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Abstract: Accurate wire rope defect diagnosis is crucial for the health of whole machinery systems in
various industries and practical applications. Although the loss of metallic cross-sectional area signals
is the most widely used method in non-destructive wire rope evaluation methods, the weakness and
scarcity of defect signals lead to poor diagnostic performance, especially in diverse conditions or
those with noise interference. Thus, a new wire rope defect diagnosis method is proposed in this
study. First, empirical mode decomposition and isolation forest methods are applied to eliminate
noise signals and to locate the defects. Second, a convolution neural network and transformer encoder
are used to design a new wire rope defect diagnosis network for the improvement of the feature
extraction ability. Third, transfer learning architecture is established based on gray feature images to
fine-tune the pre-trained model using a small target domain dataset. Finally, comparison experiments
and a visualization analysis are conducted to verify the effectiveness of the proposed methods. The
results demonstrate that the presented model can improve the performance of the wire rope defect
diagnosis method under cross-domain conditions. Additionally, the transfer feasibility of transfer
learning architecture is discussed for future practical applications.

Keywords: wire rope; defect diagnosis; domain adaptation; transfer learning

1. Introduction

Wire rope is widely used in many fields, such as coal mine hoists, bridge construction,
escalators, cranes, and ocean platforms for natural gas extraction [1]. Due to the harsh
working conditions in these fields, various defects inevitably occur during its whole life
cycle [2]. Furthermore, the condition of wire rope is of great importance for the stable
operation of machines and the safety of human lives [3]. Magnetic flux leakage (MFL) [4]
is one of the most prevalent non-destructive electromagnetic testing methods used in
practical applications, where the loss of metallic cross-sectional area (LMA) defects can be
detected both effectively and rapidly. However, the analysis of this method is difficult when
LMA signals are combined with different noises that are generated by electromagnetic
interference, detection speeds, the pole tip effect, or movement friction [5]. Hence, the
accurate defect diagnosis of wire rope is necessary and meaningful for machines to present
greater reliability. In addition, reducing maintenance costs is another benefit that arises
from wire rope defect diagnosis research.

In recent years, breakthroughs in image processing methods have provided increased
directions for wire rope signal processing and feature extraction techniques. Based on the
matrix reconstruction method and the fact that two-dimensional (2D) imaging provides
a better platform for feature extraction in comparison to standard one-dimensional (1D)
signals, numerous detection algorithms have been proposed and demonstrated in the
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literature [6–8]. To improve the robustness and accuracy outcomes of wire rope defect
inspections, Liu et al. proposed some novel methods to complete quantitative defect
recognition practices, including a reshaped sine function, wavelet function, and grid
entropy. Finally, the feasibility of the presented methods is verified through case studies
that are conducted under different working conditions [9]. In a recent study, Li et al.
presented the establishment of MFL gray images and combined a kernel extreme learning
machine with a compressed sensing wavelet to inhibit noise interference and improve the
accuracy of wire rope defect recognition results [10]. From the perspective of solving noise
interference issues, Liu et al. designed a new signal processing method based on notch
filtering and wavelet denoising for successfully detecting defect signals in the MFL data,
which was demonstrated by a series of experiments and processing results [11].

It is well known that deep learning and neural networks have achieved great success
in numerous fields, such as image classification [12,13], object detection [14,15], and natural
language processing [16]. These new approaches can automatically extract features instead
of depending on prior knowledge. Furthermore, the advantage of deep learning networks
is their better generalization and robustness. Based on machine learning techniques, some
methods were proposed in the literature and demonstrated to be effective for various defect
diagnosis tasks in mechanical industries, such as drag machines, gearbox diagnosis, motor
fault detection, and rotor-bearing systems [17]. Eren et al. used raw sensor signal as an
input to establish a compact, adaptive, 1D convolution neural network (CNN) classifier for
bearing fault diagnosis without any pre-determined feature extraction or feature selection
methods, and the effectiveness and feasibility of the proposed method were validated by
comparing the results with other competing intelligent fault diagnosis algorithms [18].
Based on an artificial neural network, Sahu et al. applied a multilayer perceptron in a drag
system to improve the sensitivity of their fault symptom identification and demonstrated
the effectiveness of minimizing the failure frequency and maintenance costs [19]. To
address the difficulties of acquiring labeled samples, He et al. proposed a new framework
based on small-labeled infrared thermal images and an enhanced CNN for monitoring
the vibration of a rotor-bearing system fault diagnosis, which was demonstrated to be
superior to the mainstream methods used to date [20]. Some studies also focused on
transfer learning (TL) methods to minimize the discrepancy between two datasets of
working conditions, which aimed to avoid long time-consuming training and insufficiently
labeled data. Wang et al. designed a novel fault diagnosis network that was constructed
by a deformable CNN, deep long short-term memory, and dense layers based on transfer
learning strategies, and their cross-domain experiments demonstrated its effectiveness in
identifying the fault types of bearings in new conditions [21]. Ma et al. proposed a transfer
diagnosis framework based on an improved domain adaptation algorithm, and their related
comparison of the experimental results demonstrated the applicability and practicability of
the proposed method compared with other existing state-of-the-art (SOTA) algorithms [22].
Some studies also used machine learning methods to detect wire rope defects, such as
neural networks, support vector machine (SVM) [23], and multi-channel signal fusion,
to improve the performance of defect detection activities under conditions of vigorous
movement and strand noise [24]. Undoubtedly, the mentioned studies yielded positive
effects from different aspects; however, for cross-domain working conditions and those
with noise interference, further improvements and increased robustness can be achieved in
wire rope defect diagnosis.

Aiming to improve wire rope defect diagnosis performance under diverse working
conditions from LMA signals, a new CNN-transformer network and TL architecture are
proposed in this paper to improve the defect detection accuracy. The main contributions
and novelties of this paper are the following:

(1) A data preprocessing method based on empirical mode decomposition (EMD) is
presented to eliminate the adverse interference of various noises. Two-dimensional gray
images are processed through matrix reconstruction and data augmentation methods for
the preparation of a wire rope training dataset.
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(2) Through the combination of CNN and a transformer, a novel wire rope defect
diagnosis network is proposed and named DCNNT, where the defect information can
be effectively extracted, computational complexities are reduced, and forward efficiency
is improved.

(3) Unlike the existing approaches in the literature, this paper focuses on solving the
issues of domain adaptation and wire rope defect data that are insufficient. A new TL
architecture is established based on TL techniques and the proposed DCNNT.

(4) The effectiveness of the proposed DCNNT and domain adaptation ability of the TL
architecture are verified through different comparison experiments with several general
and SOTA methods, where the proposed model can balance detection accuracy, forward
latency, and network parameters.

This paper is organized as follows: The related study is reviewed in Section 2. Section 3
is the methodology of the proposed methods, including original data preprocessing based
on EMD, feature image processing based on matrix reconstruction, TL architecture estab-
lishment, and DCNNT network structure. In Section 4, case studies are conducted through
comparison experiments and visualization analysis. Conclusions are presented in Section 5.

2. Related Works
2.1. CNN Theory

With the development of machine vision, the effectiveness of the CNN has been
proven in many studies, especially those addressing feature extraction and processing
speed. Usually, convolution, pooling, and fully connected layers are the main components
of the CNN operation. Through CNN, different feature maps can be obtained and the
number of channels is determined by the kernel size. This process can be defined as:

xl
i = f

(
n

∑
j=1

W l
i,j × xl−1

j + bl
i

)
(1)

where xl
i is the ith output feature map of the lth layer. xl−1

i denotes the jth input feature
map of the (l − 1)th layer, W l

i,j is the weight matrix between the ith feature map of the

lth layer and jth is the feature map of the (l − 1)th layer, bl
i is the bias of the ith output

feature map in the lth layer, and f (·) is the activation function that is required to increase
the nonlinearity of the model. The ReLU [25] function has excellent performance and was
adopted in this study. The definition is:

f (x) = max(0, x) (2)

The pooling layers can reduce the parameters of the whole network and ensure the
translation is invariant during the prediction process. The common methods used include
max pooling, mean pooling, and stochastic pooling. The fully connected layers are often
used at the end of the network to complete the dimension change step. In this process,
the feature maps are flattened into 1D vectors as the input of fully connected layers. The
operation can be defined as:

yl = f
(

wl xl−1 + bl
)

(3)

where yl is the output of the lth fully connected layer, xl−1 is the input vector from the
(l − 1)th layer, wl is the weight vector of the nodes between the lth and (l − 1)th layers,
and bl is the bias.

2.2. Vision Transformer (ViT)

In the year 2020, Dosovitskiy et al. applied the transformer [26] to image classifica-
tion tasks directly and termed the proposed method as ViT [27]. Based on the attention
mechanism, ViT feeds the sequences of image patches directly to the standard transformer
network and produces good detection results. As shown in Figure 1, ViT only uses the
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transformer encoder which includes residual connectors, layer normalization, and the
multi-head attention mechanism. Following the patch and position embedding stages, the
1D sequence is fed into the encoder blocks. The multi-head attention mechanism is the
most important module and has the role of discovering the relationship between different
elements from other tokens in the sequence. Similar to the standard transformer, three
trainable weight matrices exist (Wq, Wk, Wv) which are responsible for query, key, and
value projections, respectively. During training using a certain batch size, the input can be
expressed as matrix X. Consequently, Q = XWq, K = XWk, and V = XWv can be obtained
as the inputs of the self-attention mechanism. The dot-product attention mechanism is
depicted as the left dashed box and the operation of the single-head attention can be defined
as:

Attention(Q, K, V)h = So f tmax(QhKT
h /
√

d)Vh (4)

where the attention matrix A = QKT is responsible for the learning alignment scores
between tokens in the sequence, and d is a scaling factor used to prevent excessive output
in A. As shown in the middle block, MultiHead(Q, K, V) = Wo·Concat(A1, A2, ..., AH)
can be obtained through concatenated operation and linear projection (Wo). Similarly, by
stacking the encoder blocks on top of one another, a transformer encoder can be established.
Finally, the multi-layer perceptron (MLP) head is used for classification tasks.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 22 
 

2.2. Vision Transformer (ViT) 
In the year 2020, Dosovitskiy et al. applied the transformer [26] to image classification 

tasks directly and termed the proposed method as ViT [27]. Based on the attention mech-
anism, ViT feeds the sequences of image patches directly to the standard transformer net-
work and produces good detection results. As shown in Figure 1, ViT only uses the trans-
former encoder which includes residual connectors, layer normalization, and the multi-
head attention mechanism. Following the patch and position embedding stages, the 1D 
sequence is fed into the encoder blocks. The multi-head attention mechanism is the most 
important module and has the role of discovering the relationship between different ele-
ments from other tokens in the sequence. Similar to the standard transformer, three train-
able weight matrices exist (𝑊 , 𝑊 , 𝑊 ) which are responsible for query, key, and value 
projections, respectively. During training using a certain batch size, the input can be ex-
pressed as matrix 𝑋. Consequently, 𝑄 = 𝑋𝑊 , 𝐾 = 𝑋𝑊 , and 𝑉 = 𝑋𝑊  can be obtained 
as the inputs of the self-attention mechanism. The dot-product attention mechanism is 
depicted as the left dashed box and the operation of the single-head attention can be de-
fined as: 

( , , ) ( / )T
h h h hAttention Q K V Softmax Q K d V=  (4)

where the attention matrix 𝐴 = 𝑄𝐾  is responsible for the learning alignment scores be-
tween tokens in the sequence, and 𝑑 is a scaling factor used to prevent excessive output 
in 𝐴 . As shown in the middle block, 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝑊 ∙ 𝐶𝑜𝑛𝑐𝑎𝑡(𝐴 , 𝐴 , . . . , 𝐴 ) 
can be obtained through concatenated operation and linear projection (𝑊 ). Similarly, by 
stacking the encoder blocks on top of one another, a transformer encoder can be estab-
lished. Finally, the multi-layer perceptron (MLP) head is used for classification tasks. 

 
Figure 1. The architecture of the Vision Transformer. ⊕ is an additional operation between two input 
vectors so that the deep network can be established through residual connections. 

2.3. Transfer Learning 
Transfer learning (TL) is an excellent technique used for machine learning practices 

and is often used to rapidly improve detection accuracy between different working con-
ditions. The purpose of TL is to find out the commonality between source and target do-
mains following different distributions [28,29]. The definition of TL is described as train-
ing models in the source domain (𝐷 = 𝑋 , 𝑃(𝑋 ) ) and complete source task (𝑇 = 𝑌 , 𝑓 ), 
then the fine-tuning model in the target domain (𝐷 = 𝑋 , 𝑃(𝑋 ) ) and complete target 
task (𝑇 = 𝑌 , 𝑓 ), where 𝑋 = 𝑥|𝑥 ∈ 𝑋, 𝑖 = 1,2, . . . , 𝑛  is the feature space, 𝑃 denotes the 

Figure 1. The architecture of the Vision Transformer. ⊕ is an additional operation between two input
vectors so that the deep network can be established through residual connections.

2.3. Transfer Learning

Transfer learning (TL) is an excellent technique used for machine learning practices and
is often used to rapidly improve detection accuracy between different working conditions.
The purpose of TL is to find out the commonality between source and target domains
following different distributions [28,29]. The definition of TL is described as training
models in the source domain (Ds = {Xs, P(Xs)}) and complete source task (Ts = {Ys, fs}),
then the fine-tuning model in the target domain (Dt = {Xt, P(Xt)}) and complete target
task (Tt = {Yt, ft}), where X = {x|xi ∈ X, i = 1, 2, ..., n} is the feature space, P denotes
the probability distribution, and f is the learned function of the model. In summary, TL
helps to reduce the overall training time and does not require changing the structure of the
model. Moreover, model training only requires a few labeled datasets obtained from the
target domain.
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3. Methodology
3.1. Data Preprocessing

Non-destructive testing technology based on MFL is widely used in the research of
wire rope diagnosis activity. Due to harsh working conditions and different structures of
wire rope, such as aggressive movement, electromagnetic interference, the pole tip effect,
and movement friction, MFL signals are inevitably mixed with various noises that have
an adverse impact on the defect diagnosis result. All of these factors contribute to the
difficulty of extracting useful features from the original signals. Therefore, it is necessary to
conduct the data preprocessing step, prior to further operations of feature extraction and
defect detection.

As one typical MFL signal commonly used in practical applications, the LMA signal
was selected to analyze the condition of the wire rope. Furthermore, a large number of
studies have proved the validity of the EMD [30] method for processing nonlinear or
nonstationary signals [31]. In this paper, the EMD method was used to preprocess the
original LMA signals and realize the function of denoising. As described in Equation (5),
the original signal (x(t)) can be divided into several intrinsic mode function (IMF) signals
(s(t)) and one residual signal (r(t)). According to the principle of EMD, each IMF signal
reflects different frequency components and signal features. By recombining the useful
IMFs, the purpose of eliminating noise signals can be achieved. Specifically, the constraints
on the IMF signal are as follows:

1. For each IMF signal, the number of extreme points should be equivalent to zero
crossing points, or the difference cannot be greater than one.

2. The upper envelope formed by maxima and the lower envelope formed by minima
should be symmetrical and the average values must be zero at any moment.

x(t) =
n

∑
i=1

Si(t) + r(t) (5)

According to the EMD method, ten different IMF signals and one residual signal
can be obtained, these are presented in Figure 2. When these IMF signals are observed
and compared to the original LMA signal, it can be determined that most of these noise-
interference signals can be divided into different IMFs, which can be obviously separated
from the useful information. Thus, the signals presented in Figure 2, from (g) to (l), can be
understood as noise because of the pole tip effect or strand wave structure, which should
be removed. Similarly, the signals, from (b) to (f), containing defect information should
be reconstructed to complete the data preprocess and feature refinement stages. After
EMD decomposition and reconstruction, the refined signals are presented in Figure 3b,
which exhibits improved clarity and stability results, and the defect signal features are
more obvious. This is beneficial to further feature extraction and defect diagnosis steps.

3.2. Image Establishment
3.2.1. Defect Location

For the establishment of normal and defect feature images, defect location is necessary
and crucial to further model training outcomes. According to the characteristics of the
LMA signals, the defect samples are small when compared with the normal components,
and their fluctuations and changes are obvious. Therefore, an excellent anomaly detection
algorithm, isolation forest (iForest), was used in this study to complete defect pre-locations
from the numerous normal data. The detail of iForest can be observed in reference [32].
The detection results are different as the hyper-parameters change. According to the
professional’s prior knowledge, the number of iterations, isolation trees, and sub-sample
heights were set as 10, 100, and 256, respectively. Meantime, the detection threshold was
99.5%, that is, 0.05% of abnormal components could be detected. Although the defect
signals indicated by the red spot can be clearly located, as shown in Figure 4, multiple
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data for each defect location still exist, which need to be processed further to meet the
requirements of data extension and image processing.
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Although the iForest method can effectively detect the defect signals, an additional
processing step is required to obtain the single maxima and minima values for each defect
sample. Local extremum is a common and simple algorithm used in signal processing
methods, which can be used as a filter for data optimization. The window size of the
local extremum filter is an important parameter and it must be adjusted according to real
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applications. In this study, the window size was 100 and the final output results were
acceptable. As shown in Figure 5, every result (red dot) can clearly locate each defect
sample, which provides a foundation for feature image establishment.
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extremum filter is an important parameter and it must be adjusted according to real ap-
plications. In this study, the window size was 100 and the final output results were ac-
ceptable. As shown in Figure 5, every result (red dot) can clearly locate each defect sample, 
which provides a foundation for feature image establishment. 
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3.2.2. Image Processing

First, data extension and segmentation steps were conducted. The purpose of the
data extension step is to provide an adequate amount of data for feature image processing
and a simple explanation of this step is the use of the detected defect extreme points as
the axial center and the addition of certain data points at both sides. The feature image is
established at a size of 10× 10 and the data extension numbers located on the left and right
sides are set to 49 and 50, respectively. Consequently, 1D defect signals can be obtained
and the remaining data are segmented at the same lengths. Namely, there are 100 signal
points in each sample, whether they are normal or defect data. Specifically, the length of the
data should be adjusted according to the real application since it can affect the diagnosis
resolution during an online diagnosis.
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Second, 1D signals are recreated into 2D feature images through the matrix recon-
struction method. Moreover, all the data presented in each sample should be max–min
normalized and mapped to 0–255 using Equation (6). Where, X(i) is the ith sample of the
1D signals and X(i)max and X(i)min are the maximum and minimum values of X(i).

S(i) =
X(i)max − X(i)

X(i)max − X(i)min
× 255 (6)

Then, the matrix reconstruction method is employed to obtain the 10× 10 matrix, and
the element of the transformed matrix is used as the pixel of a gray image, a simple feature
image (M) can be established using Equation (7):

M = τ
[
S(i)L×1

]
(7)

where function τ[·] is an operation from 1D signals S(i), which contain L data points for
the 2D matrix, and the process can be defined as Equation (8):

τ[S(i)] : [s(1), s(2), s(3), · · · , s(L)]→

P11 P12 · · · P1n
...

...
...

Pm1 Pm2 · · · Pmn

 (8)

Particularly, L should present a square root if the final image is transformed into a
square matrix. Here, L = mn = k2, where k is the order of the right matrix and defined as
10 in this paper. During the process of matrix reconstruction, the relationship between each
datum of S(i) and the matrix can be calculated by Equation (9), where m and n are the row
and column indexes of the final matrix value, respectively.

Pmn = s(k× (m− 1) + n) (9)

According to the algorithm presented in Table 1, the normal and defect feature images
can be obtained and are presented in Figure 6. Obviously, image expression is more
intuitive and distinguished when compared with the 1D original LMA signals. Moreover,
those characteristics in different types of images are clear and distinguishable. As indicated
by the red dotted line, it can be observed that the wire rope defect information changes
into black-and-white cross stripes that are caused by the intense fluctuations in the defect
LMA signals. Furthermore, cross stripes exist in all defect images; this is beneficial for the
improvement of robustness and consistency outcomes achieved during the defect detection
process. Unlike the defect images, normal images are characterized by random noise points
instead of cross stripes because MFL signals can only be captured at defect locations.

Table 1. Algorithm of feature image establishment.

Step Description

1 Original LMA signal preparation
2 Data preprocessing based on the EMD method
3 Defect location based on the isolation forest and local extremum method
4 Data extension and segmentation
5 Normal and defect feature image generation based on matrix reconstruction
6 End
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3.3. Transfer Learning Architecture

As shown in Figure 7, the designed TL architecture for wire rope defect diagnosis
mainly consists of four steps and two tasks: data preprocessing, image establishment,
DCNNT model pre-training and fine-tuning, and source domain and target domain tasks.
The details of the DCNNT are described in Section 3.4.
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TL architecture focuses on model pre-training and fine-tuning stages that are necessary
and crucial for successful domain adaptation results. The dataset of feature images between
source and target domains presents different data distributions and the number of the latter
is usually scarcer in practical implementations due to real-life limitations. The definition of
the source domain task is pre-training performed using high numbers of images obtained
from the source domain with all categories (normal and defect); then, an original DCNNT
model can be created (green highlight). Consequently, the target domain task is the fine-
tuning of the internal parameters of the trained model using a part of the target domain
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dataset to create a better transfer DCNNT model (orange highlight). The purpose of the
proposed TL architecture is to use a small target domain dataset to rapidly create an
effective model, instead of using time-consuming retraining methods. According to the TL
strategy, the unfreeze training from lower to higher layers was implemented in this study.
The relevant details can be observed in reference [33].

3.4. DCNNT Model

The intuition of the DCNNT model lies in ViT and the purpose of reducing com-
putational complexity, making it possible to train and predict using a common personal
computer while improving the prediction performance. As depicted in Figure 8, the
DCNNT model is also a deep learning network based on the CNN and transformer.
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during gradient backpropagation.

The CNN module is the initial step and its main function is to pre-extract features
and reshape 10× 10× 1 wire rope feature images into a 1D feature sequence to reduce
the computational complexity produced during the latter transformer module. The CNN
is designed as the backbone network and simply consists of standard convolution, max
pooling, and batch normalization stages. As summarized in Table 2, three operation blocks
exist, and each block has the same configurations in filter shape. Following the application
of the CNN, the size of the feature maps is adjusted from 10× 10 to 4× 4 and the number
of channels is increased to 512.

Table 2. CNN backbone network architecture for DCNNT.

Layers Filter Shape Output Size

Conv-1 3 × 3 conv, stride 1, padding 1 10× 10× 64
Normal-1/Pooling-1 3 × 3 conv, stride 1, padding 0 8× 8× 64

Conv-2 3 × 3 conv, stride 1, padding 1 8× 8× 256
Normal-2/Pooling-2 3 × 3 conv, stride 1, padding 0 6× 6× 256

Conv-3 3 × 3 conv, stride 1, padding 1 6× 6× 512
Normal-3/Pooling-3 3 × 3 conv, stride 1, padding 0 4× 4× 512

Conv-1 denotes the first layer of the convolution operation. Similarly, normal and pooling are the normalization
and max pooling layers.

Pseudo-color is used to visualize the entire data flow process and the color bar is a
supplement for reflecting the data values. In the patch embedding stage, we flattened the
4× 4× 512 feature maps to 16× 512, and each patch become a 512 vector with a trainable
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linear projection. Similar to the standard transformer, a learnable class token (gray patch)
was added to be responsible for the classification task. Meanwhile, standard learnable 1D
embeddings were used to add position information. Then, the data flow shape was 17× 512
and the resulting sequence of embedding vectors was fed to the transformer encoder. The
dotted box diagram represents the structure of a single encoder block. Table 3 presents
the details of DCNNT encoder variants, twelve encoder blocks were stacked to establish
a transformer encoder. The number of multi-head attention networks was set to eight to
achieve computationally economic results. The MLP head is a simple linear layer that has
the same neural nodes as the diagnosis class.

Table 3. The parameters of DCNNT encoder variants.

Patch Size Encoder Block Hidden Size MLP Size Heads

4× 4 12 512 2048 8

4. Case Studies
4.1. Wire Rope Dataset

The dataset used in this paper was collected using a wire rope LMA signal detector, as
illustrated in Figure 9a. The main type of defect was a broken wire rope which is indicated
in Figure 9b,c. Under different working conditions, the LMA signals of four wire ropes
used in the mine hoist were obtained and divided into groups A, B, C, and D, respectively.
According to the image establishment method mentioned in Section 3.2, the number of
wire rope feature images is presented in Table 4. It can clearly be observed that the highest
ratio between the number of normal and defect signals is approximately 50:1. This serious
imbalance dataset has a negative effect on source domain training and prediction tasks [34].
Therefore, sample augmentation for the defect images was necessary, and the augmentation
algorithm steps are depicted in Table 5.
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Table 4. Numbers of normal and defect feature images in the wire rope dataset.

A B C D

Normal 1371 2660 2593 2572
Original Defect 27 59 85 98
Augmentation

Defect 297 649 935 1078

Table 5. Algorithm of defect sample augmentation.

Step Description

1 Original LMA signal preparation
2 Data preprocessing based on the EMD method
3 Defect location based on the isolation forest and local extremum method
4 Data extension and segmentation
5 Confirm the size of window and stride for augmentation
6 Defect images generation based on the overlap method and matrix reconstruction
7 End

In this paper, sampling performed with the overlap method was used as the aug-
mentation strategy. As shown in Figure 10, unlike the image establishment algorithm, the
extensive number increases to 99 on both sides (100 is the center of the defect). Then, the
sampling window moves to the end in a stride of 10, and 11 samples were collected from
the same defect sample. The start and end states are presented in Figure 10a,c, respectively,
while the middle stage is presented in Figure 10b. Following the augmentation step, the
defect data were expanded 11 times, compared with the original data, as shown in Table 4.
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Figure 10. The overlap method of defect sample augmentation. The red box is the sampling window
for obtaining 100 signal points. Sample augmentation is realized by sliding the red box from left to
right. Subfigure (a–c) denote the different periods during the sampling process.

4.2. Training Setup

During the experiments, a 3060Ti GPU was used to accelerate the processes of training
and testing. For the programming language and deep learning platform, Python 3.6 and
Pytorch 1.10 programs were used throughout all of the case studies. Furthermore, Adam
was used as the optimizer to guarantee the stability of gradient backpropagation and loss
decrement results. The batch size, initial learning rate, and decay rate were set to 64, 0.001,
and 0.9 for all models, respectively. However, the target domain training only required
100 epochs instead of 400, which was used in the source domain training.
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4.3. Evaluation Metrics

To demonstrate the effectiveness of the proposed methods, some common evaluation
metrics were used in the following experiments. The accuracy value was used to access the
diagnosis performance of the DCNNT models and the calculation process is expressed as
Equation (10), and its input elements are described in Table 6. The size of the model can
be reflected through the number of parameters used throughout the entire network. The
floating point operations (FLOPs) represent the computational cost, which is a significant
reference for the embedded equipment or other devices with limited computing power.
Additionally, latency denoted the forward inference latency that can affect the detection
speed during practical applications.

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Table 6. Confusion matrix for accurate calculation.

True Class
Positive Negative

Predicted Class
Positive Ture positive (TP) False positive (FP)

Negative False negative (FN) Ture negative (TN)
TP denotes the positive samples correctly predicted as positive. FP represents the negative samples incorrectly
predicted as positive. Similarly, FN and TN can be obtained.

4.4. Experiments
4.4.1. Comparison Experiments

Comparison experiments were conducted to present the advantages and effectiveness
of the DCNNT model proposed in this study. Several benchmark methods were selected
for the comparison, namely, ELM [35], k-nearest neighbor (KNN) [36], backpropagation
network (BP), and SVM. Furthermore, three SOTA approaches were also compared to
substantiate the superiority of the proposed algorithm, namely 2D time-frequency image
detection based on continuous wavelet transform and CNN (CWTCNN) [37], 1D time-
sequence wire rope defect diagnosis based on the standard transformer (Transformer1D),
and the deep residual learning network (ResNet) [38]. For the KNN, the selection of
K was crucial for the prediction results. To determine the optimal K value, a range of
values ranging from 0 to 200 were tested and the best performance was the result, while
the corresponding K value was selected for cross-domain experiments. The numbers of
neurons in the input, hidden, and output layers of ELM and BP were set as 100, 112,
and 2, respectively. The parameters of SVM, kernel function, cost parameter c, and kernel
parameter γ, were set as the radial basis function (RBF) 1 and 0.1, respectively. The structure
of CWTCNN was proposed by Zhang et al. in 2022 and achieved a better performance for
the diagnosis of broken wires. Thus, the original network structure and image processing
method were preserved, while the length of the input LMA signal changed to 100 to
ensure fairness during the comparison experiments. Transformer1D is a variant of DCNNT
without the CNN component, and its input is the time domain LMA signals. This was
performed to prove the ability of the CNN to reduce computational costs and improve
inference speed. ResNet is an excellent network used for classification tasks; 50 residual
layers were established in this study to conduct comparison experiments.

Firstly, to present a clearer presentation of the effectiveness of the proposed DCNNT
network, experiments were conducted under the same training and test conditions without
cross-domain scenarios. According to the group list presented in Table 4, the dataset was
split at a ratio of 4:1 for the training and test sets. A 10-fold cross-validation was conducted
and the average accuracy results are presented in Figure 11 and Table 7. It can be observed
that the proposed DCNNT network significantly outperforms the other methods in most of
the groups. The reason was that the combination of the CNN and transformer improved



Appl. Sci. 2023, 13, 7069 14 of 21

the ability of feature extraction and generalization. Although Transformer1D achieved the
best performance in group D, its higher computational cost was not beneficial for practical
applications, and this was analyzed in the subsequent discussion.
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Figure 11. Performance comparison of different methods under the same working conditions. A,
B, C, and D represent the different groups, while Avg denotes the average accuracy values of the
different methods.

Table 7. Diagnosis accuracy (%) of different groups under the same working conditions.

A B C D Avg

ELM 85.53 92.14 89.16 86.87 88.43
KNN 87.77 97.81 92.48 92.23 92.57

BP 88.81 97.17 96.57 96.23 94.69
SVM 90.36 98.83 97.94 98.75 96.47

CWTCNN 94.29 99.54 98.43 99.45 97.93
Transformer1D 95.96 99.68 99.25 99.85 98.68

ResNet 99.37 99.84 98.51 99.13 99.21
DCNNT 99.60 99.92 99.55 99.57 99.66

The generalization of the TL architecture and the DCNNT model was studied through
cross-domain experiments which are training the DCNNT model using the source domain
dataset and fine-tuning the trained model using a small target domain dataset. Similarly, 10-
fold cross-validations were conducted to guarantee the credibility of the results. According
to the results presented in Figure 12 and Table 8, the DCNNT model achieved a higher
detection accuracy compared to the other methods. Thus, the best performance was
generated by DCNNT-5% which is based on DCNNT and TL architecture using only a 5%
target domain dataset for fine-tuning purposes. This phenomenon can be attributed to the
reasonable adjustment of data distribution, even if the small target domain data was used.
For example, task A→D obtained a 98.96% detection accuracy after the use of transfer
architecture. Additionally, the network weights were changed and became more suitable
for the defect diagnosis performed in the target domain. The worst result was obtained by
ELM, which is an unsupervised learning method with an average accuracy of only 86.00%.
Specifically, DCNNT and DCNNT-5% achieved higher accuracy values than all the general
classification methods. However, those SOTA algorithms also obtained acceptable results,
such as Transformer1D, with 99.52% accuracy obtained in task D→B, while the proposed
DCNNT could balance detection accuracy, forward latency, and model size. Compared
with the average accuracy (Avg) results presented in Tables 7 and 8, the results of each
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algorithm present performance discrepancies, such as SVM with 96.47% accuracy in the
same condition and 94.70% in the cross-domain tasks. Although this discrepancy was
caused by the different test methods used, the trend of detection accuracy was consistent.
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CWTCNN 98.57 97.59 92.54 93.11 97.73 96.65 91.96 98.82 93.26 92.56 98.54 97.42 95.73
Transformer1D 99.18 98.21 97.77 95.04 98.03 96.38 93.12 98.52 95.80 94.48 99.52 97.82 96.99

ResNet 99.24 97.17 93.17 92.99 97.85 98.87 89.59 97.90 92.91 93.24 98.96 97.34 95.77
DCNNT 99.53 98.12 95.80 95.60 98.09 98.32 93.49 98.99 98.58 94.73 98.31 97.53 97.26

DCNNT-5% 99.87 98.31 98.96 95.95 98.18 99.39 94.52 99.07 98.96 96.27 99.43 97.96 98.07

A comprehensive evaluation considering different aspects is necessary for under-
standing the performance of the proposed methods. As shown in Table 9, Params and
FLOPs denote the number of network parameters and computational complexities. Latency
denotes forward inference latency with batch size one. CPU was used to test the latency in-
stead of GPU, considering the economics of real-world applications. It can be observed that
DCNNT obtained lower FLOPs and latency values: 1.388 G and 36.49 ms. This improve-
ment can be ascribed to the operation of feature extraction and data transformation using
the CNN prior to the self-attention method in the transformer. As described in Figure 8,
the 10× 10 image changed to 4× 4. Consequently, the input sequence of the transformer
was changed to 16 instead of 100. However, Transformer1D had a high computational cost
and latency result because the original LMA signal with 100 points was set as the input;
more self-attention operations have to be processed during forward inference and gradient
update stages.
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Table 9. Comprehensive evaluations of different state-of-the-art methods.

CWTCNN Transformer1D ResNet DCNNT

Params 172.969 M 37.808 M 23.516 M 39.135 M
FLOPs 19.857 G 7.626 G 4.700 G 1.388 G

Latency 192.93 ms 124.06 ms 70.30 ms 36.49 ms

4.4.2. Transfer Experiments

To prove the effectiveness of the proposed TL architecture, transfer comparison experi-
ments were conducted in this study. Furthermore, the defect sample usually is scarce and
weak in real applications. Thus, the transfer efficiency analysis is meaningful for further
research purposes. As shown in Table 10, domain adaptation comparison experiments
were conducted for 12 groups. For example, A→B means to train the DCNNT network
using all the samples of source domain A. Then, the fine-tuning model used a part of
the dataset obtained from target domain B. While 5%, 10%, 15%, and 20% target domain
datasets were used for the transfer fine-tuning model, the comparison group presented
the results without using TL architecture. It can be observed that the results present great
fluctuations when the trained model predicts another domain sample directly. However,
the TL method can be used to achieve a rapid increase in all the scenarios. As presented in
Figure 13, the detection accuracy values can easily be improved even when using only a 5%
target domain dataset, except for C→A and D→A, which is analyzed in Section 4.6.

Table 10. Detection accuracy (%) values of transfer fine-tuning method in different scenarios.

Scenarios Without TL
Architecture

Target Domain Dataset with TL Architecture
5% 10% 15% 20%

A→B 99.53 99.87 99.76 99.77 99.84
A→C 98.12 98.31 98.34 98.53 98.73
A→D 95.80 98.96 99.25 99.35 99.42
B→A 95.60 95.95 96.21 96.72 98.88
B→C 98.09 98.18 98.71 98.63 98.96
B→D 98.32 99.39 99.58 99.42 99.60
C→A 93.49 94.52 95.58 95.75 98.14
C→B 98.99 99.07 99.33 99.52 99.57
C→D 98.58 98.96 99.06 99.08 99.49
D→A 94.73 96.27 96.86 97.08 97.15
D→B 98.31 99.43 99.44 99.63 99.80
D→C 97.53 97.96 98.47 98.70 98.81
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4.5. Visualization and Discussion
4.5.1. CNN Visualization

To better analyze the internal principle of the CNN, feature visualization was con-
ducted in different layers of the backbone network of DCNNT. Part of the learned feature
maps are presented in Figure 14. We selected one feature map from each convolution,
normalization, and pooling layer to study the correlations between them. The first image
(a) is the original gray image and (b) is the feature map after the first convolution operation.
It can be observed that (b) has similar characters to (a). This demonstrates the CNN method
has the ability to learn useful features from the inputs. For the other layers, it can be
observed that the output features cannot be easily explained due to the limitation of high
dimensions. However, these layers are necessary for model training purposes and the
establishment of the deep learning network.
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4.5.2. Clustering Analysis

In this section, we employed the t-distributed stochastic neighbor embedding (t-
SNE) [39] technique to cluster the linear layer in the MLP head of DCNNT. The purpose
was to investigate the change in data distribution following TL fine-tuning and to analyze
the generalization and robustness of the proposed TL architecture. The transfer task of
A→D was selected to perform the clustering analysis and the result is presented in Figure 15.
After the application of t-SNE, the high-dimensional features of the wire rope were reduced
to a 2D space, which provided the feasibility of the visualization. In Figure 15a, although it
can be observed that most of the samples can be separated by a liner classifier, some red
defect samples are inevitably mixed. After performing TL fine-tuning using a 5% target
domain dataset, the majority of the samples presented in the same category in Figure 15b
were well-aligned and could be easily separated through a linear classifier. As a result, TL
architecture was effective to adjust the data distribution, even when a small target domain
dataset is used.

4.5.3. Results in Confusion Matrix

Additionally, a confusion matrix visualization was conducted and the results of the
A→D domain adaptation tasks are shown in Figure 16. As described in Table 4, normal
and defect labels were used, consisting of the confusion matrix, and the detection accuracy
values were presented in the intersection. Compared with ELM, KNN, BP, and SVM, the
DCNNT network presented a better domain adaptation performance by introducing the
attention mechanism. Although SOTA methods can achieve acceptable defect detection
accuracy results, DCNNT produces an excellent comprehensive result for detection accu-
racy, forward latency, and computational cost as discussed above. After the application
of TL architecture, the performance of DCNNT-5% shows that most of the samples can be
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accurately distinguished even when only a 5% target domain source dataset is used in a
cross-domain scenario.
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Figure 15. Clustering analysis visualization for task A→D. (a) result without TL architecture;
(b) result based on TL architecture using a 5% target domain dataset.
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Figure 16. Confusion matrix results of domain adaptation comparison experiments between dif-
ferent methods. (a) ELM; (b) KNN; (c) BP; (d) SVM; (e) CWTCNN; (f) Transformer1D; (g) ResNet;
(h) DCNNT; and (i) DCNNT-5%.

4.6. Analysis of Transfer Feasibility

As shown in Figure 13, rapid accuracy improvement does not occur in every task, for
example, tasks A→D, D→A, and C→A, although the prediction results yield satisfying
performances based on the TL architecture. The reason for this is that the data distribution
is difficult to adjust in some scenarios. This discrepancy between source and target domains
can be described as the maximum mean discrepancy (MMD) [40]. The principle of the
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MMD is based on the reproducing kernel Hilbert space used to measure the distance
between source and target domains. This method can minimize the computational cost
produced during processing through matrix operations. Table 11 presents the MMD results
between different groups. The lower the MMD, the closer the data distribution between
the two domains. The MMD results are sorted from highest to lowest, A–D = A–C > B–D >
A–B > B–C > C–D, signifying that the distributions of the wire rope data samples, under
working conditions C and D, are quite similar, whereas A, D, and C present the most
differences. There is a clear negative correlation evident when compared with the accuracy
results presented in Table 10 and the MMD results in Table 11. As a result, the MMD can be
used as a criterion to determine whether the TL architecture is feasible between the source
and target domains in practical applications.

Table 11. MMD values between different cross-domain groups.

Target Domain
A B C D

Source
Domain

A 0 0.043 0.046 0.046
B 0.043 0 0.038 0.044
C 0.046 0.038 0 0.033
D 0.046 0.044 0.033 0

5. Conclusions

In this study, we solved the concerns of wire rope defect diagnosis issues under various
working conditions. Based on the LMA signal, this paper proposed a new CNN-transformer
network to improve the overall diagnosis performance. The combination of a CNN and
transformer was used for the first time in the wire rope defect diagnosis application field.
In addition, the EMD data processing method was introduced to reduce the adverse impact
of diverse noise signals. The image processing method was presented for the preparation of
the wire rope dataset. TL architecture was proposed as the solution to improve the ability
of domain adaptation. Consequently, through comparison experiments, the robustness
and effectiveness of the DCNNT model and TL architecture were proven. The results
indicate that the proposed method performs well and can balance detection accuracy,
diagnosis speed, and computational cost factors. Then, visualization was conducted
to understand why the proposed DCNNT model and TL architecture worked well in
classification tasks. Finally, the MMD algorithm was used to analyze the transfer feasibility
between different groups. In summary, DCNNT can achieve a better performance compared
with other diagnostic methods in wire rope defect diagnosis activity, whilst being relatively
acceptable to complete model training by a common GPU. TL architecture can avoid
the time-consuming retraining procedure and solve the challenges of lacking labeled
defect data.

Although the results are encouraging, numerous limitations and challenges remain.
Firstly, one of the challenges is how to apply the trained DCNNT model to another me-
chanical component that presents a considerable discrepancy in MMD, such as gearboxes
and pumps. Second, generating a healthy degree, according to the diagnosis results, is
difficult because this is the foundation for evaluating the entire mechanical system. In the
future, some weighted-based and quantitative methods are recommended to realize the
interaction between diagnosis and health evaluation models, such as the introduction of an
analytic hierarchy process or the entropy weight method.
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