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Abstract: Predicting student dropout from universities is an imperative but challenging task. Nu-
merous data-driven approaches that utilize both student demographic information (e.g., gender,
nationality, and high school graduation year) and academic information (e.g., GPA, participation in
activities, and course evaluations) have shown meaningful results. Recently, pretrained language
models have achieved very successful results in understanding the tasks associated with structured
data as well as textual data. In this paper, we propose a novel student dropout prediction framework
based on demographic and academic information, using a pretrained language model to capture
the relationship between different forms of information. To this end, we first formulate both types
of information in natural language form. We then recast the student dropout prediction task as a
natural language inference (NLI) task. Finally, we fine-tune the pretrained language models to predict
student dropout. In particular, we further enhance the model using a continuous hypothesis. The
experimental results demonstrate that the proposed model is effective for the freshmen dropout
prediction task. The proposed method exhibits significant improvements of as much as 9.00% in
terms of F1-score compared with state-of-the-art techniques.

Keywords: university student dropout; deep learning; natural language processing; natural language
inference; pretrained language model

1. Introduction

According to a report from the U.S. National Center for Education Statistics, the rate
of enrollment in higher-education institutions (e.g., universities) decreased to 66% in 2019
and 63% in 2020 [1]. By contrast, South Korea’s enrollment rate increased to 69.4% in 2019
and 71.0% in 2020 (https://www.index.go.kr/, accessed on 15 April 2023), the highest
worldwide. However, the average dropout rate among freshmen at universities in South
Korea is large at 8.0% (https://www.academyinfo.go.kr/index.do, accessed on 15 April
2023). Students discontinue their studies for various reasons, including a lack of alignment
with academic programs, financial constraints, and social relationships. Student dropout
negatively affects not only students but also lecturers and universities, which further
impacts social and economic costs [2,3]. Therefore, improving student retention is crucial
for universities, necessitating the development of a system that predicts student dropout.

Several studies have been conducted to predict university and college student
dropout [4–9]. Recent studies [5–7] have utilized machine learning techniques to ana-
lyze the causes of university dropout. These studies use only the demographic information
of students, such as their gender, region of origin, and family income. These approaches
have the advantage of predicting the dropout before the beginning of the first semester.
However, students who are not predicted to drop out by models based on demographic
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factors may fail to complete the course, and vice versa. For instance, some students may
experience issues related to their friendships or encounter challenges when adapting to a
university environment. In this case, records of academic performance and activities may
play an important role in the dropout prediction task. According to previous studies [8,9],
after enrolling in a university, the behaviors of students who drop out and those who
successfully complete their degree programs differ. These studies empirically discovered
that the predictive performance of their models increased when term exam scores and the
number of course credits were included. Following these previous studies, we also utilize
various pieces of academic information from students (e.g., GPA, club activities, and course
evaluations), as well as demographic information.

Students’ demographic and academic information throughout the semester is recorded
in various formats. For instance, the GPA and student club participation status are recorded
as numerical and categorical data, respectively, whereas course evaluation comments are
recorded in textual format. Recently, several studies [10,11] have analyzed unstructured
textual data (e.g., advisor notes) to predict student dropout. The study [10] used sentiment
analysis to extract positive or negative words from the advisor’s notes. The authors then
utilized the extracted words as features and trained machine learning models. However,
that approach considered only unstructured textual data to predict student dropout. An-
other study [11] developed a multimodal neural network model that combined structured
data (e.g., GPA and SAT scores) and unstructured data (e.g., advising notes and forum
posts). The authors showed that fusing structured and unstructured data was effective
for predicting student dropout. However, this approach employed two different neural
networks (i.e., long short-term memory and transformer) to analyze the structured and
unstructured data. It may not capture the implicit relationships between structured and
unstructured data.

Recently, in the field of natural language processing (NLP) [12], several studies [13,14]
have replaced nontextual information representation with text to represent multimodal
information as an integrated modality and leverage the superiority of pretrained language
models (PLMs). Several researchers [15–17] began to recast various classification problems
into natural language inference (NLI) tasks. The study [15] demonstrated that tabular
reasoning performance could be significantly improved by recasting reasoning about
tabular information as an NLI task. Another study [16] showed improved performance
by training question answering and text summarization datasets by recasting them as
NLI datasets.

In this paper, we propose the STUdent Dropout prediction framework (STUD), which
is a novel framework that predicts which students will drop out during the semester using
demographic and academic information. We first collect data from freshmen (in this study,
we focused on freshmen dropout after observing that freshmen had the highest dropout rate
of 45.05%) enrolled at The Catholic University of Korea from 2017 to 2021. We formulate
both types of information into a natural language format using a template. In addition,
we prepend the sentence (e.g., “This student will drop out.”) or continuous vectors as
“hypothesis” to the student information for recasting the student dropout prediction task
into the NLI task. This recast NLI task is motivated by our hypothesis that the prepended
hypothesis will effectively elicit the knowledge of university student dropout inherent in
the language model. The contributions of this study are summarized as follows:

• We develop a novel framework that predicts university freshmen’s dropout using
PLMs to capture the relationships between different types of data.

• We recast the student dropout prediction task into a natural language understanding
task (i.e., NLI task). To this end, we propose a novel method for modifying each type
of record into a natural language form for feeding into a PLM.

• The proposed model achieves superior performance in the dropout prediction of
university freshmen compared to state-of-the-art methods.
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The remainder of this paper is organized as follows. The methods related to student
dropout prediction and models are described in Section 2. Section 3 describes the university
student dataset and introduces the proposed framework for university student dropout
prediction. We present the performance evaluation results and perform in-depth analyses
in Sections 4 and 5, respectively. Finally, we conclude the paper in Section 6.

2. Related Work
2.1. Research on Student Dropout in Higher Education

The amount of information on individual students and that recorded during their
education have increased rapidly [18]. Several studies have been conducted to extract and
utilize meaningful information from such data. Some studies [19–21] propose methods to
predict dropout based on student attendance records in online environments (e.g., MOOC
and Coursera). Since these studies are conducted in an online environment, there is no
need to consider behavior patterns outside attendance records, such as club activities.
Machine learning techniques are effective in the field of education for evaluating student
performance, and several studies [4–10,22,23] compare the performance of machine learning
methods on the dropout prediction task. The study [6] employed a logistic regression
and artificial neural networks to predict the student dropout rate using data of high
school students. In a different approach [7], the researchers focused on tree-based decision
classification to predict student dropout considering students’ economic circumstances.
Meanwhile, the study [5] used various machine learning methods to analyze the dropout
rate of freshmen engineering students and found that entering university score was a
critical variable in predicting dropout. However, these studies only utilize demographic
information available before admission, whereas predicting student dropout often requires
academic information from universities.

Recent studies [8,24] have shown that academic information can help predict dropout
probability. The study [24] applied a generalized mixed-effects random forest to predict
the probability of engineering students dropping out based on student-level information
and degree programs. Another study [8] used machine learning techniques to predict
freshmen dropout using secondary school academic records and first-year course credits.
Several researchers [11,25] predict student dropout using unstructured data. The study [25]
extracted student sentiment from advisor notes written by student advisors to predict
student dropout. In a recent study [11], the authors utilized temporal structured data
and unstructured counseling data from all semesters to predict college student dropout
using a PLM. However, because these studies train on structured and unstructured data
separately, they lack the ability to capture the relationships between the data. In this study,
we propose a method for formulating structured data in the format of unstructured data
and concatenating them to understand the relationships between the data. To the best of
our knowledge, this is the first attempt to capture the relationships between structured and
unstructured data in a dropout prediction task.

2.2. Pretrained Language Models Based on Transformer

Recently, transformer-based [26] language models pretrained with large datasets [27–30]
have achieved promising results in handling various NLP tasks. In particular, BERT [27],
which utilizes the encoder part of the transformer, has demonstrated promising perfor-
mance in various classification tasks, such as sentiment classification, question answering,
and NLI. BERT adopts two pretraining objectives (i.e., masked language modeling (MLM)
and next sentence prediction (NSP)) on a large-scale unlabeled text, before fine-tuning the
model for a specific downstream task. MLM is an important component in the pretraining
of the BERT model. It randomly masks 15% of the tokens from the input sentences and
thereafter trains the model to predict the original vocabulary ID of the masked tokens
based only on their context (i.e., the remaining tokens). BERT exhibits outstanding perfor-
mance in most NLP tasks by fine-tuning the model with minimal task-specific architectural
modifications (e.g., connecting a fully connected layer to the BERT representation). Subse-
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quent studies, such as RoBERTa [30], have improved the performance by removing NSP
and modifying the static MLM to a dynamic MLM. In parallel, SimCSE [31] employs a
supervised method that enhances pretrained models by incorporating annotated pairs from
NLI datasets into the contrastive learning framework. Transformer-based PLMs also work
in multimodal tasks [32–35] and tasks built on other types of data formats (e.g., tabular
data) [15,36] as well as in NLP. Inspired by these studies, we propose a framework for
predicting student dropout by feeding both structured and unstructured data into a model.

3. Methodology

We developed a novel university student dropout prediction framework that uses
the demographic and academic information of university freshmen. We first constructed
a university student dropout dataset. Our methodology comprised two phases. First,
we split the features of each student into demographic and academic information and
formulated them into a natural language format. Among these, text data such as course
evaluation comments were kept in the form of natural language. Next, we prepended the
hypothesis to the formulated student information to recast the student dropout task as an
NLI task.

3.1. Data Description
3.1.1. Data Source

We collected data from 7536 undergraduate students enrolled at The Catholic Univer-
sity of Korea from 2017 to 2021. Since our goal was to predict which students would drop
out during their freshmen year, we only used data from the first semester for all students.
The students consisted of 3073 males and 4463 females, with a total dropout rate of 10%;
the rates for males and females who dropped out were 46% and 54%, respectively. As these
data were official student information of a university, we did not find any outliers. We
used 11 demographic and 7 academic variables. Table 1 lists the description of the collected
datasets, and Table 2 lists the statistics of the five numerical data. Figure 1 shows pie charts
illustrating the distributions of prominent features in categorical data.

3.1.2. Data Modality

Freshmen data can be expressed using demographic information that a student al-
ready possesses before admission (e.g., gender and age) and academic information that
indicates the student’s behavior during the semester (e.g., GPA and course evaluation).
Table 1 describes each feature of the demographic and academic information. We divide
the features into three categories based on data type: categorical, numerical, and textual.
Categorical features belong to one of two or more categories, numerical features are values
within a specific range, and textual features are text data. Categorical features included ad-
mission type, detailed admission type, student club, and academic activity. The admission
type was determined by the university’s admissions system, which consisted of evaluating
students based on their Korean SAT scores, evaluating students based on their high school
grades and extracurricular activities without taking an entrance exam, and evaluating
foreign students. In addition, the detailed admission type was specifically applied to the
second admission type (e.g., university admission interview and essay test). The student
club indicated whether a student joined a club, while the academic activity indicated their
involvement in university-held academic activities. In the numerical features, the parental
financial income was calculated by national scholarships students received based on their
income level, and the volunteer hours were the number of volunteer hours a student has
performed off- and on-campus. Lastly, the course evaluation score, a numerical feature,
was one of the course evaluation methods, and the course evaluation comment was written
by students and was a textual feature. We formulated all the features in a natural language
format that was predesigned for each feature (see Section 3.2.1). Table 3 lists the templates
used in the formulation along with an example.
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Table 1. Dataset description.

Group Feature Type Classes Description

Birth year Categorical 24 The birth year of the student

Gender Categorical 2 The gender of the student

Nationality Categorical 12 The nationality of the student

Graduation year Categorical 23
The year of high school
graduation

High school Categorical 1564
The graduating high school
of the student

Demographic
information High school region Categorical 24

The region of the graduating
high school

Admission year Categorical 5 The year the student was
admitted

Admission type Categorical 8 The type of admission

Detailed
admission type Categorical 14 The type of

detailed admission

Major field Categorical 13 The major field of the student

Parental
financial income Numerical - The income level divided

by scholarships received

Major GPA Numerical -
The average grade point
of majors

Nonmajor GPA Numerical -
The average grade point
of nonmajors

Volunteer hours Numerical - The hours of volunteering

Academic
information Student club Categorical 2

Whether one participates in
a student club or not

Academic activity Categorical 2
Whether one participates in
an academic activity or not

Course evaluation
score Numerical -

Evaluation score
for courses taken

Course evaluation
comments Textual -

Evaluation comments
for courses taken

Figure 1. Distributions for the categorical data expressed as a percentage.
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Table 2. Statistics of numerical data. The parental financial income is given as a percentile.

Feature Mean SD Median Min Max

Major GPA 3.27 1.15 3.5 0.0 4.5
Nonmajor GPA 3.31 1.1 3.58 0.0 4.5
Volunteer hours 1.99 10.77 0 0 130

Parental financial income * 55.07 27.21 63 8 85
Course evaluation score 4.2 0.41 4.27 2.35 5.0

* The parental financial income is calculated only with data from students who received a national scholarship.

Table 3. An example of formulating each feature into a natural language format.

Group Feature Natural Language Form

Demographic
information

Birth year Born in 2002

Gender Male

Nationality South Korean nationality

Graduation year,
high school,

high school region

Graduated in 2021 from
Yeokgok High School,
a public high school in

Yeokgok-dong, Bucheon-si,
Gyeonggi-do

Admission year,
admission type,

detailed admission type

Admitted in 2021
with early admission

—writing test admission

Major field
Major field is

natural sciences

Parental financial income
Below 53%, similar
to average students

Academic
information

Major GPA
4.17 GPA in major,

excellent

Nonmajor GPA
3.5 GPA in nonmajor,

normal

Volunteer hours No volunteer activity

Student Club Participated in a student club

Academic activity
Did not participate

in an academic activity

Course evaluation score,
course evaluation comments

Course evaluation : 3.93, negative,
too many assignments

3.2. Modeling
3.2.1. Formulating Numerical and Categorical Variables into a Natural Language Format

We formulated the numerical and categorical variables of freshmen in a natural lan-
guage format to leverage the knowledge of the PLM for the student dropout prediction task.
We denoted the demographic variables of freshmen as D = {di|di ∈ R, i = 1, 2, . . . , nd},
where nd denotes the number of demographic variables. To exploit the textual understand-
ing power of PLMs, we formulated all these variables into a natural language format and
created sentences. We created a sentence using the mapping function fd(D) = D∗, where
D∗ is a sequence consisting of the vocabulary of the PLMs. Similarly, we denoted the
academic variables as A = {ai|ai ∈ R, i = 1, 2, . . . , na}, where na is the number of academic
variables. We then formulated them into a sentence using fa(A) = A∗. In Table 3, we used
various formats depending on the specificity of each feature. First, for the categorical type,
we formulated a different sentence format based on the value of the feature, excluding
gender. For instance, we formulated the birth year, such as “2002”, as in the sentence “Born
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in 2002”. In contrast, we used the gender as is, such as “Male” in the sentence. Addition-
ally, for the categorical type indicating participation status, we formulated two types of
sentences. For instance, we formulated the student club, such as “yes” which means the stu-
dent participated in a student club, as “Participated in a student club”, otherwise, we used
“Did not participate in student club”. To leverage the regional information of the pretrained
model learned from the general corpus during pretraining, we included the high school
location from Wikipedia if possible. We formulated the high school, such as “Yeokgok
High School”, with regional information as in “Yeokgok High School, a public high school
in Yeokgok-dong, Bucheon-si, Gyeonggi-do”. We bound features that were more natu-
rally expressed when described together (e.g., university-admission-specific features and
high-school-specific features). For instance, we formulated university-admission-specific
features such as admission year “2021”, admission type “early admission”, and detailed
admission type “writing test admission”, as in the sentence “Admitted in 2021 with early
admission-writing test admission”.

One study [36] showed the effectiveness of using numeric values and text together.
Therefore, we statistically divided the numeric features into five categories using natural
language and described them using categories. For instance, we formulated the major’s
GPA, such as “4.17”, as the sentence “4.17 GPA in major, excellent”, because a score above
3.75 and below 4.25 corresponds to “excellent”. We identified parental financial income
using any national scholarship the student received. Because tuition varies by major,
students who received the same number of scholarships may have different income levels.
For accuracy, we calculated the ratio by dividing the national scholarships received by each
student’s major. We then formulated this ratio in the same manner as the other numerical
features. In the case of the course evaluation, we formulated the course evaluation score,
such as “3.93”, in the same way as the sentence “Course Evaluation : 3.93, negative” and
since comments were originally in textual form, we concatenated them. As a result, we
formulated the course evaluation as in the sentence “Course Evaluation : 3.93, negative,
Too many assignments.”. If there were no comments, we formulated it as “No course
evaluation comments” and if there were no course evaluations at all, we formulated it as
“No course evaluations”.

We then tokenized the paragraphs using the WordPiece tokenizer [37]. In that process,
we did not remove stop words, in line with existing research [27]. Finally, we obtained the
token sequences as follows:

S = {[CLS], d̂1, d̂2, . . . , d̂k, â1, â2, . . . , âl}. (1)

Note that [CLS] is a classification token, d̂1, d̂2, . . . , d̂k denote the tokens of the demo-
graphic token sequence and â1, â2, . . . , âl denote the tokens of the academic token sequence.
k and l denote the lengths of the demographic and academic token sequences, respectively.
The sentence formats corresponding to each variable are listed in Table 3.

3.2.2. Recasting the Task into NLI

Following the results of previous studies [15–17], we leveraged the knowledge of our
PLM by recasting the prediction of dropout probability as an NLI task. Traditionally, NLI
determines whether the given “premise” and “hypothesis” logically correspond (entail-
ment), contradict (contradiction), or are undecided (neutral). Because the student dropout
prediction task is a binary classification task (drop out or not), we recast it into a binary
NLI task, comprising only “entailment” and “contradiction” labels. In general, the NLI
task mainly uses a hypothesis consisting of discrete words, as follows:

S = {[CLS], ŝ1, ŝ2, . . . , ŝm, [SEP], d̂1, d̂2 . . . , d̂k, â1, â2, . . . , âl}, (2)

where [SEP] is a separate token, ŝ ∈ V denote tokens of the discrete hypothesis, V is the
vocabulary of the PLM, and m denotes the length of the hypothesis. However, as shown in
a previous study, using a discrete hypothesis such as “This student will drop out” may not
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be optimal. Therefore, we propose a novel approach to enhance the NLI task by attaching
continuous vector representations to the hypothesis to predict whether a student will
drop out. We used the pseudotoken p̂ as the hypothesis, which was not included in the
vocabulary of existing language models, as follows:

S = {[CLS], p̂1, p̂2, . . . , p̂m, [SEP], d̂1, d̂2, . . . , d̂k, â1, â2, . . . , âl}. (3)

Then, p̂ was embedded through a trainable embedder consisting of a single multilayer
perceptron (MLP). Training the trainable embedder with the downstream task made it
possible to find a better continuous hypothesis than the discrete hypothesis that the PLM
can represent. Additionally, inspired by [38], we proceeded by attaching a continuous
hypothesis to the key and value of each layer to make the hypothesis have a deeper impact
on the output.

3.2.3. Student Dropout Prediction

Figure 2 illustrates the architecture of the proposed model. We utilized BERTbase [27]
and SimCSE-BERTbase [31], popular transformer-based PLMs, to extract demographic and
academic representations. We input a given token sequence S into the model, which
produced a sequence of contextualized token representations S̃ as follows:

S̃ = {[CLS], p̃1, p̃2, . . . , p̃m, [SEP], d̃1, d̃2, . . . , d̃k, ã1, ã2, . . . , ãl}, (4)

where S̃ is a sequence of contextualized token representations, p̃1, p̃2, . . . , p̃m denote the
representation of the continuous hypothesis and d̃1, d̃2, . . . , d̃k, ã1, ã2, . . . , ãl denote the rep-
resentation of the premise. To predict the probability of a student dropout, we used the
contextual representation of the [CLS] token as input to the two-layer MLPs. The output
of the network was passed through a sigmoid function, producing a probability score
between 0 and 1, where higher values indicated a higher likelihood of dropping out. The
network’s parameters were trained to minimize the binary cross-entropy loss, which was
calculated using the predicted probability and true label for each training instance. The
binary cross-entropy loss formula is as follows:

L = − 1
N
{

N

∑
i=1

yilog(ŷi) + (1− yi)log(1− ŷi)}, (5)

where N is the number of training instances, yi is the true label, and ŷi is the predicted
probability for the ith instance.

Figure 2. Illustration of the architecture for our proposed framework of STUD.
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4. Experiments
4.1. Implementation Details

We used the BERT [27] and SimCSE-BERT [31] models to predict the student dropout.
Both models are PLMs, and we trained them with a continuous hypothesis of length 32.
We reparameterized the continuous hypothesis and used it in a reparameterization encoder
comprising two MLPs with a hidden size of 512. For the hyperparameters, we set the
learning rate to 5× 10−5, batch size to 32, and the maximum training epoch to 100. We
warmed up the learning rate for the first 10% of the maximum number of training epochs
and then used the AdamW optimizer [39], which employed a linear decay in the learning
rate during the remainder of the training. We implemented STUD using PyTorch [40] and
HuggingFace’s transformers [41] libraries. Our training was conducted on a machine with
three A100 GPUs with 80GB of VRAM and Intel Xeon Gold 6326.

4.2. Comparisons with Baseline Models

We evaluated the performance of seven methods. We first adopted multimodal
spatiotemporal neural fusion (MSNF) [11] as a state-of-the-art method for the dropout
prediction task. Other baselines included machine learning methods, such as logistic
regression, support vector machine (SVM), decision tree, random forest, as well as deep
learning methods, such as MLP. In our experiments, we compared the following methods:

• Logistic regression (baseline): This model is used to estimate the probability that
dependent variables belong to a particular class. If the estimated probability exceeded
a specific threshold (0.5), the model predicted the variables belonged to the dropout
class. To counterbalance the lower proportion of student dropouts, we set the influence
of the dropout class on the cost function to eight times that of the other class. The
regularization parameter was set to 0.01 [5,6,22].

• SVM (baseline): This model is a binary linear classification model that determines
which category the data belong to. In the feature space mapped to the dataset, the
model finds the appropriate decision boundaries that divide the data into two classes.
We set “rbf” as the kernel type and “scale” as a kernel coefficient. To address data
imbalance, we set the influence of the dropout class on the cost function to six times
that of the other class. The regularization parameter was set to one [5,8,9,22].

• Decision tree (baseline): This model shows the data patterns as predictable combina-
tions of features. The model then proceeds with a binary classification depending on
whether the features match. We used “gini” as a function to measure the quality oft he
division [42] and adjusted the weight of the dropout class in the gini calculation to
be six times higher than that of the other class to address data imbalance. We set the
maximum depth to 5 [4,5,22].

• Random Forest (baseline): This model is an ensemble of decision trees. Instead of
creating a decision tree for the entire feature set, a random forest randomly selects
some features to generate several decision trees and collects the classification results
from them. We use “gini” as a function to measure the quality of the division and set
the weight of the dropout class in the gini calculation to be eight times higher than
that of the other class. We set the maximum depth to 10 [4,5,8,9,22].

• MLP (baseline): This model is a multilayer structure that combines multiple percep-
trons. We employed an MLP with a supervised learning technique using a gradient
descent algorithm for training [5,6,22].

• MSNF (baseline): This model is the state-of-the-art dropout prediction method. It is a
multitask model that uses long short-term memory, 1D convolutional neural networks
(CNN), and BERT models to predict future dropout, next semester dropout, type of
dropout, duration of dropout, and cause of dropout. Because we only used data from
the first semester of the first year, we did not use temporal information. Therefore, we
reimplemented the model using a 1D CNN and a BERT structure to predict future
dropout [11].
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• STUD: This is our proposed dropout prediction framework. We first formulated
student demographic and academic information in a natural language format. We
then fine-tuned PLMs (e.g., BERT [27], SimCSE-BERT [31]) by recasting the problem
as an NLI task, prepending a continuous hypothesis at each layer of the model.

4.3. Experimental Results

Table 4 presents the results of our experiments, comparing the performance of the
six baseline models with that of our proposed STUD model. Overall, our experiments
demonstrated that STUD, which prepends continuous hypotheses to the layers, significantly
outperformed the baseline methods. In particular, the F1-score of STUDSimCSE−BERT was
9.00% higher than that of MSNF, an existing state-of-the-art model.

Table 4. Comparison between STUD and other baselines.

Model
Dropout Prediction

Accuracy Precision Recall F1-Score

Logistic Regression 0.766 0.255 0.675 0.370
SVM 0.847 0.339 0.533 0.414

Decision tree 0.821 0.296 0.546 0.384
Random forest 0.829 0.312 0.558 0.400

MLP 0.896 0.483 0.364 0.415
MSNF 0.877 0.405 0.442 0.422

STUDBERT 0.894 0.478 0.416 0.444
STUDSimCSE−BERT 0.901 0.516 0.416 0.460

This result demonstrated that our model effectively captured the relationships between
structured and unstructured data when predicting dropout. In addition, STUDSimCSE−BERT
exhibited a 10.84% higher performance in terms of the F1-score than the MLP models using
only conventional numerical forms. This result showed that our attempts to formulate
numeric data in textual form and train them were effective. Moreover, we observed
that STUDSimCSE−BERT outperformed STUDBERT by 3.60% in terms of the F1-score. This
showed that the model additionally trained on the NLI dataset was effective for the dropout
prediction task, recast as an NLI task.

Another insight that we observed from these results was that the precision was higher
than the recall for the proposed method. This indicated that the model was generally
passive in predicting students who drop out. In real-world applications, it may be more
beneficial for administrators to use models with a high precision. By implementing a
counseling program for students who are considering dropping out, universities can
proactively prevent dropouts and improve student retention rates. However, if such a
program is applied to students who have no intention of dropping out, it can have a
negative impact on their academic experience. Balancing the precision and recall of the
model can be considered in further work.

5. Analysis
5.1. Ablation Study

We conducted additional experiments to compare the performance improvements of
each variable in terms of student information. To determine the effectiveness of the demo-
graphic (Dem. ) and academic (Aca.) information, we removed these variables separately in
distinct experiments. Moreover, we conducted a separate experiment for course evaluation
comments (Cou.), which are unstructured data, to compare the performance improvement
when using structured and unstructured data from academic information in detail. The
results of these experiments are shown in Table 5, along with the STUD model results for
comparison. When demographic information was removed, STUDBERT exhibited a 54.95%
performance drop in terms of the F1-score, whereas STUDSimCSE−BERT showed a 46.09%
performance drop. When the structured academic information was removed, STUDBERT
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demonstrated a 42.57% performance drop based on the F1-score, and STUDSimCSE−BERT
exhibited a 33.26% performance drop. When the unstructured course evaluation comments
were removed, STUDBERT showed an 8.11% performance drop based on the F1-score, and
STUDSimCSE−BERT displayed a 9.78% performance drop.

Table 5. Ablation analysis of the STUD model.

Model
Modality Dropout Prediction

Dem. Aca. Cou. Accuracy Precision Recall F1-Score

STUDBERT

7 3 3 0.884 0.333 0.143 0.200
3 7 3 0.892 0.424 0.182 0.255
3 3 7 0.885 0.429 0.390 0.408
3 3 3 0.894 0.478 0.416 0.444

STUDSimCSE−BERT

7 3 3 0.759 0.182 0.390 0.248
3 7 3 0.874 0.350 0.273 0.307
3 3 7 0.896 0.483 0.364 0.415
3 3 3 0.901 0.516 0.416 0.460

First, we observed the most significant drop in performance when demographic
information was removed. These results indicated that demographic information was a
much more influential variable than academic information for predicting student dropout.
We assumed that this was because the students’ academic information included only one
semester, which was insufficient in terms of absolute information compared to demographic
information. Second, we observed that both structured data (e.g., GPA and volunteer hours)
and unstructured data (e.g., course evaluation comments) within academic information
impacted a dropout prediction. This result demonstrated that course evaluation comments
could not be utilized through machine learning and deep learning methods utilizing only
structured data, which also influenced dropout prediction. This suggests that a combination
of both structured and unstructured data is required for a more precise prediction of
student dropout.

5.2. Effect of Different Types for Hypothesis

We conducted additional experiments to understand the effect of NLI task recasting on
the dropout prediction task and the impact of the hypothesis on performance. We compared
the model before the NLI recasting (Classification) with that after the NLI recasting (NLI).
Because a previous study [43] showed that discrete tokens may be suboptimal, we ran
experiments with discrete and continuous hypotheses. The results of these experiments are
shown in Table 6. First, the model with the discrete hypothesis (NLIDiscrete) outperformed
Classification by up to 5.38% in terms of the F1-score. We also observed that the performance
was lower or higher depending on the discrete hypothesis. This suggested that the optimal
discrete hypothesis we considered may not have been the best choice. Therefore, we
conducted additional experiments using a continuous hypothesis instead of a discrete
hypothesis. We found that NLIContinuous outperformed NLIDiscrete by 3.32% in terms of the
F1-score. Based on this result, our proposed model prepended the continuous hypothesis to
the key and value of each layer to better reflect the prediction value. Our proposed model
(Ours) outperformed NLIContinuous by 13.58%. These results indicated that the continuous
hypothesis was more suitable than the discrete hypothesis when recasting the task to the
NLI task, and attaching them to each layer was more helpful for model prediction than
attaching them to the input embeddings alone.
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Table 6. The comparison of dropout prediction performance for various settings.

Model Mode
Dropout Prediction

Accuracy Precision Recall F1-Score

STUDSimCSE−BERT

Classification 0.880 0.397 0.351 0.372
NLIDiscrete 0.881 0.409 0.377 0.392

NLIContinuous 0.872 0.384 0.429 0.405

Ours 0.901 0.516 0.416 0.460

5.3. Qualitative Analysis

Figure 3 shows a visualization and comparison of the academic information between
the two groups (dropout and nondropout) after admission. We found that the GPA of
dropouts was 23.03% lower for majors and 24.78% lower for nonmajors compared to non-
dropouts, which suggests that dropouts had a lower academic motivation and achievement.
We also found that dropouts participated in 84.05% fewer student clubs and 204.29% fewer
volunteer hours than nondropouts, which suggested that dropouts were less motivated to
participate in academic activities. Lastly, we found that dropout students’ course evaluation
scores were 22.38% lower than nondropout students, indicating a negative attitude towards
the courses they had taken at university. As a result, we can see that dropout students
were less enthusiastic about their activities at university and had a more negative attitude
towards their courses than nondropout students.

Figure 3. The difference in both numerical and categorical features between students who dropped
out and those who did not drop out.

6. Conclusions

In this study, we introduced a novel framework for predicting university student
dropout by combining individual demographic and academic information. We formulated
each feature into a natural language format and utilized a PLM to capture the relationships
between different types of data. We further recast the student dropout prediction task from
a binary classification task to an NLI task to maximize the effectiveness of the language
model. Experimental results demonstrated that the proposed framework STUD signifi-
cantly outperformed several baseline methods. Notably, our model achieved a remarkable
improvement of 9.00% on the F1-Score compared to the current state-of-the-art model.
We showed that demographic and academic information was meaningful for predicting
student dropout and that the recasting task was successful. However, STUD required many
tokens (on average, 123 tokens) for formulating structured data into unstructured data and
recasting the task as an NLI task. In future work, we aim to minimize the number of tokens
for formulating and recasting the task to accommodate a wider variety of information (e.g.,
counseling records).
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