represents the training data for the Gaussian process, which follow a multivari-
ate Gaussian distribution for all ~x = [x1, x2, · · · , xn]. The covariance function is denoted by
K(x, x′) and the sample mean is denoted by u(x).

The optimal solution is obtained by evaluating sample candidates using the acquisition
function, expressed as:

f (x) = ϕ

(
µ(x)− f (xmax)− α

σ(x)

)
, (8)

The equation includes σ(x), which is the variance of the Gaussian process, α being the
hyperparameter used to search for the optimal output in the model. Figure 3 illustrates the
flow of the MLP prediction model based on Bayes optimization.

Figure 3. Bayesian flowchart for optimizing MLP parameters.

2.5. Probability Density Function (PDF) of Remaining Life

Assuming that the RUL prediction of the target aeroengine after model training at
operating cycle T = {t1, t2, · · · , tk} is X =

{
xt1 , xt2 , · · · , xtk

}
, we can calculate its expected

value and standard deviation as follows:

µxtk
=

1
K

K

∑
i=1

xti , (9)

σxtk
=

(
1
K

K

∑
i=1

(
xti − µxtk

)2
) 1

2

, (10)

Under a Gaussian distribution, the PDF for the remaining engine life xtk , with an
expectation of µxtk

and a standard deviation of σxtk
at time t of the current operating

cycle, is:

f
(
xtk

)
=

1
σxtk

√
2π

e
−

(
X−µxtk

)2

2σxtk
2

, (11)
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When the standard deviation is larger, the peak is lower and the prediction uncertainty
is reduced. Using the above formula, we can determine the PDF and mathematical expecta-
tion of the engine’s remaining life at any operating cycle, enabling an accurate prediction
of the RUL.

3. RF and Bayesian MLP-Based RUL Prediction Framework

Step 1: Data preprocessing.

An aero-engine’s monitoring parameters contain a large amount of historical degra-
dation data. To enhance the prediction performance of the training model, it is important
to select monitoring parameters that strongly correlate with the engine’s life cycle. We
employed a random forest algorithm to generate an importance ranking value for each
monitoring parameter, and subsequently eliminated parameters with low importance. The
SES algorithm was used to smooth the extracted features and reduce the influence of noise,
allowing samples to retain the maximum amount of degradation information. As monitor-
ing parameters mostly consist of different types of data, we employed the MinMax scaling
method to normalize the monitoring features and reduce the influence of data magnitude.

Step 2: Training the multi-layer perceptron model.

Our training framework is based on artificial neural networks. Firstly, we filtered
the parameters that require updating and determined the range of the search, with the
root-mean-square error (RMSE) as our search target. We obtained the best possible pa-
rameters, which were then employed as the final combinations for the MLP engine RUL
prediction model.

Step 3: RUL prediction.

We began by pre-processing the test set, which was then input into the Bayes MLP
prediction model for training. The prediction evaluation indexes RMSE and R2 values were
output, and we compared and analyzed the prediction results with the actual values. Next,
we calculated the expectation and standard deviation of the RUL prediction values in order
to obtain the PDF of the engine’s RUL. A diagram of the overall RUL prediction process
framework for aero engines can be found in Figure 4.

Figure 4. Flowchart for RUL prediction of aircraft engines.
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4. Experimental Validation and Analysis
4.1. Validation Data Set

The validation data are based on the CMAPSS dataset provided by the NASA Ames
Failure Prediction Research Center. It simulates the health of each output component
during the degradation of a real commercial turbofan engine in different operating environ-
ments [19]. The dataset consists of four training and test sets, FD001 to FD004, which were
simulated under various operating conditions and failure modes [20]. The training dataset
comprises the full life cycle data from the start of the aircraft’s in-service operation until
failure, whereas the test set records the partial life cycle data of the aircraft from its initial
state until failure [21,22]. The dataset was subjected to a degree of engine wear during the
simulation due to interference from artificial noise. The size of the dataset is presented
in Table 1:

Table 1. C-MAPSS dataset.

Dataset FD001 FD002 FD003 FD004

Number of Training Samples 100 260 100 249
Number of Test Samples 100 259 100 248

Total Length of Training Set 20,630 53,758 24,719 61,248
Total Length of Test Set 13,095 33,990 16,595 41,213
Operating Conditions 1 6 1 6

Fault Mode 1 1 2 2

Table 2 presents the specific meaning of each monitoring parameter in the dataset. We
note that, within the dataset, Setting_1, Setting_2 and TRA correspond to three different
sets of operating environment conditions.

Table 2. Description of Monitoring Parameters.

No. Parameters Unit

1 Altitude (Setting_1) –
2 Mach number (Setting_2) –
3 Throttle resolver angle (TRA) –
4 Total temperature at fan inlet (T2) ◦R
5 LPC outlet temperature (T24) ◦R
6 HPC outlet temperature (T30) ◦R
7 LPT outlet temperature (T50) ◦R
8 Fan inlet pressure (P2) psia
9 Bypass duct pressure (P15) psia
10 HPC outlet pressure (P30) psia
11 Physical fan speed (Nf) r/min
12 Physical core speed (Nc) r/min
13 Engine pressure ratio P50/P2 (Epr) –
14 HPC outlet static pressure (Ps30) psia
15 Ratio of fuel flow to Ps30 (Phi) pps/psia
16 Corrected fan speed (NRf) r/min
17 Corrected core speed (NRc) r/min
18 Corrected core speed (BPR) –
19 Burner fuel–air ratio (FarB) –
20 Bleed enthalpy (htBleed) –
21 Required fan speed (Nf_dmd) r/min
22 Required fan conversion speed (PCNfR_dmd) r/min
23 High-pressure turbines cool air flow (W31) lbm/s
24 Low-pressure turbines cool air flow (W32) lbm/s

The maximum cycle sample length distribution of all engines in datasets FD001-FD004
is shown in Figure 5. The sample lengths of the four datasets vary. FD001 and FD003
datasets were collected under a single operating condition, with sample lengths mainly
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distributed between [150 and 250], whereas datasets FD002 and FD004 were collected under
six operating conditions and two fault modes, with sample lengths mainly distributed between
[150 and 300]. This indicates that the engine’s life cycle is shorter under a single operating
condition, resulting in a large amount of degradation trajectory information that cannot
be utilized.

Figure 5. Distribution of data sample lengths.

4.2. Evaluation Metrics

To measure the effectiveness of the prediction model proposed, evaluation indicators,
including root mean square error, mean absolute error, coefficient of determination (R2),
and performance score function (Score), were introduced to assess the model’s performance
from four dimensions. The calculation method for the RMSE [23] is as follows:

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2, (12)

The RMSE penalizes overestimation and underestimation errors in predicting the RUL
of the engine equally, whereas Score [24] penalizes these errors differently. Therefore, to
enhance the accuracy of model evaluation, the performance score function was introduced.

Score =


∑n

i=1

(
e
−(ŷi−yi)

13 − 1
)

, ŷi − yi < 0

∑n
i=1

(
e

ŷi−yi
10 − 1

)
, ŷi − yi > 0

, (13)

The mean absolute error (MAE) [25] represents the dispersion level among data
samples, and its calculation formula is as follows:

MAE =
1
n

n

∑
i
|ŷi − yi|, (14)

The smaller the predicted values for the RMSE, MAE, and Score, the better the model’s
predictive performance. For the R2, the closer its value is to 1, the better the fitting degree
of the prediction model.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 , R ∈ [0, 1], (15)

In the equation, n represents the total number of engines, ŷ represents the predicted
RUL value for the i-th engine, and yi represents the true RUL value for the i-th engine.
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4.3. Selection of Key Parameters

This paper conducted experiments using monitoring samples from four datasets,
FD001 to FD004 [26,27]. Figure 6 illustrates the degradation process of the monitoring
parameters for engine 32 in the FD001 dataset as the operating cycles increase, with the
final lifecycle being the actual failure time of the engine. From the graph, it can be observed
that some monitoring parameters, such as W31 and W32, showed a clear degradation or
upward trend when increasing operating cycles, whereas others, such as T2 and P2, did
not show a significant trend when increasing operating cycles.

Figure 6. The trend of the original monitoring parameters for engine 32 in the training set FD001.

In the dataset, there are many original features, and the high correlation between many
features can lead to the problem of a high dimensionality. To find the features with the highest
contribution to the prediction algorithm from the massive feature data, feature selection is
required. By using the RF [28] algorithm to evaluate the importance of 21 features in the
original sample data, a ranking of feature variable importance was obtained. As shown in
Figure 7, the importance ranking of the 21 features in the FD001 dataset is presented. These
features are defined in Table 2. From Figure 7, it can be seen that the importance scores of some
feature variables, such as T2, P2, Epr, FarB, Nf_dmd, PCNfR_dmd, and P15, are close to zero,
indicating that these features have a weak correlation with the engine’s lifecycle. Therefore,
these features were removed, and the remaining 14 feature variables were considered as inputs
to the prediction model.

Figure 7. Feature variable importance ranking chart.
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4.4. Data Processing

Due to the susceptibility of original monitoring features to noise interference, the SES
algorithm was introduced to smooth [29] the monitoring information. Equation (4) was
used to process the extracted features. In this paper, smoothing coefficients of 0.1 and 0.3
were selected to smooth the monitored parameters of the 14 sensors in the engine. Two
randomly selected sensor parameters were plotted to show the smoothing effect before and
after the smoothing process, as shown in Figure 8. The smoothing effect is the best when
the coefficient is set at 0.1.

Figure 8. The smoothing effect of different smoothing coefficients on sensor parameters.

The numerical range of monitoring parameters in aviation engines has significant
differences and the dimensions of data are not unified. In order to reduce the impact
of different variable value ranges on the prediction model, the MinMax Scale [30,31]
normalization method was used to map the values of the data into the [0, 1] range.

xscaled =
x− xmin

xmax − xmin
, (16)

In the formula, xmax and xmin represent the maximum and minimum values of each
group of monitoring parameters, respectively. Standardization was performed on the
69th engine with the longest running cycle in the FD001 dataset. Before normalizing the
monitoring parameters, the values of each parameter had a large range, making it difficult
to see the change patterns of the monitoring parameters. The results after normalization
are shown in Figure 9, where there is an obvious trend of performance degradation in the
monitoring parameters.

4.5. Training and Optimization of RUL Prediction Model

To effectively avoid overfitting in the MLP model, L2 regularization [32] was intro-
duced to reduce overfitting. In this study, the optimization strategies included LBFGS,
Sgd, and Adam [33], which were combined with three different activation functions. The
training error evaluation indicators of the model were compared using R2 and the mean
absolute error (MAE). Table 3 shows the comparative results of the prediction models.

Based on the results presented in Table 3, we found that the optimal choice of op-
timization strategy and activation function was LBFGS and ReLU, respectively, as these
corresponded to coefficient of determination values closer to 1 and minimized the average
absolute error. To identify the optimal structure of the MLP model, we systematically
varied the number of hidden layers between 2 and 8 while setting the number of hidden
nodes to 15, 25, 35, and 45, with LBFGS and ReLU [33] used as the weight optimizer and
activation function, respectively. The experimental results are presented in Table 4.
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Figure 9. The trend of normalized monitoring parameters.

Table 3. Evaluation of MLP optimization strategies and activation function performance.

Identity Identity Logistic Logistic Tanh Tanh ReLU ReLU

– R2 MAE R2 MAE R2 MAE R2 MAE
LBFGS 0.7 17.93 0.79 13.94 0.8 13.62 0.81 12.98

Sgd 0.7 17.84 0.79 13.57 0.8 13.65 0.80 13.94
Adam 0.7 17.87 0.76 14.42 0.79 13.52 0.78 14.23

Table 4. Evaluation of MLP hidden layer performance.

Performance
Indicator

Number of
Layers

Number of
Nodes (15)

Number of
Nodes (25)

Number of
Nodes (35)

Number of
Nodes (45)

RMSE 2 17.88 18.99 19.19 18.39
Score 2 571.54 762.14 752.13 642.38
RMSE 4 19.16 17.70 17.29 19.04
Score 4 784.26 577 510.80 824.43
RMSE 6 19.19 17.85 19.44 18.41
Score 6 724.27 554.06 929.44 629.32
RMSE 8 17.92 18.16 18.61 19.54
Score 8 611.64 626.56 720.00 953.93

Figure 10 shows the validation set RMSE [34] of the MLP training model under
different regularization parameters and maximum iteration numbers. From the figure, it
can be observed that the RMSE is minimized when the maximum number of iterations
of the MLP algorithm is set to 150 and alpha is set to 0.0001, and the model has the best
training effect.

The Bayesian parameter updating algorithm was used to optimize the parameters in
MLP, and the results of hyperparameter selection are shown in Table 5.

Table 5. Hyperparameter selection.

Parameters Bayesian Optimization Result

Activation relu
Solver lbfgs
Alpha 0.0001

Maxiter 149
Randomstate 1
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Figure 10. Validation set RMSE of MLP with different parameter values.

4.6. Prediction Results

In order to investigate the impact of the method proposed in this paper on different
datasets, experiments were conducted using four datasets: FD001, FD002, FD003, and
FD004. Since FD001 and FD003 only contain the life degradation information of 100 en-
gines under a single working condition, the prediction difficulty is relatively low. In
contrast, FD002 and FD004 contain historical degradation data of 248 engines under multi-
ple working conditions, which increase the prediction difficulty of the model. Therefore,
the prediction results for the FD001 and FD003 datasets are better than those for the FD002
and FD004 datasets.

4.7. Experiment Comparison and Analysis

There is a certain mapping relationship between the performance degradation state of
each aircraft engine and its remaining life cycle. In order to explore and analyze the relation-
ship between the engine life cycle, 81, 32, 76, and 56 randomly selected aerospace engines
from the FD001 to FD004 datasets were used to predict the entire life cycle. To better eval-
uate the accuracy of this paper’s method in predicting engine RUL, ridge regression [35],
lasso regression [36], and light gradient boosting machine (LGBM) [37] methods were
compared with the method proposed. As shown in Figure 11, the predicted RUL values of
the aircraft engines using the method proposed are closer to the true values compared to
other methods, and the predicted results are within the 95% confidence interval.

In order to further evaluate the performance of the proposed method in terms of the
prediction error, four different models constructed as mentioned above were compared.
The boxplots of the prediction errors are shown in Figure 12. The orange solid line in each
box represents the expected value of the predicted RUL of the engine. The size of the box
in the boxplot can measure the uncertainty of RUL prediction. The RUL prediction error
boxplots for datasets FD002 and FD004 are relatively large compared to other test sets.
This is because the data in these datasets were collected in a complex environment with
multiple operating conditions, indicating that there are more uncertainty factors in the multi-
operational mode. In the verification sets of FD001 and FD004 under single-operational and
multi-operational conditions, engine 32 and engine 56 were randomly selected, respectively,
and the probability density curves of RUL prediction values at different cycle periods are
shown in Figure 13. As the cycle period increases, the RUL prediction value becomes closer
to the true value.

To objectively evaluate and verify the RUL prediction results under different operating
conditions, we constructed the three methods mentioned above and selected four prediction
methods from the literature, including K-Neighbors Regressor (KNR) [38], to compare
and analyze them with proposed method. The evaluation metrics of the RMSE and R2
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values of the aviation engine RUL prediction results were compared. The comparison
results are shown in Figure 14. The evaluation metric RMSE for the test sets FD001 and
FD003 is considerably smaller than that for FD002 and FD004 under multiple operating
conditions, and the R2 value is also closer to 1. Moreover, compared with the evaluation
results of other methods, the RUL prediction results of our proposed method for aviation
engines have mostly smaller evaluation metrics. This effectively shows that our proposed
RUL prediction method has a better prediction accuracy and performance, and that the
predicted RUL values of the engine are closer to the actual values.

Figure 11. Comparing the RUL prediction results of different methods on different engines.

Figure 12. Box plots depicting prediction errors of various models on different datasets.
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Figure 13. PDF and the predicted RUL values compared to the actual values.

Figure 14. Comparison of RUL prediction results.

5. Conclusions

This paper investigated the problem of predicting the RUL of aircraft engines in
a random degradation process under the background of complex and nonlinear dimensions
of multi-source monitoring parameters. A multi-layer perceptron RUL prediction model



Appl. Sci. 2023, 13, 7186 15 of 17

for aircraft engines based on the random forest and Bayesian online parameter updating
was proposed. Verification and analysis were conducted using the C-MAPSS data.

In the early stage of predicting the RUL of aircraft engines, the RF algorithm was used
to effectively extract features that have the greatest impact on the engine operating cycle
and exhibit obvious degradation trends, thereby reducing the impact of data redundancy
on the accuracy of the RUL prediction model.

In the RUL prediction stage of aircraft engines, the Bayesian parameter updating
algorithm was studied to optimize the hyperparameters in the MLP. Different parameters
were tested to determine their degree of influence on the RUL prediction model, obtaining
the optimal parameters that minimize the evaluation index RMSE. This effectively avoids
the impact of random parameter selection in the MLP prediction model on the training
efficiency. After conducting experimental validation using the C-MPASS dataset, the RMSE
value for the FD001 dataset decreased by 6.1% compared to other state-of-the-art methods,
whereas the R-squared value increased by 2.4%.

However, there are still some shortcomings in the proposed method of this paper that
are worth further improvement and refinement. Constructing a health index (HI) for the
engine can reflect the health status of the engine to the greatest extent possible. Using the
HI constructed as the input of the prediction model can make the RUL prediction results
more accurate. Although this paper studied and modeled the aircraft engine degradation
process under single and multiple working conditions, a comprehensive HI needs to be
constructed based on the degradation features of the engine to characterize the change and
health status of the engine during operation, and the HI needs to be further explored and
analyzed in future research.
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