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Abstract: Traffic congestion detection based on vehicle detection and tracking algorithms is one of
the key technologies for intelligent transportation systems. However, in expressway surveillance
scenarios, small vehicle size and vehicle occlusion present severe challenges for this method, including
low vehicle detection accuracy and low traffic congestion detection accuracy. To address these
challenges, this paper proposes an improved version of the CrowdDet algorithm by introducing the
Involution operator and bi-directional feature pyramid network (BiFPN) module, which is called
IBCDet. The proposed IBCDet module can achieve higher vehicle detection accuracy in expressway
surveillance scenarios by enabling long-distance information interaction and multi-scale feature
fusion. Additionally, a vehicle-tracking algorithm based on IBCDet is designed to calculate the
running speed of vehicles, and it uses the average running speed to achieve traffic congestion
detection according to the Chinese expressway level of serviceability (LoS) criteria. Adequate
experiments are conducted on both the self-built Nanjing Raoyue expressway monitoring video
dataset (NJRY) and the public dataset UA-DETRAC. The experimental results demonstrate that
the proposed IBCDet outperforms the commonly used object detection algorithms in both vehicle
detection accuracy and traffic congestion detection accuracy.

Keywords: traffic congestion detection; CrowdDet; vehicle detection; Chinese expressway; LoS

1. Introduction

Transportation is an integral part of modern cities’ development and growth, which
is closely linked to residents’ mobility [1], freight transportation [2], environmental sus-
tainability [3], and more. Expressways, as a fundamental element of the transportation
system, play a vital role in urbanization. In recent years, China’s expressway network
has grown significantly, which led to the expansion of its scale. However, this growth has
also led to the development of traffic congestion, which is becoming increasingly severe.
Traffic congestion can adversely affect the level of serviceability (LoS) of the road network,
leading to poor traffic flow efficiency, environmental degradation, economic losses, and
road safety concerns. It is essential to detect congested sections of the road promptly so
that the transportation management departments can take immediate measures to alleviate
traffic congestion and resolve traffic incidents within a specific area. The above actions will
prevent more extensive traffic congestion caused by chain reactions.

Traffic congestion detection involves evaluating the status and volume of vehicles on
the road, which is typically determined indirectly using traffic flow parameters such as
the number of vehicles, travel speed, queue length, and travel time. Many scholars from
different disciplines and fields have analyzed how to use traffic flow parameters to detect
traffic congestion and have achieved important research results in this area [4–13]. Based
on the technology used to extract traffic parameters, traffic congestion detection techniques
can be classified into three categories: traffic congestion detection technology based on sen-
sors [4–6], traffic congestion detection technology based on the Internet of Things (IoT) [7,8],
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and traffic congestion detection technology based on machine vision [9–13]. Sensor-based
detection methods typically require fixed sensors to obtain vehicle speed, and they cal-
culate the average speed over a specific time to estimate road conditions and determine
congestion levels. Although the existing sensor technology can detect vehicle informa-
tion on the road relatively well, the magnetic field in the detection area is susceptible to
external factors. The IoT is an emerging field in modern communication networks that
has a significant impact on the development of smart cities [14–16]. Some studies in the
literature utilize IoT technologies such as a Vehicular AdHoc Network (VANET) to detect
traffic congestion. A VANET is a self-organized, structurally open communication network
between vehicles that provides decentralized, multi-hop forwarding data transmission
capabilities to collect and aggregate real-time speed and location information related to
individual vehicles [17]. However, deploying VANET is quite expensive, which requires
that vehicles must be equipped with on-board units, and roadside units must be installed
along the road. Additionally, the high mobility of vehicles and dynamic changes in related
topologies make wireless transmission challenging. Machine vision-based traffic conges-
tion detection technology is a promising and cost-effective solution for surveillance traffic
flow. Cameras can capture high-quality video sequences and are widely available and
easy to maintain [18,19]. With the growing deployment of cameras on expressways and
the advancement of computer vision technology, machine vision-based traffic congestion
detection has become feasible.

Currently, many machine vision-based traffic congestion detection methods are de-
signed for urban roads. However, expressways are relatively more enclosed compared
to urban roads, and surveillance cameras on expressways usually have a larger viewing
angle, resulting in images with larger background areas. Therefore, it needs to be verified
whether traffic congestion detection methods based on urban roads can be directly used
for detecting expressway congestion. Issues include detecting small distant vehicles in
expressway surveillance images captured by wide-angle lenses as well as the problems
of reduced accuracy and increased false negative rates in vehicle detection due to vehicle
size discrepancies and occlusions during traffic congestion. Therefore, a method using
an improved CrowdDet algorithm is proposed to better detect expressway traffic conges-
tion. Firstly, to better detect congested vehicles in expressway surveillance, the improved
algorithm is proposed by using CrowdDet [20] as the baseline detector, introducing the
Involution operator [21] with long-distance interaction and the bi-directional feature pyra-
mid network (BiFPN) module [22] for multi-scale vehicle detection, and the improved
algorithm is named IBCDet. This can provide an important basis for subsequent traffic
congestion detection. Secondly, in order to quantify the degree of traffic congestion, the
IBCDet algorithm adds tracking technology to measure the speed of vehicles, and it com-
bines the Chinese expressway LoS criteria to divide the speed of vehicles and then analyze
and determine the degree of congestion on the road section. Finally, in order to verify the
performance of the proposed method, this paper uses the Nanjing Raoyue expressway
surveillance video dataset (referred to as NJRY) to train and test the model. Experimental
results show that compared with commonly used object detection algorithms, this method
can achieve the best performance in both vehicle detection accuracy and traffic congestion
detection accuracy. In summary, the contributions of this paper are as follows:

• The proposal of an improved version of the CrowdDet algorithm (IBCDet) that incorpo-
rates the Involution operator and BiFPN modules, leading to enhanced long-distance
vehicles and occluded vehicles detection accuracy in expressway surveillance scenarios.

• The development of a vehicle-tracking algorithm based on IBCDet that calculates the
running speed of vehicles and utilizes the Chinese expressway LoS criteria for traffic
congestion detection.

• Extensive experiments conducted on the self-built NJRY dataset and the public UA-
DETRAC dataset, which demonstrate the superior performance of the proposed IBCDet
algorithm in both vehicle detection accuracy and traffic congestion detection accuracy
compared to commonly used object detection algorithms.
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2. Related Works

In this section, this paper primarily reviewed the existing literature on traffic conges-
tion detection methods. Vehicle congestion detection acquires various traffic flow parame-
ters through relevant techniques to evaluate the vehicle congestion status. Due to the low
cost and easy maintenance of cameras, which can provide high-quality video sequences,
and the continuous development of image processing technology, more and more scholars
have started to study machine vision-based traffic congestion detection. Lam et al. [9] use
Haar-like features to extract the number of vehicles in the image, calculate the vehicle flow
rate per unit time, and combine with a threshold to judge the vehicle congestion status. Tah-
mid and Hossain [10] proposed a vehicle congestion status evaluation system using texture
analysis of images. The method uses the duration of vehicle density as the judgment condi-
tion for vehicle congestion detection, detects edge information in the image using the Canny
edge detection algorithm, analyzes the edge information for vehicle target detection, and
calculates the vehicle density on the road surface. However, hand-designed feature-based
methods have high time complexity and are not conducive to real-time detection of traffic
conditions. In order to overcome the limitations of the above traffic congestion detection
methods, studies in the literature [12,13,23–25] use deep learning-based image classification
methods for traffic congestion detection. Kurniawan et al. [24] use a convolutional neural
network (CNN) to estimate the traffic state, adjust the size of the monitoring image and
convert it into a 100 × 100 grayscale image as the input for CNN training and testing.
The CNN model achieves an average classification accuracy of 89.50% on the monitoring
image dataset. Chakraborty et al. [25] labeled images as congested or non-congested states
and used YOLO [26], deep convolutional neural networks (DCNNs), and support vector
machines (SVMs) for image classification to detect traffic congestion. The results show that
the accuracies of YOLO and DCNN are 91.5% and 90.2%, respectively, and the accuracy of
SVM is 85.2%. Jin et al. [12] proposed a method of extracting images from a monitoring
camera at an ultra-low frame rate, considering that high frame rate videos are difficult to
use in real-world situations. They used semantic segmentation to label common items such
as vehicles, lanes, and road dividers at the pixel level. Based on the classification of traffic
congestion images, they obtained the percentage of road occupancy by vehicles through
image transformation to detect traffic congestion at the pixel level. Willis et al. [13] used
GoogLeNet to classify images collected from monitoring cameras at intersections of urban
roads in London and output the congestion level of the roads. Gao et al. [23] proposed
an image-based traffic congestion estimation framework that integrates traffic parameters
into the convolutional neural network layer to directly detect traffic congestion. Although
classification-based methods perform well in detecting traffic congestion, this approach
only classifies images into two states: congested and uncongested, ignoring the various
complex scenes that occur during traffic congestion. In addition, the literature [11,27,28]
proposed real-time discrimination methods for urban road traffic congestion. He et al. [11]
used a road congestion index and network congestion index to, respectively, measure the
degree of congestion on urban roads and road networks. Lam et al. [27] proposed the
mIOU method, which detects traffic congestion by calculating the ratio of the overlap area
between two images taken at a certain time interval and the union of multiple bounding
boxes. Since the instantaneous mIOU proposed in the literature [27] performs poorly
when the time interval is short, Liu et al. [28] proposed a new weighted mIOU method.
First, the boundary box generated by YOLOv4 is used to automatically crop the image to
generate the region of interest, and then, the weighted average of the current and previous
instantaneous mIOU values is taken to improve the application of the mIOU method in
traffic congestion detection.

In addition to the aforementioned machine vision-based traffic congestion detection
methods, there are other studies [29,30] that approach traffic congestion detection from
different perspectives. Zambrano-Martine et al. [29] characterized all streets in Valencia
based on the driving times of vehicles under varying degrees of congestion, using a real
traffic model obtained from previous work. They conducted simulation experiments
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using SUMO to obtain the driving times of vehicles on different road segments under
different traffic saturation levels. They used a regression strategy to adjust the curves and
obtain an expression that describes the driving times. Costa et al. [30] utilized the Traffic
Telco Big Data (Traffic-TBD) structure to provide micro-level road traffic modeling and
prediction. All of the above methods are targeted at urban road traffic congestion, but due
to the differences between highway and urban road conditions, traffic congestion detection
methods based on urban roads cannot be directly applied to highways, so further research
is needed. Considering the above issues, Oumaima et al. [8] utilized the traffic information
provided by the Vehicular Ad Hoc Networks to propose a mobile model based on the
Markov chain to solve the traffic congestion detection problem in multi-lane highways.
Mu et al. [31] considered that images taken by cameras on highways have richer scenes
and used two classic convolutional neural networks, AlexNet and GoogLeNet, to classify
highway congestion states. Due to the fact that cameras on highways are usually located at
higher positions and focus on a larger field of view, the background area of the generated
images is larger and vehicle detection is more difficult. In addition, expressways have
stronger closure than urban roads, and once congestion occurs, it lasts longer, requiring
an efficient method to detect traffic congestion in real time. Unlike the above articles, this
paper proposes a new method for detecting traffic congestion on expressways based on an
improved CrowdDet algorithm.

3. Methodology

This paper proposes a novel traffic congestion detection method specifically designed
for the surveillance scenario of expressways, considering challenges such as small vehicle
sizes and vehicle occlusion. Firstly, we collected a dataset of surveillance videos from the
Nanjing Raoyue expressway. Then, we improved the vehicle detection rate by introducing
the Involution operator and BiFPN module into the CrowdDet algorithm, resulting in the
IBCDet algorithm. To achieve more accurate traffic congestion detection, we incorporated a
tracking algorithm into the IBCDet algorithm to measure vehicle speeds. By combining
the measured speeds with the LoS criteria for the Chinese expressway, we categorized
the vehicle speeds into congestion levels, enabling effective traffic congestion detection.
The overall architecture of the traffic congestion detection method is illustrated in Figure 1.

Stable

Figure 1. Traffic congestion detection architecture diagram.

This paper describes the generation of training and testing datasets for the detection
of traffic congestion on one-way roads by extracting, filtering, and labeling frames from
surveillance videos of the Nanjing Raoyue expressway. To improve the accuracy of the
detection results, the original video images are cropped to eliminate irrelevant background
information, and the areas of interest are manually delineated. In addition, uninteresting
areas are masked to prevent interference from roadside disturbances on the detection
results. To prevent overfitting, data augmentation techniques are used to expand the small
number of samples.
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3.1. Baseline Detector

The primary objective of this paper is to improve vehicle detection performance under
severe occlusion conditions, ultimately enhancing the accuracy of traffic congestion detec-
tion. In traffic congestion scenarios, vehicle occlusion poses a problem similar to that of
dense pedestrian detection. Therefore, this paper selected the CrowdDet algorithm [20] as
the baseline detector, as it addresses the problem of detecting dense pedestrians. The detec-
tor has demonstrated good performance on the CoCo [32], CityPerson [33], and Crowd-
Human [34] datasets, which contain lightly, moderately, and heavily occluded pedestrians,
respectively. This is similar to vehicle detection under free-flow, slow-flow, and congestion
conditions on expressways. The network architecture of the CrowdDet algorithm is shown
in Figure 2.

Figure 2. CrowdDet network architecture.

The CrowdDet algorithm mainly consists of the ResNet-50 [35] backbone network,
the feature pyramid network (FPN) [36], the Mask R-CNN [37], and the Crowddet compo-
nent used to simultaneously perform classification and regression tasks. The ResNet-50
backbone network is a residual network structure widely used for feature extraction in
images due to its excellent performance. FPN is a feature pyramid network that combines
high-level and low-level feature maps in a top–down structure to improve multi-scale
detection accuracy. Mask R-CNN uses RPN to propose bounding boxes on the feature map,
and then, it selects the corresponding window based on the proposal boxes on the feature
map. As the window sizes are different, ROIAlign is used for standardization, resulting in
a proposal box feature map of 256 × 7 × 7.

The CrowdDet algorithm first considers that when multiple objects overlap severely,
a proposal box corresponding to a single object will lead to a decrease in performance.
Therefore, for each proposal box bi, a set of ground-truth instances G(bi) is predicted
instead of a single object. This is shown in Equation (1):

G(bi) = {gi ∈ G | IOU(bi, gi) ≥ θ} (1)

where G is the set of all ground-truth boxes, and θ is the given IOU threshold.
For each proposal box bi, most methods use a detection function to predict a pair (ci, Ii)

to represent the associated instance. However, the CrowdDet algorithm generates a set of
predicted instances P(bi) by introducing K detection functions, as shown in Equation (2):

P(bi) =
{(

c(1)i , I(1)i

)
,
(

c(2)i , I(2)i

)
, . . . ,

(
cK

i , IK
i

)}
(2)

where K is a given constant, representing a set of K pairs of predictions, where cK
i andIK

i are
the class label confidence and relative coordinates of the K-th prediction of box bi.
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Then, in order to minimize the discrepancy between the predicted instance set P(bi)
and the ground-truth instance G(bi) set corresponding to proposal box bi, the EMD loss is
designed, as shown in Equation (3):

L(bi) = min
π∈Π

K

∑
k=1

[
Lcls

(
c(k)i , gπk

)
+ Lreg

(
I(k)i , gπk

)]
(3)

where π represents a specific permutation of (1, 2, · · · , K), with the k-th element being
πk, and gπk is the ground-truth box corresponding to πk. Lcls(·) and Lreg(·) represent the
classification loss and the bounding box regression loss, respectively.

To better detect objects in occluded scenes, the CrowdDet algorithm proposes Set
NMS. Set NMS inserts an extra detection to determine whether two boxes come from the
same proposal before suppressing one with NMS. If they do, the suppression is skipped.
Using Set NMS in conjunction with multi-instance prediction can achieve significant im-
provements in occlusion detection. The CrowdDet algorithm also introduces an optional
Refinement module, which takes the prediction as input and performs a second round of
prediction with the proposed features to correct possible errors. All methods in this paper
use the Refinement module.

3.2. The Improved Vehicle Detection Network Model Based on CrowdDet Algorithm (IBCDet)

The cameras installed along expressways typically have a larger viewing angle, which
can make it challenging to accurately detect small target vehicles at far distances. In such
scenarios, the accuracy of vehicle detection is often low due to the small coverage area,
blurred images, and limited feature information. In this paper, we address this issue by
introducing the Involution operator [21] into CrowdDet. Involution is a novel type of
neural network operator that differs from the traditional convolutional operator in terms of
spatial sharing and channel specificity. It exhibits spatial specificity and channel sharing,
which allows it to use larger convolution kernels to aggregate contextual information
over a wider spatial range, thus overcoming the difficulties of long-range interactions in
the model. Additionally, it can adaptively allocate different weights to different spatial
positions, thereby enabling richer feature information extraction. As shown in Figure 3,
first, the feature vector at a point on the input feature map is subjected to a fully connected
operation and a reshape transformation to unfold into a K × K × G kernel shape, thus
obtaining the Involution kernel corresponding to the coordinate point. Then, the Multiply–
Add operation is performed with the feature vector in the neighborhood of this coordinate
point on the input feature map to obtain the final feature vector. Involution can use larger
7 × 7 convolution kernels to capture long-range interactions and dynamically generate
kernel parameters based on the input feature map at different positions, thereby facilitating
the aggregation of contextual semantic information.

Figure 3. Schematic illustration of Involution.
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On the other hand, vehicles on expressways have different sizes, and when traffic
congestion occurs, vehicles are densely packed and prone to occlusion problems. In order
to solve the occlusion vehicle detection problem under congested conditions and improve
the feature extraction performance of occluded objects, the baseline detector CrowdDet
algorithm uses the FPN proposed by Lin et al. [36], but the simple and crude fusion
method of FPN has limitations on accuracy improvement. Tan et al. proposed BiFPN [22],
which introduces learnable weights to learn the importance of different input features
and repeatedly applies top–down and bottom–up multi-scale feature fusion, as shown
in Figure 4.

Figure 4. BiFPN module structure.

To this end, this paper modified the ResNet-50 backbone network of the CrowdDet
algorithm, using Involution to replace the ordinary convolutional layer, and proposed
InNet50. InNet50 keeps the first four parts of ResNet-50 unchanged, replaces the fifth
convolutional layer with the Involution operator, denoted as Inv5, and replaces FPN in the
CrowdDet algorithm with BiFPN. The proposed InNet50 network is combined with the
BiFPN module. By introducing the Involution network and BiFPN module in the CrowdDet
algorithm, the accuracy of vehicle detection in congested scenarios on expressways can be
improved. This method is called IBCDet in this paper, and the specific network diagram of
IBCDet is shown in Figure 5.

Figure 5. The IBCDet feature extraction and fusion network.
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3.3. Traffic Congestion Detection Based on IBCDet

Kerner [38] proposed that the primary indicator of traffic congestion is the decrease
in traffic capacity, which can be quantified by a reduction in vehicle speed. When traffic
congestion occurs, the decrease in vehicle speed has a dynamic process of propagation from
the front to the back, and this dynamic process is the occurrence of traffic congestion. In this
study, this paper use the reduction in vehicle speed as a key feature point to identify the
occurrence of traffic congestion. To be more specific, this paper adopt the vehicle running
speed threshold division method to detect the status of traffic congestion.

Due to the use of vehicle speed thresholds for traffic congestion detection in this
paper, the first step is to obtain speed information based on the detected number of
vehicles. Currently, traffic monitoring systems used for speed measurement primarily rely
on sensors. Although these sensors are widely used, they are complex to install, expensive
in terms of equipment cost, and require frequent maintenance. Therefore, developing
an economical speed measurement method is necessary in the field of traffic. Given that
existing traffic systems are typically connected to video cameras and image processing
techniques facilitate video analysis, this paper employs machine learning methods for speed
estimation. Specifically, the IBCDet algorithm combined with DeepSort technology [39]
is used to track the detected vehicles, as illustrated by the vehicle running trajectory
diagram in Figure 6. Then, using the Euclidean distance, the distance traveled by the
tracked vehicles between two consecutive frames is calculated based on the centroid points.
The calculated distance is divided by the time difference between the frames to estimate
the speed. The specific equation is shown in Equation (4):

V =

√
((x2 − x1)2 + (y2 − y1)2)

t2 − t1
(4)

where the vehicle is located at position (x1, y1) at time t1 and at position (x2, y2) at time t2.
The above equation calculates the speed of a single vehicle at a given moment. In

order to more accurately reflect the speed of the vehicles in the video, we will calculate the
average speed of all vehicles at a specific time, as shown in Equation (5).

Vs =
∑N

i=1 Vi

N
(5)

where N is the number of vehicles detected by the IBCDet algorithm in the video, and Vi
represents the speed of the i-th vehicle. Reflecting on this equation, the higher the vehicle
detection rate, the higher the accuracy of Vs to some extent.

Figure 6. Vehicle running trajectory schematic diagram.
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After obtaining the vehicle speeds, this paper primarily classifies the average vehicle
speed Vs based on the LoS for expressways in the Chinese Technical Standards for Highway
Engineering [40]. By observing the changes in average vehicle speed, the entire process of
vehicle congestion is divided into five traffic states: stable state, congestion formation state,
severe congestion state, mild congestion state, and congestion dissipation state. This study
establishes a correlation between the changes in Vs and the five states of traffic congestion,
providing clear criteria for their identification. This enables a more accurate assessment
of the extent and dynamics of traffic congestion. The specific discrimination criteria are
presented in Table 1. It should be noted that the specific speed thresholds may slightly
vary across different regions and road sections. The discrimination criteria provided in this
study are universal and derived from experimental observations. Although the scenarios
and durations of expressway congestion can vary, the proposed method in this paper is
applicable to most scenarios, allowing for an accurate classification of the entire process of
traffic congestion formation and dissipation.

Table 1. Division of expressway congestion status.

Status Discrimination Standard Vehicle Speed

Stable state Smooth traffic flow, with
larger gaps between vehicle. 80 km/h < Vs ≤ 120 km/h

Congestion formation state

Smaller gaps between
vehicles, with a sharp
decrease in speed in a short
period of time and traffic
gradually slows down.

40 km/h < Vs ≤ 80 km/h

Severe congestion state Stop-and-go traffic, with very
small gaps between vehicles. Vs ≤ 25 km/h

Mild congestion state

Very small gaps between
vehicles, with significant
impact on traffic flow, but
vehicles are still able to
move forward.

25 km/h < Vs ≤ 40 km/h

Congestion dissipation state

Smaller gaps between
vehicles, with a rapid increase
in speed and traffic gradually
becoming smooth again.

40 km/h < Vs ≤ 80 km/h

4. Experimental Results and Performance Analysis

To evaluate the traffic congestion detection performance of the proposed IBCDet
algorithm in this paper, we first conducted experiments on a self-built Nanjing Raoyue
expressway dataset using the IBCDet algorithm. The main goal was to test the vehicle
detection performance of different improvement schemes on the self-built dataset. Next, ex-
periments were conducted on the UA-DETRAC traffic public dataset captured using a
Cannon EOS 55D camera, which showed that the proposed model has robustness in ve-
hicle detection. Finally, the IBCDet algorithm was combined with a tracking algorithm
to measure the vehicle speed in a monitored video segment of the Nanjing Raoyue Ex-
pressway, and the congestion level was determined based on the Chinese expressway LoS
criteria, enabling the evaluation of the traffic congestion detection performance based on
the IBCDet algorithm.

4.1. Dataset

This paper include a self-built dataset called the Nanjing Raoyue expressway dataset
(NJRY) and a public dataset called UA-DETRAC. The NJRY dataset is provided by the
funding of the project, it comes from the surveillance video of Nanjing Raoyue expressway,
and this paper has obtained the right to use it. It consists of road surveillance videos cap-
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tured on the Nanjing Raoyue expressway under good lighting conditions. The videos were
processed by extracting frames at one-second intervals, resulting in a total of 3081 images.
These images were then annotated using labeling tools, and data augmentation techniques
were applied to expand the dataset to 6162 images, which were used as the experimen-
tal dataset for algorithm evaluation. The dataset was divided into training, testing, and
validation sets in a ratio of 7:2:1.

The UA-DETRAC dataset consists of images from urban area roads. The samples in
the dataset represent various types of vehicles allowed to operate in the city, including
sedans, SUVs, small trucks, and various types of passenger vehicles, but they are lacking
in data samples of large vehicles such as trucks, semi-trailers, and tankers. Because of the
high similarity between adjacent frames in the dataset, this paper sampled 5605 images
using an equidistant sampling method. The dataset was also split into training, testing,
and validation sets in a ratio of 7:2:1.

4.2. Evaluation Metrics of Vehicle Detection

To quantitatively analyze the performance of the proposed vehicle detection model,
this paper adopts the same evaluation metrics as in the literature [20], which mainly include
the following three metrics:

Average Precision (AP). Precision is the proportion of true positive samples predictions
among all positive samples predictions, while Recall is the proportion of true positive
samples predictions among all actual positive instances. The calculation equation is shown
in Equations (6) and (7), respectively:

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

where TP represents true positive samples, FP represents false positive samples, and FN
represents false negative samples. AP is the area under the Precision–Recall curve, and the
higher the AP value, the better the model’s accuracy and performance.

Log Average Miss Rate (MR−2) [41]. The vehicle detection index is measured by
simultaneously calculating the Miss Rate (MR) and the number of False Position Per Image
(FPPI). The equation for MR is shown in Equation (8):

MR = 1− TP/N (8)

where TP represents true positive samples. By plotting the MR–FPPI curve, the MR−2 is
the average value of MR calculated for nine FPPI values. The logarithmic intervals of the
nine points are averaged samplings within the range of [10−2 , 100]. MR−2 represents the
Miss Rate of the vehicle detector at a specified false positive rate, and the lower the value,
the better the detection performance.

Jaccard Index (J I). The equation for J I is shown in Equation (9):

J I(D, G) =
|IOUMatch(D, G)|

|D|+ |G| − |IOUMatch(D, G)| (9)

where D is a set of detection boxes, and G is a set of ground-truth boxes. J I is more
suitable for detection tasks in dense scenes. J I represents the degree of overlap between
the predicted box and the ground-truth box, and the higher the value, the better the
detection performance.

4.3. Performance Analysis

The PyTorch framework is used in this paper to implement the IBCDet algorithm,
and we trained and tested it on an NVIDIA P100 GPU. The experiment uses the training
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weights provided by the CrowdDet algorithm as the pre-training weights for the IBCDet
algorithm. The proposed model was trained using stochastic gradient descent (SGD) with
a momentum value of 0.9, a decay factor of 1e-4, a batch size of 2, and an initial learning
rate of 1.25× 10−3. The IBCDet algorithm was trained for 30 epochs until convergence.

4.3.1. Experimental Results on NJRY Dataset

This paper presents the results of testing the IBCDet algorithm on the NJRY dataset.
Four experiments were designed and compared with current mainstream object detection
algorithms, including Faster RCNN [42], SSD [43], YOLOv3 [44], YOLOv5, YOLOv7 [45],
YOLOV3 and median filtering [27], and CrowdDet [20].

Firstly, Table 2 shows the performance comparison between our proposed method
and the aforementioned object detection algorithms on the NJRY dataset. The results in
Table 2 show that the IBCDet algorithm has better performance than the other methods.
The IBCDet algorithm achieves an AP of 95.30%, MR−2 of 24.44%, and JI of 76.35%, which,
respectively, improve the baseline network by 1.3, 19.23, and 2.1 percentage points in terms
of AP, MR−2, and JI evaluation metrics as well as achieve the best performance on the
NJRY dataset. Additionally, it can be seen from the experimental results that the MR−2

improvement effect is most significant, indicating that our algorithm can effectively reduce
the Miss Rate of vehicle detection.

Table 2. Comparison of results of different methods on the NJRY dataset. The best results are
highlighted in bold.

Method AP% MR−2% JI%

Faster RCNN 75.89 68.00 -
SSD 83.24 62.00 -

YOLOv3 85.13 61.00 -
YOLOv3+median filtering 85.33 57.00 -

YOLOv5 92.31 42.00 -
YOLOv7 93.38 41.00 -

CrowdDet 94.04 30.26 74.76
IBCDet (Ours) 95.30 24.44 76.35

To verify the effectiveness of Involution in the backbone network, the third, fourth,
and fifth convolutional layers of ResNet-50 were replaced with Involution, and their
performance was evaluated, as shown in Table 3. Since the images have a higher resolution
and contain more detailed information in the first two layers of ResNet-50 and the features
have less spatial variation, Involution was not used to replace the first two layers. From
Table 3, it can be seen that the improvement is the most significant when only the fifth
layer convolution is replaced: the AP is improved by 1.1%, the MR−2 is reduced by 17.2%,
and the JI is improved by 3.3% compared to the CrowdDet algorithm. As Involution
dynamically generates different convolution kernels at different positions, it produces
different levels of attention, and by using a 7 × 7 convolution kernel, it obtains more
long-range information. Therefore, the Involution operator can achieve better performance
than ordinary convolution, and it can improve the detection accuracy of distant vehicles.

To verify the ability of BiFPN to capture contextual semantic information, this study
compared the performance of CrowdDet using different feature fusion methods. The ex-
perimental results are presented in Table 4. Since BiFPN adds edges to connect contextual
information on the basis of FPN and multiplies corresponding weights, it can more effec-
tively acquire contextual semantic information and has better detection performance for
vehicles under traffic congestion. As shown in Table 4, the method using BiFPN has better
performance than the method using FPN.

To test the impact of Involution and BiFPN used in this article on the overall de-
tection results of the model, two modules were verified through ablation experiments.
Table 5 shows the experimental results, which indicate that using both modules simultane-
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ously achieves the best results. This demonstrates that the IBCDet algorithm can accurately
detect traffic congested vehicles on an expressway.

To visually demonstrate the excellent performance of the proposed method, this
paper provides visual comparison results of different methods, as shown in Figure 7.
The IBCDet algorithm can achieve satisfactory vehicle detection performance, indicating
that the IBCDet algorithm can effectively utilize long-distance interaction information and
contextual semantic information for vehicle detection.

Figure 7. Visual comparison of our method (IBCDet) with baseline. The left is the baseline and the
right is ours.

Table 3. Comparison experiment results of replacing convolutional layers at different positions of
ResNet-50 with Involution. The best results are highlighted in bold.

Method AP% MR−2% JI%

Baseline 94.04 30.26 74.76
The third layer 93.35 30.16 70.71

The fourth layer 92.56 29.81 70.85
The fifth layer 95.12 25.03 77.25
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Table 4. Comparison experiments of different feature fusion methods. The best results are highlighted
in bold.

Method AP% MR−2% JI%

ResNet+FPN 94.04 30.26 74.76
ResNet+BiFPN 95.19 27.20 75.07

Table 5. Ablation experiments. The best results are highlighted in bold.

Method AP% MR−2% JI%

Baseline 94.04 30.26 74.76
w/o BiFPN 95.12 25.03 77.25

w/o Involution 95.19 27.20 75.07
IBCDet (Ours) 95.30 24.44 76.35

4.3.2. Experimental Results on the UA-DETRAC Dataset

To validate the performance of the proposed vehicle detection algorithm on the public
dataset UA-DETRAC, we compared the IBCDet algorithm with baseline detectors and
commonly used object detection algorithms. As shown in Table 6, the IBCDet algorithm
achieved the best results on the UA-DETRAC dataset with an AP of 97.49%, MR−2 of
14.38%, and JI of 90.43%. Compared to the baseline detector, our method improved the
AP, MR−2, and JI by 0.7%, 7%, and 1.9%, respectively, achieving the best performance.
This indicates that the IBCDet algorithm not only performs well in detecting vehicles in
heavily congested traffic conditions but also has good performance in general vehicle
detection scenarios, demonstrating the good robustness of the IBCDet algorithm.

Table 6. Comparison of results between different methods on UA-DETRAC. The best results are
highlighted in bold.

Method AP% MR−2% JI%

SSD 89.30 54.00 -
Faster RCNN 90.36 49.00 -

YOLOv5 94.91 34.00 -
YOLOv7 95.69 30.00 -

CrowdDet 96.78 15.47 88.73
IBCDet (Ours) 97.49 14.38 90.43

4.4. Using IBCDet to Implement Traffic Congestion Detection

In traffic congestion detection, obtaining the number of vehicles is crucial. From the
above experiments, it can be observed that the proposed IBCDet algorithm in this paper can
more accurately detect vehicles under traffic congestion. Additionally, measuring vehicle
speed is an essential parameter in traffic congestion detection. To validate the effectiveness
of the proposed traffic congestion detection method based on the IBCDet algorithm, a spe-
cific segment of the Nanjing Raoyue expressway was selected for verification. This segment
is a dual six-lane road with a design speed of 120 km/h. The monitoring video of the
downstream section of this road was chosen for experimental validation within a two-hour
timeframe. First, to validate the accuracy of speed measurement, this paper combines the
YOLOv5 algorithm and the IBCDet algorithm with the DeepSort algorithm for vehicle
tracking. The average speed of vehicles at various time intervals in the surveillance video
is calculated using Equation (5) proposed in this paper. The accuracy of calculating is
evaluated, and the results are presented in Table 7. It can be observed that the IBCDet
algorithm achieves the best performance in terms of both vehicle count and vehicle speed
accuracy. Further explanation is provided to demonstrate the effectiveness of our proposed
traffic congestion detection method compared to other methods.
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Table 7. Comparison results of vehicles speed detection accuracy using different methods. The best
results are highlighted in bold.

Method
Number of Vehicles Average Speed of Vehicles

AP% MR−2% Vs Accuracy%

Speed detection
algorithm on

YOLOv5
92.31 42.00 89.46

Speed detection
algorithm on
IBCNet(Ours)

95.30 24.44 91.28

Subsequently, the average speed of vehicles at different time points within the surveil-
lance video is calculated by combining the IBCDet algorithm with the DeepSort algorithm,
and Figure 8 is plotted accordingly. Based on Table 1, the entire process of vehicle con-
gestion in Figure 8 is divided into five traffic states. The speed distribution and speed
confidence intervals of the road segment are analyzed to determine the congestion thresh-
old. Finally, based on the intensity of speed variations at each moment and the obtained
speed threshold, the occurrence and dissipation of traffic congestion are determined.

Figure 8. Traffic state diagrams under different speeds.

Among these states, State A represents the stable state, where vehicles can freely
pass through with high speeds. State B indicates the congestion formation state, which is
characterized by a rapid decrease in speed within a short period. During this state, some
vehicles ahead decelerate, causing a backward propagation of the congestion wave. Rear
vehicles alternate deceleration, and traffic flow gradually becomes disordered. When the
speed falls below a certain threshold, the traffic flow is considered congested. The duration
of congestion varies depending on the actual traffic volume. States C1 and C2 represent
severe congestion and mild congestion, respectively. In State C1, the threshold is below
23.9 km/h, and the vehicle spacing is extremely small. In State C2, the threshold is below
38.5 km/h, and the vehicle spacing is very small, although the traffic flow can still proceed
normally but with reduced mobility. State D represents the congestion dissipation state,
where the speed quickly increases, and the vehicle mobility increases, gradually returning
to the stable state. From Figure 8, it is evident when traffic congestion occurs and dissipates.
This demonstrates that our proposed method using speed thresholds accurately detects
traffic congestion.
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To further demonstrate the effectiveness of the traffic congestion detection method
depicted in Figure 8, we present in Figure 9 the identified congestion scenes from the
surveillance videos of the Nanjing Raoyue expressway. Figure 9a shows a severe congestion
state characterized by frequent stops and starts. Figure 9b shows a mild congestion state
with a lower vehicle occupancy rate compared to the severe congestion state.

From Figure 9, it can be concluded that the congestion detection method for express-
way traffic proposed in this article can accurately analyze the congestion status of a road
segment. To further verify the accuracy of our congestion detection method, Figure 10
shows the number of vehicles corresponding to each speed detected using the IBCDet
algorithm on the specific road segment. It can be seen from Figure 10 that the number of
vehicles is inversely proportional to the vehicle speed. When traffic congestion occurs, the
vehicle speed on the road segment decreases significantly, while the number of vehicles
increases. When the traffic congestion status dissipates, the vehicle speed increases and
the number of vehicles decreases. This result verifies the accuracy of vehicle detection and
vehicle speed calculation in the traffic congestion algorithm based on IBCDet.

(a) (b)

Figure 9. Traffic congestion images from Nanjing Raoyue expressway: (a) severe congestion;
(b) mild congestion.
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Figure 10. The relationship between speed and vehicle count during the entire duration of congestion.
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5. Conclusions

To enhance the vehicle detection accuracy and traffic congestion detection accuracy
in expressway surveillance scenarios, this paper proposes an improved vehicle detection
algorithm based on CrowdDet, which is called IBCDet. Then, a tracking algorithm based
on IBCDet is designed to calculate the running speed of vehicles, and the average running
speed is used to achieve traffic congestion detection based on China expressway LoS
criteria. The self-built NJRY dataset and the public dataset UA-DETRAC are used to verify
the performance of the proposed algorithm. Experimental results demonstrate that our
algorithm outperforms commonly used object detection algorithms in terms of both vehicle
detection accuracy and traffic congestion detection accuracy. The proposed algorithm
provides an effective solution for detecting vehicles and detecting traffic congestion in
expressway surveillance scenarios.

The proposed method in this paper can effectively detect traffic congestion on a dataset
collected under good lighting conditions. However, its performance is not satisfactory
under complex weather conditions and low-light conditions. In the future, we plan to
expand our research to detect traffic congestion in different scenarios and under various
weather conditions in order to further validate and improve the robustness and adaptability
of our algorithm.
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