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Abstract: Temporal action localization (TAL) aims to predict action instance categories in videos
and identify their start and end times. However, existing Transformer-based backbones focus only
on global or local features, resulting in the loss of information. In addition, both global and local
self-attention mechanisms tend to average embeddings, thereby reducing the preservation of critical
features. To solve these two problems better, we propose two kinds of attention mechanisms,
namely multi-headed local self-attention (MLSA) and max-average pooling attention (MA) to extract
simultaneously local and global features. In MA, max-pooling is used to select the most critical
information from local clip embeddings instead of averaging embeddings, and average-pooling is
used to aggregate global features. We use MLSA for modeling local temporal context. In addition, to
enhance collaboration between MA and MLSA, we propose the double attention block (DABlock),
comprising MA and MLSA. Finally, we propose the final network double attention network (DANet),
composed of DABlocks and other advanced blocks. To evaluate DANet’s performance, we conduct
extensive experiments for the TAL task. Experimental results demonstrate that DANet outperforms
the other state-of-the-art models on all datasets. Finally, ablation studies demonstrate the effectiveness
of the proposed MLSA and MA. Compared with structures using backbone with convolution and
global Transformer, DABlock consisting of MLSA and MA has a superior performance, achieving an
8% and 0.5% improvement on overall average mAP, respectively.

Keywords: temporal action localization; computer vision; artificial intelligence; attention mechanism

1. Introduction

With the rapid development of media, the amount of video data is increasing expo-
nentially in real life. Therefore, the research topic of video understanding has received
much attention [1–3], especially temporal action localization (TAL), which is a fundamental
task in the field of video understanding. TAL aims to predict the semantic labels of actions
and their corresponding start and end times, which provides convenience for the devel-
opment of various applications such as video recommendation, security monitoring, and
sports analysis.

To solve TAL tasks better, many two-stage and one-stage methods have been
proposed [4–16]. The two-stage TAL methods [7,17] follow a proposal-then-classification
paradigm, where generating high-quality action proposals is fundamental for their high-
level performance. Different from two-stage methods, one-stage ones [8,18] aim to localize
actions in a single shot without requiring any action proposals. Many one-stage methods
are anchor-based and adjust predefined anchors to perform action localization [8]. However,
because the anchors are fixed, the anchor-based approaches lack flexibility in adapting to
various action classes. Recently, to capture semantic information better, many anchor-free
methods [5,10] have been proposed to localize actions. Specifically, they classify each time
step in videos and generate behavior boundaries. In addition, recently many anchor-free
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methods have adopted Transformer [19] as their backbone, because Transformer with
self-attention mechanisms can better capture and model information for video sequences.

However, methods leveraging global self-attention (e.g., [9]) may ignore local vari-
ances, which may potentially result in poor performance. To solve this problem, local
self-attention mechanisms have been employed in some methods (e.g., [10]), which may re-
sult in the loss of some global information. Additionally, both global and local self-attention
methods have been found to conflate the embeddings of segments within a given attention
range, and thereby may reduce the discriminative quality of these features [20]. To pursue
high performance, preserving the most salient traits of local clip embeddings is crucial [21].

Therefore, to facilitate more comprehensive modeling of temporal information, we
propose a model named the double attention network (DANet), comprising more ad-
vanced blocks, e.g., double attention block (DABlock), featurized image pyramid (FIP),
and classification and regression head (CRHead). Specifically, to model both global and
local information simultaneously and maintain the most salient traits of local clip em-
beddings, we design two attention mechanisms for DABlock, namely multi-headed local
self-attention (MLSA) and max-average pooling attention (MA). Among these, MLSA only
models local temporal context, while MA extracts information from local clip embeddings
and aggregates global information. Specifically, MA retains the most critical features from
local embeddings by using max-pooling and also aggregates global features by average-
pooling and generates corresponding attention weights (see Section 3.2 for more details).
Adopting these kind of attention mechanisms can help preserve all the discriminative
information of local clip embeddings. In addition, we adopt the FIP as the neck of model
to focus better local changes and use CRHead to predict the semantic labels of actions
(see Sections 3.3 and 3.4 for more details).

To assess the performance of DANet, we conduct extensive experiments on two
TAL task datasets, namely THUMOS14 [22] and ActivityNet1.3 [23] datasets. On the
THUMOS14 dataset, DANet achieves a mean average precision (mAP) of 66.56%, a mAP
of 78.2% at the time Intersection over Union (tIoU) = 0.4, and a mAP of 58.7% at tIoU = 0.6.
Compared with the state-of-the-art method ActionFormer [10], for average mAP and mAP
at tIoU of 0.4 and 0.6, respectively, our method outperforms ActionFormer by over one
percentage point. In addition, DANet also outperforms all two-stage methods such as
AFSD [5], PBRNet [24], and GTAN [8], as well as the other one-stage methods such as RTD-
Net [25], ContextLoc [26], BMN-CSA [27], and MUSES [6]. In addition, through conducting
comprehensive ablation studies, we not only demonstrate the effectiveness of MLSA and
MA, but also investigate the impact of some hyper-parameters on the experimental results,
such as the number of projection layers, path aggregation, and the adopted normalization
method (see Section 4.3).

The key contributions of this work are as follows:

• To enable comprehensive contextual modeling of temporal information, we propose a
model named DANet comprising MLSA and MA. MLSA models temporal context by
local self-attention. MA aggregates global feature information.

• To preserve the salient characteristics of local clip embeddings, MA returns discrimi-
native features by using max-pooling in both channel and temporal dimensions as
well as generates attention weights.

• Compared with other methods, DANet achieves the best performance on THUMOS14
and ActivityNet1.3 datasets. In addition, ablation studies demonstrate the effective-
ness of MLSA and MA as well as the adopted hyper-parameters.

2. Related Work

In this section, we first introduce a brief overview of existing TAL methods. Then we
give a concise introduction to the recently popular Vision Transformer [19] approaches
applied in TAL.
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2.1. Temporal Action Localization

Existing TAL methods can be broadly divided into two categories, i.e., two-stage meth-
ods [6,7,17] and one-stage methods [8–10,18]. The two-stage approaches [6,7,17] solve the
TAL task by first proposing location proposals of action instances and subsequently using
the location proposals to predict the semantic labels of actions and their corresponding
start and end times. For example, BSN [4] first localizes the boundaries with a higher
possibility, and then merges those boundaries to derive location proposals. Subsequently,
BSN employs the temporal proposals to determine whether an action instance is present
or not and computes the confidence of the temporal proposals. However, the efficiency
of BSN is not high enough because feature extraction and confidence assessment are per-
formed for each temporal proposal, leading to a potentially time-consuming process. To
solve the corresponding limits, BMN [7] is proposed, which can simultaneously generate
the probability of one-dimensional boundaries and the confidence maps. However, two-
stage methods separate proposal and classification tasks, which may be inefficient and
time-consuming [28].

Compared with two-stage approaches, one-stage ones [8–10,18] possess a more notable
and simple pipeline, because one-stage methods eliminate the proposal generation process
utilized in the two-stage methods. Furthermore, one-stage methods can be broadly divided
into two categories, namely, anchor-based [8] and anchor-free methods [5]. For instance,
SSAD [18] is a monolithic anchor-based network that directly predicts the timing boundaries
and the confidence of actions. Conversely, the anchor-free approach is frame-level, wherein
each time node is generally predicted, and eventually merged at the frame-level to generate
the final prediction. For example, ActionFormer [10], an anchor-free approach, combines
multi-scale feature representation with self-attention, uses a weighted decoder to classify
each time step, and estimates the corresponding action boundaries. However, ActionFormer
limits self-attention in a local window, which may be unable to integrate global information
of a video effectively and capture all relevant time intervals (see Section 4.2).

Our model is a one-stage, anchor-free approach, which classifies each time step and
generates behavior boundaries, followed by the merging of frame-level results to pro-
duce the final output. Specifically, we model temporal context at both local and global
levels simultaneously.

2.2. Vision Transformer in Video Understanding

Transformer [19] has shown superior performance in the field of natural language
processing (NLP), which is at the center stage of data-driven artificial intelligence. As the
key component in Transformer, the self-attention mechanism enables the establishment
of long-term context reliance on the input sequence. Subsequently, many researchers in
NLP [29–32] incorporate Transformer into their methods to yield groundbreaking perfor-
mance. Furthermore, to achieve better performance, many methods [33,34] incorporate
Transformer into the field of computer vision (CV) (e.g., Vision Transformer (ViT) [33]).
Specifically, ViT transforms the input image into a sequence of tokens for the input model by
dividing the image into small pieces, adding extra learnable class embeddings, and feeding
them into stacked Transformer blocks. In addition, many Transformer-based models [35,36]
have been proposed to solve video understanding tasks.

However, most Transformer-based methods adopt the global self-attention mechanism,
which may ignore local variations and thus affect the inference of the boundary timestamps
for action instances. Therefore, some Transformer-based methods adopt the local self-
attention mechanism, rather than the global self-attention mechanism. However, adopting
the local self-attention mechanism cannot accurately capture all relevant time intervals and
action instances. Obviously, capturing both global and local information simultaneously
is key. To capture the most critical local features and model global contextual of temporal
information, we propose two kinds of mechanisms (see Section 3.2 for more details).
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3. Double Attention Network

We propose DANet to strive for better performance by extracting global and local
information simultaneously and maintaining discriminative features. In this section, we
first present the process of feature extraction. Then, we propose a novel block, named
DABlock, consisting of dual-attention mechanisms named MLSA and MA to model tem-
poral context. Subsequently, we introduce the design of neck and the structure of head.
Finally, we present the loss function we used to supervise the training of DANet better.
In Figure 1, we illustrate overview of the proposed DANet, which comprises four key
components, namely feature extraction, backbone, neck, and head modules.

Figure 1. Overview of the proposed DANet, comprising feature extractor, backbone, neck, and head.

3.1. Feature Extraction

Let an untrimmed dataset be denoted as T . For each video in the dataset T , we extract
a number of J RGB frames and a number of J optical flows, and then perform separate
feedforward passes through a pre-trained 3D CNN network (e.g., I3D [37]) fine-tuned on
kinetics. Subsequently, we merge the resulting RGB frames and optical flows into input
feature vectors, denoted as X = {x1, x2, . . . , xT}, where X ∈ RT×Corg , Corg denotes the
dimensions of the input feature vectors, and T depends on the video length.

3.2. Double Attention Block

The backbone module consists of a number of Lemd projection layers denoted as E
and a number of Latt DABlock layers. Specifically, each projection layer contains a 1D
convolutional neural network followed by layer normalization and RELU. Let the output
of all projection layers be denoted by P, which is given by:

P = E(X), (1)

where P ∈ RT×Cemd and Cemd denotes the dimension of all projection layers. T varies
depending on the video length. Subsequently, the output of all projection layers, P, is used
as the input of the 0th DABlock D0. In addition, let Di denote the input of the ith DABlock,
where i ∈ {0, 1, . . . , Latt − 1}.

As shown in Figure 1, the DABlock comprises two attention modules that capture the
local and global temporal relationships in an untrimmed video, named MLSA and MA. In
MLSA, to focus on the local temporal context and enhance local awareness, we employ
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multi-headed self-attention to model temporal relationships, which is computed as follows:

S = softmax(QKT/
√

Dq)V, (2)

where Q = DiWQ, K = DiWK, V = DiWV , and are referred to as query, key, and value,
respectively. WQ ∈ RCemd×Cq , WK ∈ RCemd×Ck , WV ∈ RCemd×Cv denote the weight of
query, key, and value, respectively. Multi-headed self-attention performs self-attention
operations on Nhead heads in parallel, and thus has Cemd/Nhead channels at each head.
After calculation, let hi

m denote the output of the mth head. Therefore, the output of the ith
MLSA is as follows:

Mi = Concat(hi
1, hi

2, . . . , hi
Nhead

). (3)

To preserve the most critical local features and aggregate global feature information,
we propose MA, whose structure is illustrated in Figure 2. We apply MA to maintain
the discriminative features from local embeddings through the use of max-pooling, while
aggregating global feature information via average-pooling. In addition, we apply polling
operations on both the channel and temporal dimensions and generate corresponding
attention weights.

Figure 2. Illustration of the structure of the proposed MA. We use MA to preserve critical local
features by employing max-pooling, and aggregate global feature information via average-pooling,
denoted as Avg Pooling. Attention weights spanning both channel and temporal dimensions are
generated to aid in this process. These weight variables are computed based on the importance of
different feature elements and are crucial for improving the model’s representation capability.

Specifically, for the channel-wise attention weights, we utilize max-pooling to preserve
the most salient traits of local clip embeddings. We employ average-pooling to aggregate
information for each channel. Subsequently, we utilize two fully connected layers, along
with RELU and sigmoid functions, to calculate the channel-wise attention weights Wc.
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Finally, we upon multiplication of channel-wise weights with the original inputs, whose
formula is as follows:

Ci = Wc ⊗Mi. (4)

In addition, to focus on which part of each snippet is the most salient feature at time
step t, we generate temporal-wise attention weights and use Ci as input. We want to focus
on which part of each snippet is the most salient feature at time step t. We also use average-
pooling and max-pooling, but the pooling operation is performed on the temporal axis and
concatenate them to generate an efficient feature descriptor without fully connected layers.
Subsequently, Di+1 is computed as follows:

Di+1 = Wt ⊗ Ci. (5)

Therefore, we successfully obtain the multi-scale representation input. Henceforth,
the input of the i + 1th layer is computed as follows:

Di+1 = DABlock(Di), (6)

where 0 ≤ i ≤ Latt − 1, Di+1 ∈ R
T

2×i×Cemd . Note that we use a downsampling factor
of 2 between layers. After Latt layers, the output D = {D0, D1, . . . , DLatt−1} is obtained.
Note that, as the receptive fields grow with depth increases, a local temporal window
corresponds to a large region in the temporal dimension. Thus, in deep layers, we perform
up-sampling between MLSA and MA.

3.3. Design of Neck

The neck of the model comprises a number of Latt feature pyramid layers. To focus
better on local changes and achieve a more effective regression effect, we adopt the FIP as the
neck of model. Specially, by adopting this design of neck, lower-level semantic information
does not have an integration with high-level semantic information, and therefore some
boundary information avoids being blurred (see Section 4.3.5 for the comparison of the
adopted FIP and the other structure). For each layer of the feature pyramid, we adopt a
layer normalization step, and then the output of each layer Ni is computed as follows:

Ni = LN(Di), (7)

where i ∈ {0, 1, . . . , Latt − 1}. Then we transform the set of pyramid features
D = {D0, D1, . . . , DLatt−1} to N = {N0, N1, . . . , NLatt−1}.

3.4. Head

To predict the semantic labels of actions and corresponding start and end times,
we introduce two heads, namely classification and regression heads. These heads are
connected to corresponding layers of the neck, and are designed to be simpler and lighter
by sharing parameters and weights. Specifically, both the classification and regression
heads employ a three-layer 1D convolution structure with a kernel size of three, followed
by layer normalization and RELU activation functions. The output of classification and
regression heads is as follows:

Ŷ = {ŷ1, ŷ2, . . . , ŷT}, (8)

where ŷt = {ct, vt} denotes the semantic label corresponding to tth time step and
t ∈ {1, 2, . . . , T}. Variable ct denotes the classification information that is predicted
by the model, reflecting the probability of belonging to each Ccls class. Finally, the predicted
action instance at any given time step, t, is determined by the class with the highest probabil-
ity, which can be expressed mathematically as at = argmax ct. The variable vt = {vts, vte}
denotes the intervals between the current time step, t, and the action boundaries, where
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vts > 0 and vte > 0. The start time, bt, and end time, et, of an action instance are derived by
calculating: bt = t− vts and et = t + vte.

3.5. Loss Function

To train the network, we adopt a supervised learning paradigm. Specifically, the loss
function is defined as follows:

Ltotal = ∑
t

(
Lcls + 1ctLreg

)
T+

, (9)

where Lcls denotes the classification loss, Lreg denotes the regression loss, 1ct denotes
whether the current time step is within an action instance, and T+ denotes the total number
of positive samples. To supervise the classification training process, we utilize the widely
adopted focal loss [38] as Lcls, which is as follows:

FL(pt) = −αt(1− pt)
γ log(pt), (10)

where pt is the probability that time step, t, belongs to an action instance, γ denotes a
predefined parameter, and αt is used to adjust the ratio between the positive and negative
sample losses. Given that TAL differs from other video comprehension tasks, primarily in
localization, we conduct experimentation on Lreg. To supervise the training of regression
loss better, our model achieves optimal regression performance through Intersection over
Union (IoU)-based DIoU regression loss (see Section 4.3.6), which is as follows:

DIoU = IoU − d2

c2 , (11)

where IoU denotes the degree of overlap between predicted results and ground truth.
The variable vt = {vts, vte} denotes the predicted intervals between the current time

step, t, and the action boundaries, then let the variable gt = {gts, gte} denote the intervals
of ground truth between the current time step, t, and the action boundaries. d is given by:

d = λ(vte − vts − gte + gts), (12)

where λ is a hyper-parameter, and c is given by:

c = max(vts, vte) + max(gts, gte). (13)

4. Experiments and Results

In this section, we first introduce the datasets used to assess the performance of DANet
and the experimental setups in Section 4.1. Next, we compare DANet with existing state-
of-the-art methods on THUMOS14 [22] and ActivityNet1.3 [23] datasets. Subsequently,
we conduct extensive ablation studies to analyze the effectiveness of the proposed MLSA
and MA, the number of projection layers, and the other hyper-parameters adopted in
Section 4.3. Finally, in Section 4.4, we provide visualizations of our experimental results to
gain a more comprehensive understanding of the effectiveness of the proposed approach.

4.1. Datasets and Experimental Setups

To assess the performance of the proposed DANet better, in this section, we adopt
mean average precision (mAP) and time Intersection over Union (tIoU) as metrics, following
the prior studies [9,10]. The time Intersection over Union (tIoU) measures the degree of
overlap between two temporal windows using the 1D Jaccard index. Specifically, the mAP
is commonly used to assess the effectiveness of methods at various temporal intersections
across all datasets. In addition, the mAP metric computes the average precision across all
action categories given a tIoU threshold, while the average mAP is obtained by averaging
multiple tIoUs.
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In addition, there are two datasets used in this section, namely THUMOS14 and Activ-
ityNet1.3. The THUMOS14 and ActivityNet1.3 datasets are well-established benchmark
datasets in the field of action recognition, renowned for their diverse and challenging video
content. These datasets have garnered substantial recognition and have been extensively
utilized in numerous prior research studies [5,9,10]. Specifically, the THUMOS14 dataset
consists of 413 untrimmed videos and 20 action categories for our experimentation. The
dataset is divided into a training set and a test set. The training set comprises 200 videos and
the test set includes 213 videos, which contain 3007 and 3358 action instances, respectively.
Notably, the average duration of an action instance is 5 s. To extract features from our
videos, following [39], we employ a pre-trained 3D CNN network, e.g., I3D model [37]. Our
process involves extracting a number of J RGB frames and a number of J optical flows from
each video, and then feeding a number of 16 consecutive frames into I3D. Before the final
fully connected layer, we extract 1024-dimensional RGB features and 1024-dimensional
flow features, which are then merged into 2048-dimensional features and used as input
of our model. In our experiment, the following hyper-parameters are used: the input
dimension is set to 2048, the batch size is set to 1, and the maximum sequence length is set
to 12,672. By conducting preliminary experiments, the level of the feature pyramid is set to
6, the training epoch is set to 30, and the linear warm-up epoch is set to 5 (see Section 4.3.7
for more details about warm-up). Finally, the initial learning rate is set to 1× 10−4, and
the weight decay is set to 0.05, following a prior study [10]. We use mAP@[0.3:0.1:0.7] to
evaluate our model, referring to computing the corresponding mAP at each tIoU interval
from 0.3 to 0.7 with an interval of 0.1.

ActivityNet1.3 is a vast action-oriented dataset comprising 200 activity categories
and over 20,000 videos, totaling 600+ h. Following the prior studies [4,7,40], we train our
model on the training set. Similar to THUMOS14, we utilize features extracted from the
I3D model [37]. The features are extracted from non-overlapping clips of 16 frames and a
stride of 16 frames. By conducting preliminary experiments, the training epoch is set to
15, the linear warm-up epoch is set to 5, the learning rate is set to 1× 10−3, the mini-batch
size is set to 16, and the weight decay is set to 1× 10−4. We use mAP@[0.5:0.05:0.95] to
evaluate our model, referring to computing the corresponding mAP at each tIoU interval
from 0.5 to 0.95 with an interval of 0.05.

The experiments are conducted on a workstation with a single NVIDIA GeForce RTX
3090 card, and Intel(R) Xeon(R) Gold 6254 CPU @ 3.10 GHz.

4.2. Performance Comparison

To assess the performance of DANet comprehensively, we choose nineteen benchmark-
ing models, including thirteen two-stage models (e.g., BMN [7], G-TAD [40], MUSES [6],
VSGN [41]) and six one-stage methods (e.g., AFSD [5], TadTR [9], ActionFormer [10]).

As shown in Table 1, DANet achieves an average mAP of 66.5%, a mAP of 78.2%
at tIoU = 0.4, and a mAP of 58.7% at tIoU = 0.6 on the THUMOS14 dataset. Compared
with the state-of-the-art ActionFormer, DANet’s average mAP is more than 1% higher. In
addition, there is an increase of over 1% at tIoU of 0.4 and 0.6, respectively. Compared with
TadTR, DANet’s average mAP is more than 9% higher and has significant improvements
at various tIoU levels. In addition, compared with the other existing two-stage methods
and other one-stage methods, DANet outperforms all of them. The experimental results
demonstrate the effectiveness of our proposed method.

In addition, we also assess the performance of all methods on the ActivityNet1.3
dataset, shown in Table 2. Our model achieves an average mAP of 36.5, with a mAP
of 54.6% at tIoU = 0.5, 37.7% at tIoU = 0.75, and 8.6% at tIoU = 0.95. Compared with
existing methods, our model does not show significant improvements in mAP on the
THUMOS14 dataset, but still produces competitive results. The variation in results between
the THUMOS14 and ActivityNet1.3 datasets can be attributed to several factors. These
datasets differ in terms of video content, annotation quality, duration, and the types of
activities they contain. These variations pose different challenges for models, leading to
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differences in performance. Compared with ActionFormer, our model achieves a 0.4%
increase in mAP at tIoU = 0.95, while, compared with TadTR, our model achieves a
4% increase in average mAP. Additionally, our model shows competitive results when
compared with other one-stage and two-stage methods. Specifically, in both Tables 1 and 2,
all models share the exact same hyper-parameters and dataset divisions.

Table 1. Performance comparison of different algorithms on THUMOS14.

Type Model Feature mAP@0.3 mAP@0.4 mAP@0.5 mAP@0.6 mAP@0.7 mAP@Avg

Two-Stage

BSN (2018) [4] TSN [42] 53.5 45.2 36.8 28.5 20.2 36.9
BMN (2019) [7] TSN [42] 57.1 46.8 38.8 29.6 20.8 38.7

P-GCN (2019) [43] I3D [37] 64.1 57.4 50.1 — — —
DBG (2020) [44] TSN [42] 58.1 49.4 38.7 31.1 21.6 39.5

G-TAD (2020) [40] TSN [42] 54.7 48.0 40.5 31.2 24.2 40.0
BC-GNN (2020) [45] TSN [42] 57.2 49.5 40.1 31.5 23.2 40.3
TAL-MR (2020) [46] I3D [37] 54.1 51.0 45.3 38.6 28.1 43.3
TSA-Net (2020) [47] P3D [48] 61.3 56.1 47.2 36.1 25.3 45.5

MUSES (2021) [6] I3D [37] 68.7 64.3 56.4 47.2 31.1 53.6
TCANet (2021) [17] TSN [42] 61.1 54.2 44.2 36.7 27.2 48.1

BMN-CSA (2021) [27] TSN [42] 65.0 58.2 50.1 37.8 27.6 47.7
ContextLoc (2021) [26] I3D [37] 68.5 64.0 53.7 41.6 26.5 51.2

RTD-Net (2021) [25] I3D [37] 68.2 63.0 51.7 38.6 24.2 49.2

One-Stage

GTAN (2019) [8] P3D [48] 57.9 47.2 39.1 — — —
A2Net (2020) [49] I3D [37] 58.9 54.2 46.2 33.0 17.5 41.8

PBRNet (2020) [24] I3D [37] 58.4 54.9 51.5 41.6 29.8 —
AFSD (2021) [5] I3D [37] 67.1 63.2 55.1 44.2 30.9 51.9
TadTR (2022) [9] I3D [37] 74.8 69.1 59.8 47.6 33.1 56.9

ActionFormer (2022) [10] I3D [37] 81.0 76.6 69.2 56.9 43.5 65.4

DANet (ours) I3D [37] 81.5 78.2 70.3 58.7 44.0 66.5

Table 2. Performance comparison of different algorithms on ActivityNet1.3.

Type Model mAP@0.5 mAP@0.75 mAP@0.95 mAP@Avg

Two-Stage

BSN (2018) [4] 46.6 30.0 8.1 30.0
BMN (2019) [7] 50.2 34.9 8.5 33.9

P-GCN (2019) [43] 48.5 33.4 3.5 31.2
G-TAD (2020) [40] 50.5 34.7 9.2 34.2

BC-GNN (2020) [45] 50.6 34.8 9.4 34.5
TAL-MR (2020) [46] 43.6 34.1 9.4 30.4
TSA-Net (2020) [47] 48.9 32.3 9.2 32.1

MUSES (2021) [6] 50.2 34.9 6.7 34.2
TCANet (2021) [17] 52.4 36.8 7.1 35.7

BMN-CSA (2021) [27] 52.5 36.3 5.2 35.6
ContextLoc (2021) [26] 56.0 34.9 3.7 34.1

RTD-Net (2021) [25] 47.3 31.0 8.7 31.0

One-Stage

GTAN (2019) [8] 52.8 34.3 8.8 34.3
A2Net (2020) [49] 43.7 28.4 3.9 27.6

PBRNet (2020) [24] 54.1 35.4 8.8 35.0
AFSD (2021) [5] 52.4 35.5 6.1 34.5
TadTR (2022) [9] 49.2 32.5 8.7 32.4

ActionFormer (2022) [10] 54.5 37.7 8.2 36.4

DANet (ours) 54.6 37.7 8.6 36.5

Our explanation for the superior performance of DANet is that we utilize our proposed
DABlock to facilitate contextual modeling of temporal information at both local and global
levels simultaneously and maintain the most crucial features from embeddings, which
enables the model to predict the temporal boundaries of action instances with greater
accuracy, thus improving the overall mAP of the model.
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In addition, the computational complexity of DANet is a crucial aspect to consider in
assessing its feasibility and scalability. In terms of computational complexity, DANet oper-
ates at an acceptable level, given its ability to effectively handle long-term dependencies.
The primary computational burden arises from the temporal attention mechanisms, which
involve calculating attention weights between each time step in the input sequence. To
mitigate this computational overhead, we employ optimization techniques such as parallel
computing and efficient data structures. By leveraging parallelization across multiple
processors or GPUs, we distribute the attention calculations and reduce the overall runtime.
In addition, we utilize optimized data structures, such as sparse matrices, to store and
process attention weights efficiently.

4.3. Ablation Study

In this subsection, we conduct ablation studies to investigate the effectiveness of our
proposed model and hyper-parameter settings on THUMOS14 using mAP.

4.3.1. The Effectiveness of MLSA and MA

In this subsection, we conduct the ablation study to investigate the impact of MLSA
and MA. To establish a solid baseline, we initially employ a commonly used 1D convo-
lutional network to model the temporal relationships of each backbone layer. Then we
adopt the traditional Transformer Encoder with global self-attention to conduct modeling.
Next, we use MLSA only for backbone without adopting MA. Finally, we adopt the final
design, namely DABlock proposed in Section 3.2, which can extract both global and local
features simultaneously.

As shown in Table 3, DABlock consisting of MLSA and MA outperforms the other
structures, achieving an overall average mAP of 66.5%. Figure 3 is the visualization of
the effectiveness of MLSA and MA. In addition, convolution has the poorest performance,
which demonstrates that Transformer is more suitable for TAL tasks, compared with con-
volution. In addition, compared with DANet, the global self-attention-based Transformer
performs poorer. The plausible reason for this is that global self-attention makes the bound-
ary blurred. When using MLSA only, the feature in time step, t, may discard the connection
with the global background. The proposed structure simultaneously focuses on the local
changes between adjacent frames and models the global temporal relationship. In addition,
DABlock preserves the most informative feature in local clip embedding, which helps to
solve the TAL task better.
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Figure 3. Visualization of the effectiveness of MLSA and MA.
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Table 3. The ablation study on the effectiveness of MLSA and MA.

Backbone mAP@0.3 mAP@0.4 mAP@0.5 mAP@0.6 mAP@0.7 mAP@Avg

Conv 73.1 68.5 61.8 51.2 37.8 58.5
Trans-Global 81.3 77.4 69.5 58.8 43.3 66.0
MLSA only 81.0 76.6 69.2 56.9 43.5 65.4

DABlock (adopted) 81.5 78.2 70.3 58.7 44.0 66.5

4.3.2. The Effectiveness of the Number of Projection Layers

We conduct the ablation study to investigate the impact of the number of projection
layers, Lemd, whose results are presented in Table 4. We find an average mAP of 66.5%
when the number of projection layers is set to two and observe stable mAP values when the
number of layers is less than five. Notably, a poor performance of 25.7% mAP is attained
when Lemd is set to five. Through analysis, we conclude that, starting from Lemd = 2, an
increase in the number of convolution layers leads to a further transformation of features
from local to global representations. Therefore, as the number of layers deepens, it becomes
more challenging to process the local features further, resulting in decreased performance.

Table 4. The ablation study on the numbers of projections.

Lemd mAP@0.3 mAP@0.4 mAP@0.5 mAP@0.6 mAP@0.7 mAP@Avg

1 80.3 76.7 68.5 57.6 40.4 64.7
3 80.5 76.4 68.8 57.5 42.7 65.2
4 79.8 75.4 67.2 56.7 42.9 64.4
5 54.5 38.8 21.2 10.0 3.9 25.7

2 (adopted) 81.5 78.2 70.3 58.7 44.0 66.5

4.3.3. The Effectiveness of the Adopted Normalization

In this subsection, we investigate the effectiveness of different types of layer normal-
ization on MLSA. Transformer architecture adopts the traditional Post-LN [50], which
involves performing the layer normalization operation after multi-headed and residual
connections within the Transformer block. Different Post-LN and Pre-LN [50] operations
occur before multi-headed attention. Finally, DeepNorm [51] aims to achieve both superior
performance and training stability by upscaling the residual connection before conducting
the layer normalization process.

The results are presented in Table 5. It is evident that Pre-LN yields the highest
average mAP of 66.5%, followed by Post-LN, which obtains an average mAP of 65.3%,
while DeepNorm achieves an average mAP of 64.7%. Therefore, the adopted Pre-LN
is reasonable.

Table 5. The ablation study on Pre-LN, Post-LN, and DeepNorm.

Method mAP@0.3 mAP@0.4 mAP@0.5 mAP@0.6 mAP@0.7 mAP@Avg

Post-LN 80.4 76.5 68.8 58.1 42.6 65.3
DeepNorm 79.7 75.4 68.3 56.7 43.2 64.7

Pre-LN (adopted) 81.5 78.2 70.3 58.7 44.0 66.5

4.3.4. The Effectiveness of the Number of Attention Layers.

To investigate the effectiveness of the number of DABlock layers, Latt, we design five
configurations, namely Latt = 3, 4, 5, 6, and 7, whose results are presented in Table 6. As Latt
increases gradually, the number of downsamplings increases, leading to the representation
of higher-level temporal semantic information in the feature maps. The experimental
results demonstrate that the model achieves the best performance when Latt is set to 6.
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Table 6. The ablation study on the effectiveness of the numbers of backbone layers.

Latt mAP@0.3 mAP@0.4 mAP@0.5 mAP@0.6 mAP@0.7 mAP@Avg

3 79.4 75.0 65.8 53.3 37.8 62.2
4 79.9 76.1 68.6 55.4 40.7 64.2
5 81.4 76.3 69.0 56.7 41.5 65.0
7 80.4 76.9 69.3 57.7 43.1 65.5

6 (adopted) 81.5 78.2 70.3 58.7 44.0 66.5

4.3.5. The Effectiveness of Path Aggregation

To investigate the implications of the neck design on model performance, two kinds of
feature pyramid structures are tested in this subsection. Specifically, in Design1, we adopt
FIP, which does not have path aggregation, i.e., the head is directly connected to its layer.
In Design2, we adopt the feature pyramid network [52], which includes path aggregation
between layers. Path aggregation refers to the process of combining information from
different layers in a neural network. In Design1, where path aggregation is not employed,
there is a lack of integration between low-level and high-level semantic information. As a
result, certain boundary information remains distinct and is not blurred.

As shown in Table 7, when adopting Design1, the average mAP is 66.4%. In addition,
when adopting Design2, the average mAP reduces by 39.5%, compared with Design1.
Therefore, the adopted FIP is reasonable.

Table 7. The ablation study on the effectiveness of path aggregation.

Design mAP@0.3 mAP@0.4 mAP@0.5 mAP@0.6 mAP@0.7 mAP@Avg

Design2 57.3 40.6 22.5 10.5 4.1 27.0

Design1 (adopted) 81.5 78.2 70.3 58.7 44.0 66.5

4.3.6. The Effectiveness of Loss Function

This subsection delves into the impact of loss functions on model performance. Given
the regression-based nature of TAL, our analysis focuses on the effect of various regression
losses on model efficacy.

The IoU loss [53] regresses the four boundary coordinates of a candidate box as a
single entity, leading to efficient and accurate regression with excellent scale invariance.
In our model, this two-dimensional loss is compressed into one-dimensional space. The
Generalized Intersection over Union (GIoU) loss [54] computes the area of the smallest
convex closure, C, between two shapes (like rectangle boxes), A and B, and then calculates
the ratio of the area excluding A and B in C to the original area of C. Finally, the original
IoU is subtracted from this ratio to obtain the generalized IoU value. The Distance-IoU
(DIoU) loss [55] calculates the normalized distance between the center points of two
boundary boxes to address the issues of insufficient precision in boundary box regression
and slow convergence rate. The Control Distance-IoU (CDIoU) loss [56] mainly contributes
to improving the regression accuracy of boundary boxes effectively.

We evaluate the four aforementioned regression losses and the results are presented
in Table 8. The experimental results show that, when DIoU is adopted, the average mAP
increases 0.4% and 0.8%, respectively, compared with GIoU adopted and CDIoU adopted.
Therefore, our design of loss function is reasonable.
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Table 8. The ablation study on the loss function.

Loss mAP@0.3 mAP@0.4 mAP@0.5 mAP@0.6 mAP@0.7 mAP@Avg

GIoU 81.0 77.6 69.3 57.8 43.0 65.7
CDIoU 80.9 77.2 70.4 58.3 43.5 66.1

DIoU (adopted) 81.5 78.2 70.3 58.7 44.0 66.5

4.3.7. The Effectiveness of Warm-Up Epochs

In this subsection, we investigate the impact of the number of warm-up epochs on
the overall experimental performance. Warm-up epochs serve as a practical strategy to
strike a balance between stability and exploration. They allow the model to improve
its performance progressively by effectively utilizing the available training data without
comprising convergence or stability. At the beginning of the training, the model is trained
with a small learning rate to help it become familiar with the data. Subsequently, the
learning rate gradually increases until the set initial learning rate. After a certain number
of iterations, the learning rate begins to gradually decrease.

To find out the most suitable number of warm-up epochs, we alter the warm-up
epochs between 2 and 8 in our experiment, whose results are presented in Table 9. The
results demonstrate that, when the warm-up epoch is set to 5, the most favorable out-
comes are produced. Therefore, our predefined parameter value, i.e., warm-up epoch = 5,
is reasonable.

Table 9. The ablation study on the warm-up epochs.

Epochs mAP@0.3 mAP@0.4 mAP@0.5 mAP@0.6 mAP@0.7 mAP@Avg

2 80.8 77.4 69.8 58.1 42.6 65.7
3 80.9 76.8 69.8 58.2 43.2 65.8
4 81.1 76.6 69.4 58.5 42.8 65.7
6 80.7 76.8 69.8 58.6 43.1 65.8
7 80.8 77.0 69.3 56.8 43.3 65.4
8 80.8 76.5 68.4 57.0 41.9 64.9

5 (adopted) 81.5 78.2 70.3 58.7 44.0 66.5

4.4. Visualization

Figure 4 presents the visualization of the proposal generated by our DANet, and
compares the predicted results with the ground truth. This action instance is sourced
from the THUMOS14 dataset and comprises a skateboarding action of approximately five
seconds. It is evident that the temporal offset between our predicted boundary times and
ground truth does not exceed one second. Figure 5 illustrates the high degree of similarity
between adjacent frames in the video, which underscores the importance of enhancing
local sensitivity.

Figure 4. Illustration of the results of our experiment, where the video clip is sourced from THU-
MOS14 and comprises a complete skateboarding action. The green region below denotes the ground
truth, while the red region denotes the proposals predicted by our model.
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Figure 5. In a video, adjacent frames are typically highly similar. This figure presents the correlation
matrix of adjacent frames, with stronger correlation indicated by darker colors and weaker correlation
indicated by lighter colors.

5. Conclusions and Discussion

In this paper, we present our one-stage, anchor-free network model DANet, which
leverages a dual-attention mechanism. The core component of DANet is DABlock, which
is composed of MLSA and MA. MLSA is utilized for modeling local temporal context. In
MA, the max-pooling operation is employed to extract the most significant information
from adjacent clip embeddings selectively, while average pooling is used for aggregating
global features. Our experimental results on the THUMOS14 and ActivityNet1.3 datasets
demonstrate that our approach achieves excellent performance in TAL. While our pro-
posed method has shown good performance in TAL, one of the main limitations is the
requirement for fully annotated data, which may not be available in some cases. Further
work is to explore weakly supervised learning methods to reduce the dependence on fully
annotated data.
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