
Citation: Vorobieva, I.A.; Gvishiani,

A.D.; Shebalin, P.N.; Dzeboev, B.A.;

Dzeranov, B.V.; Skorkina, A.A.;

Sergeeva, N.A.; Fomenko, N.A.

Integrated Earthquake Catalog II:

The Western Sector of the Russian

Arctic. Appl. Sci. 2023, 13, 7084.

https://doi.org/10.3390/

app13127084

Academic Editor: Nicholas

Vassiliou Sarlis

Received: 23 May 2023

Revised: 7 June 2023

Accepted: 9 June 2023

Published: 13 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Integrated Earthquake Catalog II: The Western Sector of the
Russian Arctic
Inessa A. Vorobieva 1,2, Alexei D. Gvishiani 1,3, Peter N. Shebalin 1,2 , Boris A. Dzeboev 1,* ,
Boris V. Dzeranov 1 , Anna A. Skorkina 2, Natalia A. Sergeeva 1 and Natalia A. Fomenko 1

1 Geophysical Center of the Russian Academy of Sciences (GC RAS), 119296 Moscow, Russia;
vorobiev@mitp.ru (I.A.V.); adg@wdcb.ru (A.D.G.); p.n.shebalin@gmail.com (P.N.S.);
b.dzeranov@gcras.ru (B.V.D.); n.sergeyeva@gcras.ru (N.A.S.); n.fomenko@gcras.ru (N.A.F.)

2 Institute of Earthquake Prediction Theory and Mathematical Geophysics of the Russian Academy of
Sciences (IEPT RAS), 117997 Moscow, Russia; anna@mitp.ru

3 Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences (IPE RAS),
119296 Moscow, Russia

* Correspondence: b.dzeboev@gcras.ru; Tel.: +7-495-930-05-46

Abstract: The article is a continuation of the research on creating the most complete and representative
earthquake catalogs by combining all available data from regional, national, and international
seismological agencies and reducing magnitudes to a uniform scale. The task of identifying and
removing duplicates that arise during the merging process is solved using the authors’ modification
of the nearest neighbor method. It is evident that the intelligent merging of different earthquake
catalogs for the same territory will improve the completeness and representativeness of events in
the final integrated catalog. In this article, the earthquake catalog of the western sector of the Arctic
zone of the Russian Federation (AZRF) covering the period 1962–2022 was created by merging three
regional Russian catalogs and the ISC catalog. The ratio of magnitude types in the catalog for different
seismic networks was analyzed, and magnitude estimates were unified based on the obtained ratios.
For analyzing seismic activity in the western AZRF, it is recommended to use earthquakes from the
period 1998–2020 when the catalog was significantly cleaned from explosions and other events of the
“non-earthquake” type.

Keywords: merging catalogs; earthquake; Russian Arctic; magnitude unification; duplicate events;
seismic networks

1. Introduction

The paper [1] demonstrated that some seismic agencies may miss events detected by
other agencies. This was illustrated using the JMA and ANSS catalogs for the aftershock
sequence of the Tohoku earthquake (11 March 2011, Mw = 9.0) [2] recorded between
1 March and 31 December 2011. Based on the methodology developed by the authors [1],
more than 700 events were identified in the ANSS catalog that were absent in JMA. Among
the missed events were several aftershocks with M > 6.0 that occurred in the first hours
after the main shock [3].

It is obvious that the intellectual merging of different earthquake catalogs for the same
territory will make it possible to collect together the most complete information about
all seismic events that have occurred. However, it should be noted that in the process of
such merging, duplicates will arise, which, similarly to aftershocks [4], are events close in
space and time, and there will be a task of their identification. The developed algorithm for
merging catalogs with the identification and removal of duplicates is based on the nearest
neighbor method [5,6] modified in [1]. The algorithm is based on the knowledge that
duplicates do not have the causal relationship that exists for aftershocks. The application of
the algorithm allows for the sequential merging of any number of earthquake catalogs [1].
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In the paper [7], the earthquake catalog of the eastern sector of the Arctic zone of the
Russian Federation (AZRF) was created by combining three regional catalogs (Yakutia,
Northeast Russia, and Kamchatka) of the Geophysical Survey of the Russian Academy
of Sciences (GS RAS) and the International Seismological Centre (ISC) with a unified
magnitude scale, which is made available to the public. To confirm the feasibility of
merging catalogs and the effectiveness of the algorithm, it should be noted that the obtained
catalog [7] includes 23,254 events (1962–2020), of which 7781 are from ISC and 15,473 are
from Russian catalogs. This article is a logical continuation of the study carried out in [7].
It is aimed at the creation of the integrated catalog of the western sector of the AZRF with
unified magnitude estimates.

The western sector of the AZRF that is considered in the present study is a seismically
active region [8,9] and includes the Arkhangelsk region, the Republic of Karelia, the Kola
Peninsula, the western part of the Taymyr Peninsula, archipelagoes of Franz Josef Land,
Novaya Zemlya, Severnaya Zemlya, and the basin of the White, Barents, and Kara Seas.
In [10], information is provided on 10 earthquakes with M ≥ 5.0 that occurred in the region
starting from the 17th century. It should be noted that the epicenters of four events are
located in the continental part of the region, while the others are significantly further north
in the Barents–Kara Basin. The strongest earthquake known in the western sector of the
AZRF occurred in the latter region (14 October 1908, M = 6.6) [10,11]. For events that
occurred in the pre-instrumental period of seismic observations, the coordinates of the
epicenters and magnitude estimates have a significant uncertainty [12]. However, in recent
years, a number of studies have been published in which the parameters of historical events
have been redefined, including the considered region [11,13,14].

Many researchers note the modern seismicity of the Barents–Kara Basin in the transi-
tion zone from continent to ocean and the Novaya Zemlya Archipelago, where an earth-
quake with mb = 4.8 was registered on 11 October 2010 [15]. Seismic activity is observed on
the Kola Peninsula and in the Karelia region.

The Severnaya Zemlya Archipelago and the northern part of the Taymyr Peninsula
are located within the Kara Plate. At the same time, only the northeast of the peninsula
is characterized by seismic activity, where most of the earthquakes registered during the
instrumental period are associated with the mouth of the Khatanga Bay [14]. It should
be noted that earthquakes that occurred in the northeast of the peninsula were included
in the integrated catalog of the eastern sector of the AZRF [7] and are not considered in
this article.

The White Sea Basin, including its waters and adjacent territory, is one of the most
fragmented and mobile regions within the East European Platform. The most active tectonic
structure here is the Kandalaksha Graben. The maximum intensity of paleo-earthquakes
in the western part of Kandalaksha Bay (the bay of the White Sea in the south of the Kola
Peninsula) is IX, in the central part of the sea, it is VIII, and on the western coast of the
White Sea and in Onega Bay, it is VII–VIII. The White Sea Basin has a high seismic potential
with a rare recurrence of strong earthquakes [16].

The full-scale study of the seismic regime of the western sector of the AZRF began in
the late 1970s as part of the creation of the catalog [10]. Subsequently, for several decades,
researchers noted the insufficient development of the seismic observation network in the
region, which allowed the registration of events only with M ≥ 5.0 [17,18]. Over the past
two decades, significant contributions to the development of seismic monitoring in the
west of the AZRF have been made by the unique scientific facilities of Federal Center
for Integrated Arctic Research, Russia, Arkhangelsk (FCIAR) [19–22]. Based on unique
seismic data obtained by FCIAR, the structure of the lithosphere and upper mantle has been
specified, regional hodographs have been constructed [23], and parameters of earthquakes
that occurred in marine waters during the period from 1908 to 2020 have been refined. As a
result, an updated catalog containing data on 125 earthquakes has been obtained [24].
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On the maps of the General Seismic Zoning GSZ-97A, GSZ-2015A, and GSZ-2016A,
the region is classified as zones with macroseismic intensity estimates V–VI [25–30]. In
recent years, a seismic zoning map of the AZRF has been created [31].

Currently, the Geophysical Survey of the Russian Academy of Sciences (GS RAS)
carries out the seismic monitoring of the entire territory of the Russian Arctic (http://
www.gsras.ru/new/eng/catalog/, accessed on 1 June 2023). The western sector of the
AZRF falls within the responsibility zone of the Kola and Arkhangelsk branches as well
as the Central Department of GS RAS. Detailed information on earthquakes in the region
is presented in the global ISC catalog (http://www.isc.ac.uk/isc-ehb/search/catalogue/,
accessed on 1 June 2023). It should be noted that the analysis of earthquake catalogs of
GS RAS branches and ISC showed that information about weak earthquakes is mainly
contained in regional catalogs.

To create a unified (integrated) earthquake catalog of the western sector of the AZRF,
the following main tasks were solved:

• The sequential merging of two regional catalogs of GS RAS, the ISC catalog, and the
catalog from [24], identifying duplicates that arise during merging and excluding
explosions and other anthropogenic events from the final catalog;

• The unification of magnitude estimates in the integrated catalog by constructing
correlation ratios for different types of magnitude/energy class for the same events.

2. Materials and Methods

The studied region covers a geographic area bounded by the coordinates: 60◦ N–84◦ N,
25◦ E–100◦ E (Figure 1). Five earthquake catalogs are used as input data (Table 1):

1. The Arctic catalog from the annual journals Earthquakes in the USSR 1962–1991,
Earthquakes in Northern Eurasia 1992–2017, and Earthquakes in Russia 2018–2020 (here-
inafter ARC);

2. The merged earthquake catalog of the territory of the East European platform and
its nearest surroundings from the annual journals Earthquakes in the USSR 1962–1991,
Earthquakes in Northern Eurasia 1992–2017, and Earthquakes in Russia 2018–2020 (here-
inafter VEP);

3. The ISC 1962–2022 catalog, which is a composite and contains data from many world
and also Russian agencies (Table 2);

4. The catalog Seismicity of the western sector of the Russian Arctic [24] (hereinafter Morozov)
1962–2020;

5. The merged catalog of seismic events in the territory of the Russian Federation from
the annual journals Earthquakes in Russia 2003–2020. Only data on events that are
non-earthquakes are used (hereinafter ER_EXP).

As can be seen from Figure 1, a large number of earthquake epicenters are located in
the southwestern part of the studied region on the Kola Peninsula and Karelia as well as in
the northern part of the region on the shelf boundary of the Kara and Barents Seas. The
peculiarity of the western sector of the AZRF is the large number of seismic events that are
not tectonic earthquakes (explosions, rock bursts, and other anthropogenic events) [32–34].

All the catalogs used (Table 1) are divided into “Earthquakes” (the nature of the
event is “earthquake” or “possibly earthquake”) and other events. Events with unknown
magnitude/class are excluded from the “Earthquakes” catalogs.

The methodology of the sequential merging of earthquake catalogs with the identifica-
tion of duplicates is described in detail in [1,7]. A Euclidean metric (1) is used to find pairs
of nearest events from two catalogs. After that, the classification of events into unique and
duplicates is carried out using the threshold value of the metric. A basic three-parameter
model is used, where the metrics for assessing the proximity between earthquakes take into
account the time difference DT, and epicenter difference in the longitude DX and latitude
DY. Depth information is not used, since the depth of hypocenters is often unknown or

http://www.gsras.ru/new/eng/catalog/
http://www.gsras.ru/new/eng/catalog/
http://www.isc.ac.uk/isc-ehb/search/catalogue/
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given as a fixed value for many events. Magnitudes are also not used, since earthquakes
have magnitude estimates of different types from various agencies.

Ro =

√
DT2

σT2 +
DX2

σX2 +
DY2

σY
2 , (1)

where σT , σX , and σY are the standard deviations of time, longitude, and latitude differences
between the closest events from two source catalogs.
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Figure 1. The studied region with earthquake epicenters from the ISC catalog (blue and red dots).
Events with magnitude definitions mb_ISC and mb_NEIC are marked in red. The red outline is the
region covered by the Morozov catalog [24]. The blue outline is the sub-region of the Kola Peninsula
and Karelia.

Table 1. Input catalogs.

Catalog Period Number
of Events

Number of
Earthquakes with

Energy Classes and/or
Magnitudes

Number of
Non-Earthquakes

ARC 1965–2020 175 175 0

VEP 1987–2020 971 742 170

ISC 1962–2022 105,656 4418 100,112

Morozov 1962–2020 118 * 118 0

ER_EXP 2003–2020 14,990 - 14,990
* 116 events from the main catalog are included (6 events before 1962 and 3 events outside the studied region are
excluded) as well as 2 events from the additional catalog that were relocated outside the studied area considered
in [24] but are included in the region studied in the present paper.

Before the merging process, each of the source catalogs (Table 1) was checked for
internal duplicates. Statistical analysis did not reveal any anomalous groups of close events
(Figure 2). It should be noted that duplicates typically have a metric value (1) Ro < 10 [1,7].
The number of such close events within each catalog is small, and there are no statistical
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reasons to consider such events as duplicates. Analysis (Figure 2) was performed with
metric parameters σT = 0.05 min, σX = σY = 15 km.

Table 2. Statistics of ISC catalog.

Agency
Abbreviation Agency With

Magnitude

BER University of Bergen, Norway 316

CSEM Centre Sismologique Euro-Méditerranéen, France 36

EIDC Experimental (GSETT3) International Data Center, U.S.A. 729

FCIAR Federal Center for Integrated Arctic Research, Russia 13

HEL Institute of Seismology, University of Helsinki, Finland 1390

HFS Hagfors Observatory, Sweden 55

IDC International Data Centre, CTBTO, Austria 356

IEPN Institute of Environmental Problems of the North, Russian
Academy of Sciences, Russia 6

ISC International Seismological Centre, United Kingdom 495

KOLA Kola Regional Seismic Centre, GS RAS, Russia 433

LVSN Latvian Seismic Network, Latvia 124

MIRAS Mining Institute of the Ural Branch of the Russian Academy
of Sciences, Russia 211

MOS Geophysical Survey of Russian Academy of Sciences, Russia 3

NAO Stiftelsen NORSAR, Norway 171

NEIC National Earthquake Information Center, USA 15

NNC National Nuclear Center, Kazakhstan 3

UPP University of Uppsala, Sweden 62

TOTAL: 4418
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3. Results
3.1. Integrated Catalog of the Western Sector of the AZRF

As the results of [7] show, in the eastern sector of the AZRF, most earthquakes are
registered by the Russian regional seismic networks of GS RAS. As shown in Table 2, in
the western sector of the AZRF, a significant majority of events are registered by European
seismic networks, whose data are collected in the composite ISC catalog. The number of
earthquake records in the ISC catalog is approximately five times greater than the total
number of events in the GS RAS catalogs. In addition, a new catalog was recently presented
in [24], which covers a substantial part of the studied region. In this catalog, earthquakes
are relocated based on the analysis and merging of all available seismic bulletins from
Russian and European seismic networks using modern velocity models. However, data
from [22] are not used, since they lack estimates of earthquake magnitudes.

Thus, in the task of merging earthquake catalogs, the following priority sources of
earthquake data were established in the western sector of the AZRF (Table 1):

1. Earthquakes from the Morozov catalog (118 events);
2. Earthquakes from the ISC catalog (4418 events);
3. Earthquakes from Russian catalogs ARC and VEP (175 + 742 events), with preference

given to data from the ARC catalog in overlapping areas.

As mentioned above, when merging earthquake catalogs in the western sector of the
AZRF, the task of excluding duplicates, i.e., records in different catalogs related to the same
seismic event, as well as the task of excluding explosions and other events that are not
earthquakes, were solved. The assembly diagram of the integrated catalog is shown in
Figure 3, and the numerical parameters for merging are given in Table 3.
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3.1.1. Stage 1. Merging the ARC and VEP Catalogs

The main catalog was considered ARC, while VEP was the supplementary one. Du-
plicate analysis was performed with standard distribution parameters σT = 0.05 min,
σX = σY = 15 km. At the threshold value Ro = 10, three duplicates were identified, which
was insufficient for optimizing metric parameters and estimating possible errors (Figure 4).
The merged RUS catalog contains 920 events.
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Table 3. Scheme and compilation parameters of the integrated catalog.

Stage Main
Catalog

Additional
Catalog

Metric
Parameters
σT min, σX
km, σY km

Threshold
Value

of the Metric

Estimation of
the Number

of Errors

Number of
Duplicates

Merged
Catalog

1 ARC
175 events

VEP
748 events

0.05;
15.0;
15.0

10 * - 3 * RUS
920 events

2 ISC
4418 events

RUS
920 events

0.035;
16.3;
16.6

13 0.2% 282 ISC_RUS
5056 events

3 Morozov
118 events

ISC_RUS
5056 events

0.05;
15.0;
15.0

20 108 W_ARCTIC0
5066

4.1 W_ARCTIC0
5066

ER_EXP
14,490 events

0.05;
15.0;
15.0

10 - 284 W_ARCTIC1
4782 events

4.2 W_ARCTIC1
4782 events

VEP_EXP
170 events

0.05;
15.0;
15.0

10 - 4 W_ARCTIC2
4778 events

4.3 W_ARCTIC2
4778 events

ISC_EXP
100,112 events

0.05;
15.0;
15.0

10 - 92 W_ARCTIC
4686 events

* The number of duplicates is not enough to optimize the metric parameters.

3.1.2. Stage 2. Merging the ISC and RUS Catalogs

The main catalog was considered ISC, while RUS was the supplementary one. Prelimi-
nary duplicate analysis was performed with standard distribution parameters σT = 0.05 min,
σX = σY = 15 km. At the threshold value Ro = 10, 263 potential duplicates were identified,
of which six were absolute duplicates. Absolute duplicates were not used to determine
dispersions (Figure 5).

It can be observed that each of the DT, DX, and DY parameters follows a normal
distribution, and the mean is small compared to the standard deviation for all three
parameters. Additionally, Figure 5 demonstrates that dispersion is almost independent of
event magnitude and time.

The final analysis of duplicates was performed with the parameters σT = 0.035 min,
σX = 16.3 km, and σY = 16.6 km (Figure 6). The metric values were also calculated between
the nearest events in the RUS catalog. The RUS catalog contains only two earthquakes with
a distance to the nearest neighbor Ro < 35 (the algorithm for calculating the metric is the
same as for two different catalogs, except for excluding the comparison of an earthquake
with itself). This allowed us to estimate the probability that a duplicate was selected
incorrectly due to high earthquake density: p = 2/884 = 0.0022, with an upper estimate of
false duplicate probability at approximately 0.22%.

The selection of a metric threshold for identifying duplicates depends on the task
of further study of the merged catalog. We chose a threshold that minimizes the total
number of errors. Analysis of the spatial–temporal structure of the distribution for nearest
neighbors in the ISC and RUS catalogs (Figure 7) indicates that a threshold of Ro = 20
provides a close-to-optimal separation of duplicates and naturally grouped events. In this
case, 282 duplicates were identified. In total, there are 638 unique events in the RUS catalog
for the studied region. These events were added to the ISC catalog, resulting in a merged
ISC_RUS catalog that includes 5056 events.
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Figure 6. (a) Comparison of the metric distribution ISC/RUS pairs (transparent blue histogram) and
the same metric for RUS/RUS earthquakes (transparent red histogram); the intersection of histograms
appears purple; (b) Threshold optimization: the red line shows the probability of missing a duplicate
in the model with metric (1), the blue line shows the probability of a false duplicate, and the black
line shows the total probability of first and second type errors. The gray band shows the range metric
values Ro = 8 ÷ 35, which minimize the total number of errors, approximately 0.2%. The threshold
value Ro = 20 is shown by a dashed line.
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3.1.4. Stage 4. Exclusion of Explosions and Other Anthropogenic Events 
The preliminary exclusion of explosions and other anthropogenic events was per-

formed based on the information on the nature of the events provided in the source cata-
logs. However, events marked as “non-earthquake” in one catalog may not be marked as 
such in other catalogs. We considered an event as a “non-earthquake” if it was marked as 
such in at least one of the input catalogs. In addition to the information from the ISC and 

Figure 7. Distribution of normalized DT and DR and contour line of metric (1). Colored dots
represent ISC/RUS pairs (blue dots are duplicates, pink dots are unique events), and black dots are
distances between RUS/RUS events in metric (1). The values of the metric for earthquakes in the
RUS catalog are significantly larger than for ISC/RUS duplicates (blue dots). The contour line of
metric (1) Ro = 20 provides a close to optimal separation of duplicates and naturally grouped events.
Absolute duplicates are not shown.

3.1.3. Stage 3. Merging Morozov and ISC_RUS Catalogs

The main catalog is Morozov, the additional one is ISC_RUS obtained in the pre-
vious step. Duplicate analysis was performed with standard distribution parameters
σT = 0.05 min, σX = σY = 15 km. Figure 8 shows the distribution of metric (1). At Ro = 20,
the ISC_RUS catalog contains 108 duplicates and 4948 unique events that were added to
the Morozov catalog. The resulting catalog W_ARCTIC0 contains 5066 events.
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3.1.4. Stage 4. Exclusion of Explosions and Other Anthropogenic Events

The preliminary exclusion of explosions and other anthropogenic events was per-
formed based on the information on the nature of the events provided in the source
catalogs. However, events marked as “non-earthquake” in one catalog may not be marked
as such in other catalogs. We considered an event as a “non-earthquake” if it was marked
as such in at least one of the input catalogs. In addition to the information from the ISC
and VEP catalogs, data from the “Earthquakes of Russia” ER_EXP merged catalog (Table 1)
were used.
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Explosions and other anthropogenic events presented in the ER_EXP, VEP_EXP, and
ISC_EXP catalogs (Tables 1 and 3) were sequentially removed from the W_ARCTIC0 merged
catalog obtained in the previous stage. Duplicate analysis was performed with standard
distribution parameters σT = 0.05 min, σX = σY = 15 km, and a threshold value of metric
Ro = 10. A total of 380 duplicates were detected (Figure 9). These events were excluded
from the W_ARCTIC0 catalog. The final integrated earthquake catalog, W_ARCTIC, for the
western sector of the AZRF contains 4686 events. Table 3 provides statistics and parameters
used at each step for excluding non-earthquake duplicates.
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The results of the analysis of the final W_ARCTIC catalog suggest that explosions
were not completely excluded. The histogram of the number of events (Figure 10a) shows
an abnormally large number of events in 1994–1997 and 2021–2022. The spatial and
spatiotemporal distribution of events (Figure 10b,c) also indicates an incomplete removal
of explosions during these years. In this sense, the period of 1989–1993 also raises some
suspicions. We were unable to find reliable sources of information on explosions during
these periods.

In the area of the Severouralsk bauxite deposit (coordinates 60◦ N, 60◦ E) in the
Northern Urals, there is a significant cluster of 57 events. According to [32], this area
experiences a large number of technological explosions and rock bursts (hundreds per
year). Therefore, we assume that most of the events in this cluster are not earthquakes,
although this is not indicated in the catalogs used (Table 1). All 46 events that occurred
in 2021–2022 are highly likely to be explosions (the information about explosions has not
yet been published for this period). The other 11 events, if not explosions or rock bursts,
are likely to be triggered earthquakes. Based on this, a decision was made to exclude
events from the catalog that are part of the identified Urals cluster. The final integrated
W_ARCTIC catalog contains 4629 events.

3.2. Magnitudes in the Integrated Catalog of the Western Sector of the AZRF

The western sector of the AZRF includes several seismically active zones with different
types of magnitudes. In addition, it is assumed that the ratios between magnitudes may
differ in different seismically active zones. Magnitude unification was carried out in two
sub-regions: the Kola Peninsula and Karelia (60◦ N–72◦ N, 25◦ E–40◦ E) and the Kara
and Barents Seas shelf. Earthquakes located within the East European and West Siberian
platforms were considered together with events from the Kara and Barents Seas shelf.
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Figure 10. Analysis of the W_ARCTIC catalog: (a) Red histogram—number of events per year (blue
histogram shows a similar distribution for the VEP catalog); (b) Spatial distribution of epicenters;
(c) Space–time distribution of events. Red dots represent explosions from the ISC_EXP catalog, while
black dots represent earthquakes from the merged W_ARCTIC catalog in the Kola Peninsula and
Karelia (60◦ N–72◦ N, 25◦ E–40◦ E).

3.2.1. The Kola Peninsula and Karelia

There is no earthquake in the Kola Peninsula and Karelia with a determined MwGCMT

magnitude, while only seven events have mbISC and mbNEIC magnitude estimates (Figure 1).
Due to these reasons, direct magnitude unification to the moment magnitude scale is
impossible. Most events have local ML magnitudes from various agencies. MLKOLA was
chosen as the base local magnitude because the local network of the Kola branch of GS
RAS is located directly in the studied area. However, most earthquakes have local MLHEL

magnitudes, allowing for more reliable correlations with other magnitude types (Figure 11).
Thus, the unified local magnitude ML is determined by a regression relationship with
MLHEL, which is approximately 0.3 less than MLKOLA (Figure 11a).
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bard events. For this reason, we used the obtained relationships for earthquakes in the 
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Figure 11. Shift-type correlation ratio for local magnitudes from various agencies in the Kola Penin-
sula and Karelia sub-region. Magnitude types are specified on the figures. All eight relationships
appear reliable.

Out of 104 events with MPSPVEP magnitude, only two have MLHEL and mbISC magni-
tudes. To refine the magnitude relationships, events outside the region (Svalbard) were
used (Figure 12). Two events from the studied region fit well into the regression for Sval-
bard events. For this reason, we used the obtained relationships for earthquakes in the
Kola Peninsula and Karelia. All events with MPSPVEP magnitude occurred in 1987–1989. It
was previously suggested that not all explosions and other non-earthquake events were
removed from the catalog for this period. Therefore, it is possible that these events are
not tectonic earthquakes. In addition, most events have MPSPVEP < 3.5 magnitudes; i.e.,
they are outside the range for which relationships are established. Therefore, they were
considered highly unreliable.
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Only MDHEL and MDBER duration magnitudes have 166 events. This type of mag-
nitude is often used for records without clear arrival (explosions, landslides, etc.). For
example, the ML and MD relationship is sometimes used to identify landslides in regional
catalogs [35]. Events with this type of magnitude are only present in the catalog during the
period 1988–1997 when explosions are presumably not removed. It should be noted that
MLEIDC and mbHFS magnitudes appear in the catalog only during this period, for which
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indirect correlations through MDBER were used for unification (Figure 13). Thus, it was
assumed that most of these events are not earthquakes.
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i.e., they are very close. In fact, the difference lies within the 95% confidence interval, and 
they can be considered equal. There are only five events with both types of magnitudes, 
but they fit very well on a straight line (Figure 14). It should be noted that most events in 
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Figure 13. Shift-type correlation ratios for magnitudes of various agencies in the sub-region of the
Kola Peninsula and Karelia. Magnitude types are specified on the figures. Only the MDHEL (a) and
mbtmpIDC (e) relationships appear reliable out of 5 ratios.

The regression ratios could not be established for eight events. A relationship was
determined between the unified local magnitude ML and mbISC, mbNEIC: ML = mb − 0.08,
i.e., they are very close. In fact, the difference lies within the 95% confidence interval, and
they can be considered equal. There are only five events with both types of magnitudes,
but they fit very well on a straight line (Figure 14). It should be noted that most events in
the sub-region have a unified magnitude ML < 3.3, which is outside the range for which
ML ≈ mb. Therefore, the relationship is unreliable.
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Statistics and formulas for converting magnitudes are presented in Table 4.

Table 4. Unified magnitude in the catalog of the western sector of the Russian Arctic: sub-region
Kola–Karelia.

Agency Type of
Magnitude Priority Number

of Events
Magnitude in the

Integrated Catalog Figure
Mmin—Mmax.

Initial
Magnitude Scale

Note

ISC mb 1 4 mb = mbISC 3.3–4.8

NEIC, NEIS mb 1 3 mb = mbNEIC 4.3–4.7

KOLA ML 2 398 ML = MLKOLA 0.3–2.7

HEL ML 3 1554 ML = MLHEL + 0.3 Figure 11a 0.0–3.6

NAO ML 3 140 ML = MLNAO + 0.1 Figure 11b 1.1–4.5

IDC ML 3 309 ML = MLIDC Figure 11c 0.8–3.4

BER ML 3 27 ML = MLBER + 0.4 Figure 11d 0.3–3.4

UPP ML 3 42 ML = MLUPP + 0.2 Figure 11e 1.5–3.2

LVSN ML 3 76 ML = MLLVSM Figure 11f 0.8–2.4

VEP ML 3 319 ML = MLVEP + 0.2 Figure 11g 0.1–4.0

OBN ML 3 4 ML = MLOBN + 0.1 Figure 11h 0.1–1.0

HEL MD 4 16 ML = MDHEL + 0.1 Figure 13a 1.6–2.6 Probably
non-earthquakes

BER MD 4 150 ML = MDBER − 0.2 Figure 13b 2.0–4.1 Probably
non-earthquakes

EIDC ML 4 1001 ML = MLEIDC − 0.7 Figure 13c 1.1–4.4

Indirect correlation
through MDBER.

Probably
non-earthquakes

HFS mb 4 52 ML = mbHFS − 1.2 Figure 13d 3.0–5.3

Indirect correlation
through MDBER.

Probably
non-earthquakes

IDC mbtmp 4 2 ML = mbtmpIDC − 0.8 Figure 13e 2.8–3.4

VEP MPSP 4 102 mb = MPSPVEP − 0.3 Figure 12 1.0–4.9
See note to

Figure 12. Probably
non-earthquakes

NAO mb 5 2 M = mbNAO 3.1–3.2 Not determined

EIDC mb 5 1 M = mbEIDC 3.6 Not determined

BER M 5 3 M = MBER 2.5–4.0 Not determined

HEL M 5 2 M = MHEL 1.8 Not determined

4207

3.2.2. The Kara and Barents Seas Shelf

In the sub-region of the Kara and Barents Seas shelf, there are no events with magni-
tude MwGCMT. Thus, a direct unification of magnitude to the moment scale is impossible.
Magnitudes mbISC and mbNEIC were determined for 45 events (Figure 1). There are also a
small number of determinations for magnitudes mb from other agencies. Most events have
a local magnitude ML from various agencies, predominantly MLBER. For some earthquakes,
magnitudes MDBER and other types determined by the GS RAS are available. The unified
magnitude mb was determined by regression ratios with mbISC (Figure 15). The unified
local magnitude ML was determined by a regression relationship with MLBER (Figure 16).
In some cases, it was necessary to use indirect correlations—relationships are unreliable
(Figure 17). Regression relationships could not be established for six events.
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in the sub-region of the Kara and Barents Seas shelf. Magnitude types are specified on the figures.

There are 10 events with energy class measures k on the Franz Josef Land archipelago.
Eight of them occurred in the end of 1983 or the beginning of 1984 and have the same
epicenter coordinates. The coordinates for this period are given with an accuracy of 0.1◦.
These events are not included in the Morozov catalog. Whether these events are a swarm
of natural earthquakes or technogenic events is an open question, so we do not exclude
them from the integrated catalog.
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similarity of a linear relationship is observed for earthquakes with ML > 3.0. There are 
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Figure 17. Shift-type correlation ratios for magnitudes of different agencies that were used to
calculate indirect correlations in the sub-region of the Kara and Barents Seas shelf. Magnitude types
are specified on the figures.

A relationship was determined between the unified local magnitude ML and mb. The
similarity of a linear relationship is observed for earthquakes with ML > 3.0. There are only
10 such events (Figure 18). At lower magnitudes, the relationship breaks down. The unified
local magnitudes ML and mb are very close. In fact, the difference is less than 0.1, which is
within the 95% confidence interval. Thus, they can be considered equal.
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Figure 18. Shift-type correlation ratio between unified magnitudes ML and mb (ML > 3.0) in the
sub-region of the Kara and Barents Seas shelf. Magnitude types are specified on the figure. The
dashed lines show the 95% confidence interval.

Statistics and formulas for magnitude conversion are presented in Table 5.
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Table 5. Magnitude in the integrated catalog of the western sector of the Russian Arctic: sub-region
Barents and Kara Seas shelf.

Agency Type of
Magnitude Priority Number

of Events

Magnitude
in the Integrated

Catalog
Figure

Mmin—Mmax.
Initial Magnitude

Scale
Note

ISC mb 1 42 mb = mbISC - 3.2–4.8

NEIC, NEIS mb 1 3 mb = mbNEIC − 0.1 Figure 15a 4.2–4.3

MOS mb 2 3 mb = mbMOS − 0.2 Figure 15b 3.6–3.9

IDC mb 3 12 mb = mbIDC + 0.2 Figure 15c 2.8–3.7

IDC mb1 3 4 mb = mb1IDC Figure 15d 3.5–3.8

IDC mbtmp 3 2 mb = mbtmpIDC + 0.1 Figure 15e 3.6–3.7

NNC mb 3 2 mb = mbNNC Figure 15f 3.5–4.0

BER ML 4 140 ML = MLBER - 0.9–3.5

NAO ML 4 45 ML = MLNAO − 0.1 Figure 16a 1.7–3.7

CSEM ML 4 3 ML = MLCSEM Figure 16b 2.9–3.8

HEL ML 4 10 ML = MLHEL − 0.1 Figure 16c 1.6–4.0

KOLA ML 4 12 ML = MLKOLA Figure 16d 1.5–2.3

FCIAR ML 4 92 mb = MLFCIAR + 0.2 Figure 15g 1.3–3.6

BER MD 4 11 ML = MDBER − 0.1 Figure 16e 2.2–4.0

ARC MLH 4 1 mb = MLHARC + 0.1 Figure 15h 4.7

MIRAS ML 5 4 ML = MLMIRAS − 0.3 Figure 17b,c 2.6–3.1 Indirect corr thru
MLIDC

VEP MPSP 5 8 mb = MPSPVEP − 0.3 Figure 13 2.9–4.8 See note to
Figure 12

EIDC ML 5 7 ML = MLEIDC − 0.3
Figure 17a
Figure 16c 3.2–4.1 Indirect corr thru

MLHEL

GSR Mf 5 5 mb = Mf GSR + 0.2
Figure 17d
Figure 15g 2.0–3.3

In the region under
study Mf GSR =

MLFCIAR

GSR Klass 5 10 mb = k/2 − 1.2 Figure 17e 8.5–12
See note to

Figure 17. Probably
non-earthquakes

NAO mb 5 4 M = mbNAO 3.4–4.4 Not determined

UPP ML 5 1 M = MLUPP - 4.1 Not determined

LAO M 5 1 M = MLAO - 3.7 Not determined

Total 4022

3.3. Statistics of the Integrated Catalog for Two Sub-Regions

The integrated catalog of the western sector of the AZRF contains information on
4629 events. In turn, for the period 1998–2020, when all “non-earthquakes” were removed
with a high degree of reliability, the catalog contains 2126 records (Figure 19). Detailed
statistics for the catalog for the period 1998–2020 are presented in Table 6. Figure 19 shows
that the registration level in the western part of the region is significantly better than in its
central and eastern parts.
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Figure 19. Map of earthquake epicenters of the integrated catalog for the western sector of the AZRF 
for the period 1998–2020. Yellow dots show events from Morozov catalog, blue dots show events 
Figure 19. Map of earthquake epicenters of the integrated catalog for the western sector of the AZRF
for the period 1998–2020. Yellow dots show events from Morozov catalog, blue dots show events
from the ISC catalog, and red dots show events from Russian catalogs. Preferred location of event
corresponds to the priority of data sources: 1 Morozov, 2 ISC, 3 RUS.

Table 6. Statistics of the integrated catalog.

Time Period, Catalog N Total N from ISC N from GS
RAS, Morozov Mc N,

M ≥ Mc Mmax

1962–2022

E_Arctic 4629 4072
(88%)

558
(12%) 4.8

Kola–Karelia 4207 3754
(89%)

454
(11%) 4.8

The Kara and Barents shelf 422 256
(61%)

166
(39%) 4.8

1998–2020

E_Arctic 2126 1715
(81%)

411
(19%) 3.5 50 4.7

Kola–Karelia 1715 1506
(88%)

209
(12%) 1.7 561 4.6

The Kara and Barents shelf 410 209
(51%)

201
(49%) 3.5 44 4.7

Figures 20–23 show event distributions over time and magnitude as well as differential
magnitude–frequency graphs for various time periods for the sub-regions of the Kola
Peninsula and Karelia, the Kara, and Barents Seas shelf.
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Figure 21. Sub-region of the Kola Peninsula and Karelia. Differential magnitude-frequency graphs 
for different time periods and preliminary estimates of completeness magnitude Mc. 

Until 1980, only a few seismic events were registered in the sub-region of the Kola 
Peninsula and Karelia. The period 1998–2020 can be used to determine seismicity param-
eters. 

Preliminary estimates-Mc = 1.8 in 1998–2011, Mc = 1.3 in 2012–2020. 

Figure 20. Sub-region of the Kola Peninsula and Karelia. Event distribution over time and magni-
tude. Blue indicates periods unfiltered for explosions/rock bursts. Colored dots show events with
unreliable magnitudes. The overwhelming majority of such events belong to periods with unfiltered
explosions. The dashed line shows preliminary estimates of completeness magnitude Mc.
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Figure 21. Sub-region of the Kola Peninsula and Karelia. Differential magnitude-frequency graphs
for different time periods and preliminary estimates of completeness magnitude Mc.

Until 1980, only a few seismic events were registered in the sub-region of the Kola
Peninsula and Karelia. The period 1998–2020 can be used to determine seismicity parameters.

Preliminary estimates-Mc = 1.8 in 1998–2011, Mc = 1.3 in 2012–2020.
Until 1995, the catalog contains few events in the sub-region of the Kara and Barents

Seas shelf with Mc = 4.5. To determine seismicity parameters, the period 1998–2020 can be
used. Preliminary estimates suggest Mc = 3.5 for 1995–2020. The increase in the number of
small events is related to the western part of the shelf near Svalbard, where the registration
level is much better, and the preliminary estimate Mc = 2.3.
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Figure 23. Sub-region of the Kara and Barents Seas shelf: (a–d) represent differential magnitude-
frequency graphs in different periods and preliminary estimates of completeness magnitude. (e) 
shows the magnitude-frequency graph in the vicinity of the Svalbard Archipelago. 

Until 1995, the catalog contains few events in the sub-region of the Kara and Barents 
Seas shelf with Mc = 4.5. To determine seismicity parameters, the period 1998–2020 can be 
used. Preliminary estimates suggest Mc = 3.5 for 1995–2020. The increase in the number of 
small events is related to the western part of the shelf near Svalbard, where the registration 
level is much better, and the preliminary estimate Mc = 2.3. 

Figure 24 shows a map of spatial variations in the completeness magnitude Mc in the 
integrated catalog for the period 1998–2020, which was constructed using a multi-scale 
method [36]. The volume of registered seismicity is sufficient for mapping only in the 
western part of the region on the Kola Peninsula and in Karelia as well as in the vicinity 

Figure 22. Sub-region of the Kara and Barents Seas shelf. Distribution of events by time and
magnitude. The blue color highlights periods not cleared from explosions/rock bursts. Colored dots
show events with unreliable magnitudes. The dashed line is a preliminary estimate of completeness
magnitude Mc.
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Figure 23. Sub-region of the Kara and Barents Seas shelf: (a–d) represent differential magnitude-
frequency graphs in different periods and preliminary estimates of completeness magnitude.
(e) shows the magnitude-frequency graph in the vicinity of the Svalbard Archipelago.

Figure 24 shows a map of spatial variations in the completeness magnitude Mc in the
integrated catalog for the period 1998–2020, which was constructed using a multi-scale
method [36]. The volume of registered seismicity is sufficient for mapping only in the
western part of the region on the Kola Peninsula and in Karelia as well as in the vicinity of
the Svalbard Archipelago. In the rest of the region, only a regional value of Mc = 3.5 can be
determined. Preliminary estimates of Mc = 1.8 on the Kola Peninsula and in Karelia and
Mc = 2.3 in the vicinity of the Svalbard Archipelago were confirmed.
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4. Conclusions 
This paper describes step by step the procedure for compiling the integrated earth-
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19). The unification was carried out based on the analysis of ratios of magnitude types in 
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catalogs, is characterized by the completeness and representativeness of events. The uni-
fied catalog is made available to the public at: http://www.wdcb.ru/arctic_antarctic/arc-
tic_seism.html, (accessed on 1 June 2023). The integrated earthquake catalog obtained in 
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Figure 24. Integrated catalog. Map of spatial variations in the completeness magnitude Mc for the
period 1998–2020. The black dots show the earthquake epicenters, the red line is the level Mc = 1.8,
the blue line is Mc = 2.3.

4. Conclusions

This paper describes step by step the procedure for compiling the integrated earth-
quake catalog for the western sector of the AZRF with a unified magnitude scale (Figure 19).
The unification was carried out based on the analysis of ratios of magnitude types in the
source catalogs. It should be noted that the obtained catalog, in contrast to the original
catalogs, is characterized by the completeness and representativeness of events. The unified
catalog is made available to the public at: http://www.wdcb.ru/arctic_antarctic/arctic_
seism.html, (accessed on 1 June 2023). The integrated earthquake catalog obtained in this
paper is intended for a wide range of researchers involved in both the study of the seismic
regime of the Arctic and, in general, the seismic hazard assessment [37–45].

Based on the results obtained in this study, the authors consider it possible to formulate
the following conclusions:

1. Merging data from the GS RAS, Morozov, and the ISC catalogs significantly increased
the number of registered events in the western sector of the AZRF (Tables 3 and 6);

2. The modified nearest neighbor method [1] efficiently identifies records in different
catalogs that correspond to the same seismic event (Figures 4–8, Table 3). The error
rate for duplicate identification in the studied region was found to be 0.2%;

3. Information on explosions and other events that are not tectonic earthquakes, pre-
sented in the catalogs of GS RAS and ISC, is incomplete. Approximately 300 such
events from the GS RAS catalog (ER_EXP in Table 1) are classified as earthquakes
in the ISC catalog, and conversely, about 100 explosions from the ISC catalog are
classified as earthquakes in the GS RAS catalogs (Figure 9, Table 3);

http://www.wdcb.ru/arctic_antarctic/arctic_seism.html
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4. Explosions before 1998 and after 2020 have not been removed (Figure 10). Explosions
after 2020 may be removed with the arrival of new data–GS RAS catalogs and re-
viewed ISC catalog. Identifying and removing explosions that occurred before 1998
is an extremely difficult task beyond the scope of the mathematical methods used in
this study;

5. In general, there is no sufficient guarantee that “non-earthquakes” have been com-
pletely removed from the combined catalog during the period of 1998–2020. However,
there are reasons to believe that the number of such events is small and they will not
have a significant impact on regional seismicity statistics;

6. In the western sector of the AZRF, there are no MwGCMT determinations. Therefore, a
direct unification of magnitude to moment magnitude scale was impossible. However,
there were a sufficient number of mbISC determinations, which are used in ISC practice
to obtain proxy-Mw estimates for earthquakes with M < 5.0 [46]. In the eastern sector
of the AZRF, the MwGCMT = mbISC ratio is directly confirmed [7]. All magnitude
scales were aligned with mbISC (Figures 14 and 18), and it was hypothesized that
the estimates made could be used as proxy-Mw in the western sector of the AZRF
for regionally strong earthquakes with M ≥ 3.5, for the overwhelming majority of
which mbISC and mbNEIC determinations are known. Interpreting weaker magnitudes
as proxy-Mw is certainly controversial, since they fall outside the range for which
regression relationships are constructed.

7. Unlike the eastern sector of the AZRF, where the overwhelming majority of events
had only three types of magnitude estimates (MwGCMT, mbISC, and energy class k), the
diversity of magnitude estimates for weak earthquakes in the western sector is very
high. This reduces the reliability of determining a unified magnitude scale. For some
earthquakes, regression relationships are not determined or extremely unreliable. It
should be noted that the number of such events is insignificant during the period of
1998–2020 (Figures 20 and 22);

8. The regional magnitude of complete registration Mc = 3.5 during the period of
1998–2020. The registration level is significantly better in the Kola Peninsula and
Karelia, where Mc = 1.8, and in the vicinity of the Svalbard archipelago, where
Mc = 2.3 (Figures 21, 23 and 24);

9. The quality of the catalog after 1998 is significantly better. Therefore, for statistical
analysis of seismicity parameters, such as the slope of the magnitude–frequency
graph (b-value) and the level of seismic activity, we recommend using the catalog for
the period of 1998–2020. However, data prior to 1998 may also be useful for other
studies, for example, for studying possible sources of regionally strong earthquakes
in the basins of the Barents and Kara Seas, where, for natural reasons, the presence of
technogenic events is unlikely.
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