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Abstract: Convolutional neural networks (CNNs) have attracted significant attention as a commonly
used method for hyperspectral image (HSI) classification in recent years; however, CNNs can only be
applied to Euclidean data and have difficulties in dealing with relationships due to their limitations
of local feature extraction. Each pixel of a hyperspectral image contains a set of spectral bands that
are correlated and interact with each other, and the methods used to process Euclidean data cannot
effectively obtain these correlations. In contrast, the graph convolutional network (GCN) can be used
in non-Euclidean data but usually leads to over-smoothing and ignores local detail features due to the
need for superpixel segmentation processing to reduce computational effort. To overcome the above
problems, we constructed a fusion network based on the GCN and CNN which contains two branches:
a graph convolutional network based on superpixel segmentation and a convolutional network with
an added attention mechanism. The graph convolutional branch can extract the structural features
and capture the relationships between the nodes, and the convolutional branch can extract detailed
features in the local fine region. Owing to the fact that the features extracted from the two branches
are different, the classification performance can be improved by fusing the complementary features
extracted from the two branches. To validate the proposed algorithm, experiments were conducted on
three widely used datasets, namely Indian Pines, Pavia University, and Salinas. An overall accuracy
of 98.78% was obtained in the Indian Pines dataset, and overall accuracies of 98.99% and 98.69% were
obtained in the other two datasets. The results show that the proposed fusion network can obtain
richer features and achieve a high classification accuracy.

Keywords: hyperspectral images; convolutional neural networks; graph convolutional networks;
feature fusion

1. Introduction

Hyperspectral imaging technology combines imaging technology with spectral tech-
nology and has achieved wide application in recent years. With the advancement of
hyperspectral imaging technology, hyperspectral imaging systems can simultaneously ac-
quire abundant spectral information and two-dimensional spatial information of a feature
and then form a hyperspectral image (HSI) [1-3]. Therefore, hyperspectral imaging tech-
nology has become a hotspot for research due to its rich spectral and spatial information.
An HSI provides from tens to hundreds of continuous spectral bands [4]. The abundance
of spectral information greatly enhances the ability to distinguish objects. Therefore, an
HSI is commonly used in disaster monitoring, vegetation classification, fine agriculture,
and medical diagnosis due to its extremely high spectral resolution [1,2,5].

As the focus of the field of hyperspectral image analysis, the HSI classification task
has always received significant attention from scholars. Hyperspectral image classification
aims to classify each pixel point in the image [6]. In the early days, most HSI classification
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methods mainly relied on some traditional machine learning algorithms [7] which were
mainly divided into two processes: traditional manual feature engineering and classifier
classification [8]. Feature engineering aims to process data based on knowledge so that
the processed features can be better used in subsequent classification algorithms. Com-
monly used feature engineering methods include principal component analysis (PCA),
independent component analysis (ICA), and other dimensionality reduction methods.

Typical classification algorithms include the support vector machine (SVM) [9], ran-
dom forest (RF) [10], and k-nearest neighbor (KNN) [11], etc. [12,13]. The above machine
learning approaches only focus on the spectral information of an HSI. It is inaccurate to use
the spectral information only for the classification task, thus limiting the improvement in
the classification accuracy and the gradual elimination of spectral information.

As a result of the triumph of deep learning in areas such as computer vision, many
approaches based on deep learning have also been adopted for hyperspectral image
classification [14]. Among the deep learning methods, convolutional neural networks
(CNNs) [15] have become a popular method for hyperspectral image classification due to
their excellent performance. Deep-learning-based methods represented by CNNs have
replaced traditional machine-learning-based HSI classification methods and have become a
research hotspot [16].

Deep learning methods of 1D-CNN [17] and 2D-CNN were first applied to hyperspec-
tral image classification, and the performance surpassed machine learning methods. How-
ever, the above methods suffer from the underutilization of spatial and spectral information.
Therefore, the 3D-CNN model [16] was proposed, which can extract spatial-spectral fea-
tures simultaneously and therefore obtain better classification results, but the model has
a large computational burden. To extract richer features, some scholars have proposed a
hybrid spectral CNN (HybridSN) [18] which combines 3D-CNN and 2D-CNN to exploit
the spatial-spectral features of an HSI with less computational burden than 3D-CNN.

With the purpose of finding correlations between data, highlighting important features,
and ignoring irrelevant noise information, an attention mechanism has been proposed.
Li et al. proposed a two-branch double attention network (DBDA) [19] which contained
two branches to extract spatial and spectral features and added an attention mechanism
to obtain better classification results. In order to capture richer features, deeper network
layers are needed, but the deeper network layers will lead to computational complexity
and make the model training difficult. Zhong et al. introduced a residual structure based
on the 3D-CNN model [20], constructed a spectral residual module and a spatial residual
module, and achieved more satisfactory classification results.

Although the classification results achieved by CNN-based classification methods
have been good, there are still some limitations. First, the CNN is designed for Euclidean
data, and the traditional CNN model can only convolve regular rectangular regions, so
it is difficult to obtain complex topological information. Second, CNNs cannot capture
and utilize the relationship between different pixels or regions in hyperspectral images;
they can only extract detailed features in the local fine region, but the structure features
and dependency relationship between the nodes may provide useful information for the
classification process [21,22].

In order to obtain the relationship between objects, graph convolutional networks
(GCNs) have been developed rapidly in recent years [23]. GCNs are designed to process
graph-structured data. CNNs are used for processing Euclidean data such as images, which
are a regular matrix. Therefore, no matter where the convolution kernel of a CNN is located
in the image, the consistency of the result of the operation is guaranteed (translational
invariance). However, the graph-structured data are non-Euclidean data, and the graph
structure is irregular, so it is impossible to apply the CNN on graph data. The graph
convolution is designed to resolve this situation. The most important innovation of the
GCN is to overcome the inapplicability of translation invariance on non-Euclidean data, so
it can be applied to extract the features of the graph structure.
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Kipf et al. proposed the GCN model [24] which is able to operate on non-Euclidean
data and extract the structural relationship between different nodes [21]. Some scholars
have attempted to apply the GCN to hyperspectral classification tasks [25], and various
studies have shown that the classification results are not only affected by spectral infor-
mation but are also related to the spatial structure information of the pixels [22,26]. By
treating each pixel or superpixel in the HSI as a graph node, the hyperspectral image can be
converted into graph-structured data, and then the GCN can be used to obtain the spatial
structure information in the image and provide a more effective information for the classi-
fication. Hong et al. [22] proposed the MiniGCN method and constructed an end-to-end
fusion network which was able to sample images in small batches, classify images as sub-
graphs, and achieve good classification results. Wan et al. proposed MDGCN [27], which is
different from the commonly used GCN. Working on a fixed graph model, MDGCN is able
to make the graph structure update dynamically so that the two steps benefit each other. In
addition, we cannot consider each pixel of an HSI as a graph node due to the limitation of
computational complexity, so hyperspectral images are usually preprocessed as superpixels.
The superpixel segmentation technique is applied to the construction of the graph structure,
which reduces the complexity of model training significantly. However, the superpixel
segmentation technique leads to another problem. Superpixel segmentation often leads
to smooth edges of the classification map and a lack of local detailed information of the
features. This problem restricts the improvement of the classification performance and has
an impact on the analysis of the results.

To obtain the relational features of an HSI and to solve the problem of missing details
due to superpixel segmentation, inspired by [28], we designed a feature fusion of the
CNN and GCN (FCGN). The algorithm consisted of two branches: the GCN branch and
CNN branch. We applied the superpixel segmentation technique in the GCN branch. The
superpixel segmentation technique can aggregate similar pixels into a superpixel. Then,
we treated these superpixels as graph nodes. Graph convolution processes the data by
aggregating the features of each node as well as its neighboring nodes. This approach
can capture the structure features and dependency relationship between the nodes and
thus better represent the features of the nodes. Compared with the CNN branch, the GCN
branch based on superpixel segmentation can acquire structure information over a longer
distance, while the CNN branch can obtain the pixel-level features of the HSI and perform
a fine classification of local regions. Finally, the different features acquired by the two
branches were fused to obtain richer image features by complementing their strengths. In
addition, the attention mechanism and depth-wise separable convolution algorithm [29]
were applied to further optimize the classification results and network parameters.

2. Methodology

This section presents the proposed FCGN for HSI classification, which includes the
overall structure of the FCGN and the function of each module in the network.

2.1. General Framework

To solve the problem of missing local details in classification maps due to superpixel
segmentation, we proposed a feature fusion of the CNN and GCN, as shown in Figure 1.
The proposed network framework contained a spectral dimension reduction module
(see Section 2.2 for details), a graph convolutional branch (see Section 2.3 for details), a
convolutional branch (see Section 2.4 for details), a feature fusion module, and a Softmax
classifier. It should be noted that the features extracted from convolutional neural networks
were different from those of graph convolutional networks. Feature fusion methods can
utilize different features of an image to complement each other’s strengths, thus obtaining
more robust and accurate results. Because of that, it is possible to obtain better classification
results than a single branch by fusing features from two branches.
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Figure 1. The framework of the FCGN algorithm. (al,a2) Feature conversion module; (b1,b2) SE
attention module.

The original HSI was handled by the spectral dimensionality reduction module first,
which was used for spectral information transformation and feature dimensionality re-
duction. Then, we used convolutional neural networks to extract the detailed features
in a local fine region. Considering the problem that the CNN-based method may induce
overfitting with too many parameters and an insufficient number of training samples,
we used a depth-wise separable convolution to reduce the parameters and enhance the
robustness. To further improve the model, we added attention modules to the convolution
branch. We used the SE attention module to optimize the proposed network [30]. The SE
module can obtain the weight matrix of different channels. Then, the weight values of each
channel calculated by the SE module were multiplied with the two-dimensional matrix
of the corresponding channel of the original feature map. We used graph convolutional
networks to extract the superpixel-level contextual features. In this branch, we applied a
graph encoder and a graph decoder to implement the transformation of pixel features and
superpixel-level features (see Section 2.5 for details). Next, the different features acquired
by the two branches were fused to obtain richer image features by complementing their
strengths. Finally, after the processing of the Softmax classifier, we obtained the label of
each pixel. The role of Softmax is to assign a probability value to each output classification,
indicating the probability of belonging to each class.

2.2. Spectral Dimension Reduction Module

There is a significant amount of redundant information in the original hyperspectral
image. Using dimension reduction modules, it is possible to significantly reduce the
computational cost without significant performance loss. The 1 x 1 convolutional layer has
the ability to remove useless spectral information and increase nonlinear characteristics.
Moreover, it is usually used as a dimension reduction module to remove computational
cost, as shown in Figure 2. In the FCGN network, hyperspectral images are first processed
using two 1 x 1 convolutional blocks. Specifically, each 1 x 1 convolutional block contains
a BN layer,a 1 x 1 convolution layer, and an activation function layer. The role of the BN
layer is to accelerate the convergence of the network, and the activation function layer
can significantly increase the network’s nonlinearity to achieve better expressiveness. The
activation function in this module adopts Leaky ReLU.

BN
1x1@128
Leaky Relu

Figure 2. Dimension reduction module. Each 1x1 convolution block contains the above three parts.



Appl. Sci. 2023,13,7143

50f17

We have:

Xﬁ,w,n = U( z wx,y,b,ny(h,w,b + BX,y,b,n) (1)
x,y,b

where X}, v 1, denotes the input feature map, )N(h,w,b denotes the batch-normalized input
feature map, Xj, ., , denotes the output feature map, W, 1, , denotes the convolution kernel
of the input feature map in row x and column y, B, y 1, , denotes bias, and n is the number
of convolution kernels. o represents the Leaky ReLU activation function.

2.3. Graph Convolution Branch

Numerous studies have shown that the classification accuracy can be effectively
improved by combining the different features of images. Traditional CNN models can
only convolve images in regular image regions using convolution kernels of a fixed size
and weight, resulting in an inability to obtain global features and structural features of
images. Therefore, it is often required to deepen the network layer to alleviate this problem.
However, as the number of network layers deepens, the chance of overfitting increases
subsequently, especially when processing data with a small amount of training samples
such as HSIs. Such a result is unacceptable to us.

Therefore, a GCN branch based on superpixel segmentation was constructed to obtain
the structural features. Different from the CNN, the GCN is a method used for the graph
structure. The GCN branch can extract the structure features and dependency relationship
between the nodes from images. These features are different from the neighborhood spatial
features in a local fine region extracted by the CNN branch. Finally, the property of the
network can be enhanced by fusing the different features extracted from the two branches.
The graph structure is a non-Euclidean structure that can be defined as G = (V,E), where
V is the set of nodes and E is the set of edges. V and E are usually encoded into a degree
matrix D and node matrix A, where D records the relationship between each pixel of the
hyperspectral image and A denotes the number of edges associated with each node.

Because the degree of each graph node in the graph structure is not the same, the
GCN cannot directly use the same-size local graph convolution kernel for all nodes similar
to the CNN. Considering that the convolution in the spatial domain is equivalent to
the product in the frequency domain, researchers hope to implement the convolution
operation on topological graphs with the help of the theory of graph spectra, and they have
proposed the frequency domain graph convolution method [31]. The Laplacian matrix of
the graph structure is defined as L = D — A. The symmetric normalized Laplacian matrix
is defined as:

L=1Iy—-D 2AD /2 )

The graph convolution operation can be expressed by Equation (3).

g0 x =Ugy(A)UTx €)

where U is the orthogonal matrix composed of the feature vectors of the Laplacian matrix
L by column, and gp(A) is a diagonal matrix consisting of parameter 6, representing the
parameter to be learned. The above is the general form of graph convolution, but Equation
(3) is computationally intensive because the complexity of the eigenvector matrix U is
O(N 2). Therefore, Hammond et al. [32] showed that this process can be obtained by fitting
a Chebyshev polynomial, as in Equation (4).

gpex = kioeka (f)x 4)

where L = A L — Iy and Amax are the largest eigenvalues of L. 0y is the vector of the
Chebyshev coefficients. In order to reduce the computational effort, the literature [33] only
calculates up to K = 1. Apax is approximated as two; then, we have:
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go e~ 9<1N n D*WAD*W)x )
In addition, self-normalization is introduced:

Iy + D 12AD 12 & D V*AD 1/ ©)

where A = A + Iy,Dji = kaij. Finally, the graph convolution is:
j

It = 0(15_1/ 2AD Y 2H’wl) @)

2.4. SE Attention Mechanism

The attention mechanism can filter key information from the input images and enhance
the accuracy of the model with a limited computational capability. Therefore, we applied
the attention mechanism to the convolutional branch. For simplicity, we chose the SE
attention mechanism. The purpose of the SE module is to obtain more important feature
information by a weight matrix that provides different weights to different positions of the
image from the perspective of the channel domain. The SE module consists of three steps.
First, the compression operation performs feature compression from the spatial dimension
to turn the feature of H x W x Bintoa 1 x 1 x B feature. Second, the excitation operation
generates weights for each feature channel by introducing the w parameter. Finally, the
weight outputs from the excitation block are considered as the importance of each feature
channel after selection, and the weights of each channel calculated by the SE module are
multiplied with the two-dimensional matrix of the corresponding channel of the original
feature map to complete the rescaling of the original features in the channel dimension to
highlight the important features. The SE module is shown in Figure 3.

. U s, (IO 2 ;
/ 1x1xB 1x1xB \ ///

H' L H Fscale(, )

W, W,
B B

Figure 3. Schematic diagram of SE attention mechanism mainly divided into two operations of
squeeze and excitation.

2.5. Superpixel Segmentation and Feature Conversion Module

The GCN can only be applied on graph-structured data, and in order to apply the
GCN to hyperspectral images, the hyperspectral image needs to be constructed as a graph
structure first. The simplest method is to consider each pixel of the image as each node of
the graph structure, but this method leads to a huge computational cost. Therefore, it is
common to first apply superpixel segmentation to the HSIL

Currently, common superpixel segmentation algorithms include SLIC [34], Quick-
Shift [35], and Mean-Shift [36]. Among them, the SLIC algorithm assigns image pixels to
the nearest clustering centers to form superpixels based on the distance and color difference
between pixels. This method is computationally simple and has excellent results compared
with other segmentation methods.

In general, the SLIC algorithm has only one parameter: the number of superpixels
K. Suppose an image with M pixel is expected to be partitioned into K superpixel blocks;
then, each superpixel block contains M/K pixels. Under the assumption that the length
and width of each superpixel block are uniformly distributed, the length and width of each
superpixel block can be defined as S, S = sqrt (M /K).

Second, in order to avoid the seed points falling on noisy points or line edges of the image
and thus affecting the segmentation results, the positions of the seed points are also adjusted
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by recalculating the gradient values of the pixel points in the 3 x 3 neighborhood of each
seed point and setting the new seed point to the minimum gradient in that neighborhood.

Finally, the new clustering centers are calculated iteratively by clustering. The pixel
points in the 2S5 x 2S region around the centroid of each superpixel block are traversed.
After that, each pixel is divided into the superpixel blocks closest to it; thus, an iteration is
completed. The coordinates of the centroid of each superpixel block are recalculated and
iterated, and convergence is usually completed in 10 iterations. Figure 4 represents the
diagram of different number of superpixels in a image.

Figure 4. Schematic diagram of different number of superpixels for one image.

In this paper, the number of superpixel was not the same in each dataset but rather
varied according to the total number of pixels in the dataset, for which the number of
superpixels is specified as K = (H x W) /B, where H and W are the length and width of
the dataset, and S is a segmentation factor to control the number of superpixels, which is
100 in this paper.

It is worth noting that since each superpixel had a different number of pixels, and
because the data structures of the two branches were different, the CNN branch and the
GCN branch could not be fused directly. Inspired by [28], we applied a data transformation
module that allowed the features obtained from the GCN branch to be fused with the
features from the CNN branch, as shown in Figure 5.

— E Association Matriax Q} —

Xy \E

Figure 5. Pixel and superpixel data conversion module. This module allows features to be propagated
between pixels and superpixels.
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X; denotes the i-th pixel in the flattened HSI and V; denotes the average radiance of the

pixels contained in the superpixels S;. Let Q € RHW*Z be the association matrix between
pixels and superpixels, where Z denotes the number of superpixels; then, we have:

1, if>_(l' € 5]'

Q= ®)

0,ifX; ¢ S;

where X = Flatten(X), Q; ; denotes the value of Q at the association matrix, and X; denotes

the i-th pixel in X. Finally, the feature conversion process can be represented by:

V = Encoder(X;Q) = QTﬂatten(X), 9)

X = Decoder(V; Q) = reshape(QV), (10)

where Q denotes the normalized Q by column, and reshape(QV) denotes restoring the
spatial dimension of the flattened data. V denotes the nodes composed of superpixels and

X denotes the feature converted back to Euclidean domains. In summary, features can be
projected from the image space to the graph space using the graph encoder. Accordingly,
the graph decoder can assign node features to pixels.

3. Experiments and Discussion

The overall accuracy (OA), average accuracy (AA), and kappa coefficient (kappa) were
employed as the evaluation indices of the classification performance. The AA is equal
to the sum of the number of correctly classified samples divided by the total number of
samples. AA represents the average value of each accuracy for each category. The kappa
coefficient is a reference metric that enables the calculation of overall consistency and
classification consistency.

3.1. Experimental Datasets

To evaluate the effectiveness of the model, three commonly used hyperspectral
datasets—Indian Pines (IP), Pavia University (PU), and Salinas (SA)—were used to evaluate
the FCGN algorithm in this paper.

The IP dataset was acquired by the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) sensor over the northwestern Indian region. This dataset contains 145 x 145 pixels
with 220 spectral bands ranging from 0.4 to 2.5 um. After removing 20 water absorption
and noisy spectral bands, 200 bands were reserved for the experiment. The land cover
scene consists of 16 classes with 10,366 labeled pixels. The dataset was divided into training,
validation, and test sets. For this dataset, the sample size was relatively small, and the
number of samples of each class was extremely unbalanced. Overall, 5%, 1%, and 94% of
samples per class were randomly selected for training, validation, and testing, respectively,
as presented in Table 1.

The PU dataset was captured by the reflective optics system imaging spectrometer (ROSIS)
sensor at Pavia University. This dataset contains 610 x 340 pixels with 125 spectral bands
ranging from 0.43 to 0.86 um. In total, 103 bands were utilized after discarding noisy bands.
There are nine land cover categories in this dataset. Overall, 0.5%, 0.5%, and 99% of samples
per class were selected for training, validation, and testing, respectively, as listed in Table 2.

The SA dataset is another commonly used dataset for hyperspectral image classifica-
tion. It was recorded by the AVIRIS sensor over the Salinas Valley. This dataset contains
512 x 217 pixels with 224 spectral bands, and 204 bands were utilized. There are 16 land
cover categories in this dataset. Because this dataset has a larger number of samples com-
pared with Indian Pines, 0.5% of the labeled samples were selected as the training set and
the validation set, and 99% of samples per class were randomly selected for testing, as
listed in Table 3.
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Table 1. The dataset division for each class of the IP dataset.

NO. CLASS Train Val Test
1 Alfalfa 3 1 50
2 Corn-notill 72 14 1348
3 Corn-mintil 42 8 784
4 Corn 12 2 220
5 Pasture 25 4 468
6 Trees/Grass 37 7 703
7 Pasture-mowed 2 1 23
8 Hay-windrowed 24 4 461
9 Oats 1 1 18
10 Soybeans-notill 48 9 911
11 Soybeans-mintill 123 24 2321
12 Soybeans-cleantill 31 6 577
13 Wheat 11 2 199
14 Woods 65 12 1217
15 Building-Grass 19 3 358
16 Stone-steel Towers 5 1 89

Total 520 99 9747
Table 2. The dataset division for each class of the PU dataset.

NO. CLASS Train Val Test
1 Asphalt 34 34 6563
2 Meadows 94 94 18,461
3 Gravel 11 11 2077
4 Trees/Grass 16 16 3032
5 Metalsheets 7 7 1331
6 Baresoil 26 26 4977
7 Bitumen 7 7 1316
8 Bricks 19 19 3644
9 Shadows 5 5 937

Total 219 219 42,338
Table 3. The dataset division for each class of the SA dataset.

NO. CLASS Train Val Test
1 Brocoli_green_weds_1 11 11 1987
2 Brocoli_green_weds_2 19 19 3688
3 Fallow 10 10 1956
4 Fallow_rough_plow 7 7 1380
5 Fallow_smooth 14 14 2650
6 Stubble 20 20 3919
7 Celery 18 18 3543
8 Grapes_untrained 57 57 11,157
9 Soil_vinyard_develop 32 32 6139

10 Corn_senesced_green_weeds 17 17 3244
11 Lettuce_romaine_4wk 6 6 1056
12 Lettuce_romaine_5wk 10 10 1907
13 Lettuce_romaine_6wk 5 5 906
14 Lettuce_romaine_7wk 6 6 1058
15 Vinyard_untrained 37 37 7194
16 Vinyard_vertical_trellis 10 10 1787
Total 279 279 53,571
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3.2. Experimental Settings

The proposed architecture consisted of three modules. The number of layers in
the spectral dimension reduction module, graph convolution branch, and convolution
branch were all set to two. The spectral dimension reduction modules started with two
1 x 1 convolution layers (128 filters and 128 filters). The size of the convolution kernels in
the CNN branch was set to 3 x 3 (128 and 64 filters), and the sample output dimensions
in the GCN branch were set to 128 and 64. We used the Adam optimizer to train our
model with a learning rate of 0.001, and the training epoch was set to 500. The number of
superpixels for each dataset was set to 1/100 of the number of pixels.

The proposed algorithm is implemented in Python 3.8.12 and Pytorch1.1.0 using
Python language. The hardware used for training is an i7-10750H CPU and a NVIDIA
GeForce RTX 2060s GPU.

3.3. Classification Results

To verify the performance of the model, several advanced HSI classification meth-
ods were selected for comparison with this model, including 3D-CNN [37], GCN [24],
MiniGCN [22], HybirdSN [18], DBDA [19], and MDGCN [27]. The number of training
samples and test samples selected for each method were the same, and the hyperparame-
ters were the same as in the original paper. The classification accuracies of the different
methods on each dataset are shown in Tables 4-6 the best results in each class were
bolded and the classification maps obtained by these methods are illustrated in Figures 6-§;
the experimental results are the average of five experiments. It is worth noting that al-
though we have minimized the risk of data leakage, the issue may still exist and affect the
classification results.

Table 4 shows the classification results of the different models on the IP dataset. The
lack of training samples on the IP dataset and the imbalance in the number of samples from
different categories made classification challenging, but our classification method obtained
the best classification results. It can be observed that the classification accuracy obtained
by the 3D-CNN was lower than other methods, which might have been due to the fact
that the 3D-CNN had more parameters, but the number of training samples was small in
this experiment. In addition, it did not take full advantage of the relationship information
contained in the samples, which eventually led to poor classification results. HybirdSN
combines 3D-CNN layers with 2D-CNN layers, which has a stronger feature representation
capability by combining spatial and spectral information and a lower number of param-
eters, but the accuracy was still lower in the case of a small number of samples. DBDA
contains two branches to obtain spatial-spectral features, respectively, and introduces the
attention mechanism and eventually achieved better classification results than HybirdSN.
The GCN-based classification method can generally obtain better classification results with
a smaller number of samples. MiniGCN adds a convolutional branch and adopts a small
batch strategy compared with GCN. MiniGCN achieved better classification results but did
not take into account the different importance of different features. In contrast, the FCGN
obtained the best classification results, which was greatly due to the design of two branches
to obtain complementary features. The graph convolution branch based on superpixel
segmentation can obtain large-scale irregular features of the image and the relationship
between different nodes, reducing the classification error caused by noise. The convo-
lutional neural network with the added attention mechanism can acquire regular image
features at a small image scale and generate detailed edge features, which complements
the smooth features acquired by the superpixel segmentation-based graph convolution
branch to obtain better classification results on both large and small scales. The convolution
branch was able to process the local fine area to obtain the detailed features of the image;
due to the misclassification of pixels, the classification result of the convolution branch
contained more noise. By fusing the features of the two branches, the influence of noise on
the classification results was greatly reduced. In terms of running time, the FCGN had a
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medium running time compared to the other comparison algorithms due to the use of the
depth-separable convolution algorithm.

Table 5 shows the classification results of the different models on the Pavia University
dataset. It can be observed that the classification results of each algorithm slightly improved
relative to those of the IP dataset, which may be because of the fewer sample classes in the
PU dataset and because the number of samples in each class was similar. It is remarkable
that the DBDA obtained better classification results than HybirdSN, which may have
resulted from the two-branch structure of HybirdSN and the attention mechanism. The
FCGN performed better than the compared methods, with an OA of 98.99%, because
the FCGN could fully exploit the features of the samples. Moreover, the addition of the
attention mechanism also improved the classification results. The runtime of the FCGN
algorithm slightly increased compared to some comparison algorithms, but considering the
competitive classification results of this algorithm and the short testing time, the increase
in the runtime is worth it.
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Figure 6. The classification maps for Indian Pines. (a) False-color image; (b) ground truth; (c) 3DCNN;
(d) GCN; (e) MiniGCN; (f) HybirdSN; (g) DBDA; (h) MDGCN; (i) FCGN; (j) Figure legend.
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Figure 7. The classification maps for Pavia University. (a) False-color image; (b) ground truth;
(c) 3DCNN; (d) GCN; (e) MiniGCN; (f) HybirdSN; (g) DBDA; (h) MDGCN; (i) FCGN; (j) Figure legend.
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Figure 8. The classification maps for Salinas. (a) False-color image; (b) ground truth; (¢) 3DCNN;
(d) GCN; (e) MiniGCN;; (f) HybirdSN; (g) DBDA; (h) MDGCN; (i) FCGN; (j) Figure legend.

Table 4. Classification results of the IP dataset.

Class 3DCNN GCN MiniGCN HybirdSN DBDA MDGCN FCGN
1 80.00 94.66 93.73 83.44 99.51 88.88 100.00
2 90.16 70.37 72.54 80.38 93.55 96.16 96.51
3 80.05 66.89 76.83 82.21 94.11 94.17 98.46
4 86.54 86.88 98.16 99.19 96.42 92.59 97.36
5 84.43 89.27 93.40 96.47 97.64 96.79 97.13
6 79.12 93.38 92.64 98.81 96.23 99.50 100.00
7 67.22 9291 88.48 86.89 96.66 96.82 92.89
8 90.87 96.14 97.59 98.04 91.35 95.72 98.68
9 70.00 100.00 99.73 73.11 89.37 99.98 100.00
10 79.11 85.37 75.98 90.41 70.30 85.70 97.30
11 90.81 68.45 79.42 74.23 90.32 96.06 98.63
12 72.50 78.90 79.51 91.00 97.38 98.88 95.17
13 70.88 99.84 98.93 71.88 97.99 97.21 99.59
14 85.83 85.12 87.88 98.33 98.34 99.93 99.33
15 92.30 82.67 89.82 94.48 96.25 96.17 95.71
16 69.22 97.41 100.00 70.22 86.66 94.82 97.75
OA(%) 78.47 86.67 88.67 87.99 94.55 97.62 98.78
AA(%) 80.57 86.77 89.04 86.82 93.26 95.58 97.80
Kappa 80.70 84.38 88.39 87.44 94.01 95.49 97.99
Train time(s) 250.11 59.02 342.55 220.99 298.32 1204.15 204.50
Test time(s) 15.04 5.60 15.38 14.51 21.77 20.33 5.92
Table 5. Classification results of the PU dataset.
Class 3DCNN GCN MiniGCN HybirdSN DBDA MDGCN FCGN
1 80.85 77.26 86.22 94.10 96.36 99.00 98.41
2 80.49 76.97 92.21 94.36 99.11 98.21 99.91
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Table 5. Cont.
Class 3DCNN GCN MiniGCN HybirdSN DBDA MDGCN FCGN
3 69.77 69.19 86.13 82.40 90.32 86.81 97.35
4 95.99 90.88 92.06 95.27 97.99 94.55 97.96
5 91.30 94.27 95.11 95.77 99.01 99.76 99.73
6 90.57 92.98 90.34 92.44 97.55 99.80 99.00
7 80.21 82.81 88.99 89.06 94.37 98.07 99.89
8 89.73 86.91 82.77 80.04 88.94 96.92 98.68
9 91.12 95.55 92.87 99.11 98.39 98.38 98.41
OA (%) 86.33 85.41 89.67 92.99 97.22 98.22 98.99
AA(%) 85.56 85.20 89.63 92.81 95.78 96.83 98.81
Kappa 85.21 80.37 87.09 89.98 96.72 97.27 97.90
Train time(s) 131.44 251.59 1058.37 122.61 145.88 3265.31 1283.37
Test time(s) 88.21 17.33 50.15 65.48 118.37 57.29 38.94
Table 6. Classification results of the SA dataset.
Class 3DCNN GCN MiniGCN HybirdSN DBDA MDGCN FCGN
1 88.31 98.64 96.19 99.34 99.62 100.00 99.74
2 88.35 98.99 99.02 98.61 99.14 100.00 100.00
3 82.01 73.84 86.32 94.38 97.45 99.16 100.00
4 84.02 99.49 98.32 97.04 94.77 100.00 99.82
5 87.76 99.66 96.35 98.24 98.02 94.32 97.71
6 91.42 99.97 99.55 99.03 99.99 99.98 98.98
7 90.94 93.54 98.54 96.89 97.62 98.85 99.99
8 80.07 94.70 91.40 86.55 87.35 86.18 94.25
9 94.88 100.00 99.74 99.12 89.37 99.97 99.97
10 88.76 70.82 84.25 89.89 89.57 93.84 96.68
11 83.62 80.85 83.51 91.23 90.32 98.29 99.01
12 87.99 95.05 94.99 97.92 97.38 94.98 99.99
13 72.15 94.94 89.47 99.46 98.99 97.00 99.36
14 73.05 97.82 98.94 97.66 95.69 97.12 99.10
15 91.34 54.25 67.39 81.47 86.77 95.92 94.56
16 92.96 65.60 64.61 99.28 96.34 98.65 98.67
OA (%) 86.30 91.47 91.76 96.25 92.55 96.80 98.69
AA(%) 86.10 90.92 90.53 95.38 94.90 97.14 98.61
Kappa 85.09 88.01 88.39 92.09 93.37 95.34 97.18
Train time(s) 153.09 269.04 1094.67 146.96 176.55 3377.41 1357.15
Test time(s) 93.37 23.02 57.47 72.72 120.17 65.33 42.46

Table 6 shows the classification results of the different models on the Salinas dataset.
We can see that the FCGN was superior to other methods in terms of the OA, AA, and
Kappa coefficient, proving the effectiveness of the FCGN algorithm again. By observing
the classification results of Grapes untrained and Vineyard untrained ground features in
the Salinas dataset, the classification accuracy is relatively low; this is largely because the
two ground features are mixed together. We can see from Figure 8 that the FCGN method
had fewer misclassified pixels than other methods and was more accurate for classifying
large-scale regions.

4. Discussion
4.1. Influence of Label Ratio

To evaluate the generalizability and robustness of the proposed FCGN and other
methods, we set the number of training samples per class from 5 to 25 with an interval
of 5. Figure 9 shows the OA obtained by the different methods on the three datasets. It
can be observed that the proposed FCGN achieved a better classification accuracy than
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Figure 9. The classification performance of each method with different training set ratios. (a) India
Pines; (b) Pavia University; (c) Salinas.

4.2. Influence of Segmentation Factor

The larger the segmentation factor, the smaller the number of superpixels; therefore,
the larger the size of the superpixels, the more they can preserve larger objects and suppress
more noise. Conversely, the smaller the segmentation factor, the larger the number of
superpixels; therefore, the smaller the size of the segmentation map obtained, the more
smaller objects which can be preserved and noise which can be contained.

In order to investigate the influence of the number of superpixel blocks on the perfor-
mance of the FCGN, in this section, the segmentation coefficients were set to 50, 100, 150,
and 200, and the influence of different segmentation factors on the classification accuracy
of the FCGN was tested on the three datasets, as shown in Figure 10. It can be seen that the
classification accuracy of the FCGN on the IP dataset decreased with the increase in the
segmentation coefficients, which was due to the fact that the samples in the IP dataset were
of a smaller scale. The size of the superpixel was too large, which missed the sample detail
information. The OA of the PU dataset was similar when the segmentation factor was
50 and 100, and the highest accuracy was achieved when the factor was 100. The sample
scale on the SA dataset was much larger, so as the size of the superpixels increased, the
classification results did not decrease. Instead, more noise effects were removed, increasing
the accuracy. However, when the segmentation factor reached a certain size, the classifica-
tion accuracy was bound to decrease gradually. In order to prevent the classification map
from being smooth and missing too much detailed information, the segmentation factor
was set to 100 in this chapter.
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Figure 10. The classification performance with different segmentation factors. (a) India Pines;
(b) Pavia University; (c) Salinas.

4.3. Ablation Study

The proposed FCGN mainly contains a graph convolutional branch based on su-
perpixel segmentation and a convolutional branch with an added attention mechanism.
To further validate the contribution of the two branches, we tested the OA of the two
branches on three datasets separately. In addition, we tested the impact of the attention
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mechanism. We can intuitively see from Table 7 that the overall classification accuracy
decreased when any branch was missing, which proves that the complementary features
obtained by combining the graph convolution branch and the convolution branch can
indeed improve the classification performance. We can also observe that the addition of
attention mechanisms resulted in some improvement in the classification results, which
indicates that by adding appropriate attention mechanisms to the network, we can obtain
the importance of different features and capture long-range features and high-level features
to improve the classification results.

Table 7. OA(%) indices of the ablation experiment of the FCGN.

Dataset Branch1 Branch2 Without SE FCGN
Indian Pines 93.58 94.69 96.44 98.78
Pavia University 95.65 93.41 97.98 98.99
Salinas 97.33 94.50 97.88 98.69

5. Conclusions

To reduce the complexity of graph structure construction, superpixel segmentation
is often performed on an HSI first; however, superpixel segmentation processing leads
to similar features within each superpixel node, resulting in a lack of local details in the
classification map. To solve the above problems, a new hyperspectral image classification
algorithm, the FCGN, was proposed in this paper, in which a graph convolutional network
based on superpixel segmentation was fused with an attentional convolutional network for
feature fusion, a GCN based on superpixel segmentation was used to extract superpixel-
level features, an attentional convolutional network was used to extract local detail features,
and, finally, the obtained complementary features were used to improve the classification
results. In order to verify the effectiveness of the algorithm, experiments were conducted
on three datasets and compared with some excellent algorithms. The experimental results
show that the FCGN achieved a better classification performance. Although the FCGN
achieved better classification results, there are still some shortcomings. In particular, this
paper did not consider the variability of different neighbor nodes during the construction
of the graph structure which may limit the ability of the model. In addition, only a simple
feature splicing fusion method was used in this paper, so the construction of the graph
structure and new fusion mechanism will be further explored in subsequent research.
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